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Abstract: In this paper, we present a review of recent developments on the κ-deformed statistical
mechanics in the framework of the information geometry. Three different geometric structures are
introduced in the κ-formalism which are obtained starting from three, not equivalent, divergence
functions, corresponding to the κ-deformed version of Kullback–Leibler, “Kerridge” and Brègman
divergences. The first statistical manifold derived from the κ-Kullback–Leibler divergence form
an invariant geometry with a positive curvature that vanishes in the κ → 0 limit. The other two
statistical manifolds are related to each other by means of a scaling transform and are both dually-flat.
They have a dualistic Hessian structure endowed by a deformed Fisher metric and an affine
connection that are consistent with a statistical scalar product based on the κ-escort expectation.
These flat geometries admit dual potentials corresponding to the thermodynamic Massieu and
entropy functions that induce a Legendre structure of κ-thermodynamics in the picture of the
information geometry.

Keywords: κ-generalized statistical mechanics; information geometry; dually-flat geometry; Hessian
geometry; Legendre structure; divergence functions

PACS: 02.40.-k; 89.70.Cf; 05.90.+m

1. Introduction

In the study of complex systems, long tailed probability distributions are often discussed.
Anomalous statistical behavior is largely observed in physical systems plagued by long-range
interactions or long-time memory effects as well as in non-physical systems, such as biological, social
and economic ones. In such systems, family of probability distributions characterized by deformed
exponentials with asymptotic power-law tails play a relevant role.

To deal with these new phenomenologies, in recent decades, a generalized version of statistical
mechanics has been formulated where power-law distributions are expressed in terms of a generalized
exponential function which maximizes suitable entropic forms.

In recent years, there is a growing interest in studying statistical physics, including its generalized
versions, by means of information geometry [1,2]. In this framework, the methods of the differential
geometry are applied to study the properties of statistical manifolds constructed starting from a given
parameterized probability distribution function.

The usefulness of the geometric approach in the study of the foundations of statistical mechanics
and thermodynamics has been clear since from the early works of Gibbs and Charathéodory [3,4].
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On the thermodynamical ground, after the pioneering works of Ruppeiner (see [5] for a review),
which introduces a Riemannian metric in the thermodynamical parameter space starting from
potentials like entropy and free energy, a rich literature has been developed to study the implications
that geometry might have on the thermostatistics and in particular about its contact structure [6,7],
the relationships between physical observable [8,9] and the thermodynamics transformations in a
physical system [10,11].

Otherwise, the information geometry gives priority to the probabilities distributions. In this
framework, one investigates the geometric structures of the statistical manifold generated by
parametric families of distributions, by introducing a Riemann metric in the probability distribution
space [12], identified with the Fisher metric [13]. After that, many efforts have been done to better
understand the role of geometry in statistics, like, to cite a few, Čencov [14], that introduced the
affine connection in a statistical manifold, Csizsár [15], that introduced the concept of f -divergence,
Efron [16], that studied the role of curvature in a statistical model, Eguchi [17] that relates the affine
connection to a divergence function or relative entropy and Amari [18–20], that further developed
the differential geometry of statistical models by elucidating its dualistic nature and introducing the
Pythagorean theorem and the projective theorem in the framework of information geometry.

More recently, Amari and co-workers showed the existence of a rich geometry in the probability
space, the so-called α-geometry, consisting of a dually affine connection endowed by a Hessian
structure [21], that is pertinent, in particular, to study of deformed exponential family [22–25].

In recent years, a certain interest has been given to the study of some probability distributions
generated by deformed exponential families in which the exponential function is replaced by its
generalized version. For instance, in [26] a family of generalized exponentials has been introduced
by means of a positive increasing function and the corresponding thermostatistics was studied.
Belonging to this family, the κ-exponential [27,28], at the heart of the κ-deformed statistical
mechanics introduced by Kaniadakis in [29,30], is useful to study anomalous systems characterized by
non-Gibbsian distributions with an asymptotic free-scale behavior.

Up today, many papers have been written on the foundations and the theoretical consistency
of κ-statistical mechanics [31–48] (see also [49] and references therein). It has been applied in many
research fields, such as statistical physics, thermostatistics, financial physics, social science, statistics
and information theory [50–65].

In this paper, inspired by a recent work of Zhang and Naudts [66,67], we study the κ-distribution
and its associated statistical manifold in the framework of information geometry, revisiting some
results already known [68–70] and deriving new geometrical structures obtained from three different,
not equivalent, divergence functions corresponding to the κ-deformed version of Brègman, “Kerridge”
and Kullback–Leibler divergences.

It is known that starting from a deformed exponential family, one can introduce several kinds
of different statistical manifold [71–73]. These can be derived from a hierarchical structure of escort
expectations [74,75]. In particular, a Fisher metric can be obtained by introducing an expectation based
on the first order escort distribution while a cubic form can be obtained by introducing an expectation
based on the second escort distribution.

Escort averages can be useful to overcome several problems plaguing power-law distributions.
For instance, such distributions have not finite momenta of any order as in κ-statistics where ⟨xn⟩ <∞
only for n < 1/κ − 1 [76]. An expectation defined by means of escort distribution might be more
appropriate to solve these and other questions, although other types of nonlinear expectation can also
be introduced [77].

In the framework of κ-deformed formalism escort distributions has been previously introduced
in [68] to investigate a dually flat geometry in the κ-distribution space and than a double escort
distribution has been defined in [70] to study a second dually flat geometry, which is based on the
escort expectation instead of the standard expectation. In both these geometric structures a kind
of fluctuation-response relation, that could be relevant in the framework of the non-equilibrium
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κ-deformed statistical mechanics, has been deduced by using, respectively, escort and double
escort expectations. In addition, escort distribution [78] appears recurrently in the research area
of multi-fractals and generalized statistical mechanics.

In this paper, we show that within the κ-deformed exponential formalism, one can introduce
three kinds of geometrical structures. The first, is an invariant geometry where the Fisher
information is the unique Riemannian metric together with a dual pair of invariant affine connections.
The other two, are dually-flat geometries that introduce a Legendre structure and a Hessian structure
on the corresponding statistical manifold [70] where some potential functions, like the Massieu
function ψκ and the entropic form Sκ , are related in a way formally similar to what is done in the
Kählerian geometry.

The main novelty of this work is to illuminate on the existent of an invariant geometry related
to the κ-deformed formalism that has been never explored in the existent literature as well as on the
existent of another dually-flat structure different from, but related to the one already studied in [70]
that is characterized by scaled potentials, named para-potentials, and by a slimmer expression for the
probability distribution.

The structure of the paper is as follows: In the next Section 2 we summarize the main aspect of
some κ-deformed functions given by expκ(x), lnκ(x) and uκ(x), that represent the bricks constituting
the entire κ-deformed formalism. In Section 3, for the convenience of the reader, we present an
overview of the (now) classical information geometry. The three statistical manifolds derived from
different version of divergence function are studied in Section 4 and in particular, in Section 4.1 we
introduce the statistical manifold derived from the κ-Kullback–Leibler divergence that is an invariant
geometry with a positive curvature, while in Sections 4.2 and 4.3 we introduced two dually-flat
geometries with their Hessian structures obtained, respectively, from the κ-Kerridge and κ-Brègman
divergences. Our conclusions are reported in Section 5.

2. κ-Deformed Functions

To begin with, let us review some preliminary facts concerning the κ-deformed functions
remanding to the relevant literature for the details [26,27,37].

Firstly, the κ-logarithm, defined in

lnκ(x) = xκ − x−κ

2 κ
, (1)

where, for κ2 < 1, lnκ(x) = ln−κ(x) is a continuous, monotonic, increasing and concave function for
x ∈ R+, with lnκ(R+) ⊆ R. It fulfills the relation λ lnκ(ε) = 1 that will be useful in the remainder,

with ε = ( 1+κ
1−κ )

1/2 κ
and λ =

√
1+ κ2. In the κ → 0 limit, these constants recover the Neperian natural

number and the unity, i.e., ε = e and λ = 1, as well as, in the same limit, the κ-logarithm reduces to the
standard logarithm ln0(x) = ln(x). Remarkably, lnκ(x) satisfies the relation lnκ(x) = − lnκ (1/x) like
does the standard logarithm.

Another κ-deformed function recurrent in this formalism, namely u-function, is given by

uκ(x) = xκ + x−κ

2
. (2)

For κ2 < 1, the u-function uκ(x) = u−κ(x) is continuous for x ∈ R+, with uκ(R+) ⊂ R+,
uκ(0) = uκ(+∞) = +∞ and obtains its minimum at x = 1.

Like lnκ(x), the deformed function uκ(x) satisfies the same relations λ uκ(ε) = 1 as well as
uκ(x) = uκ ( 1

x) while it becomes a constant in the κ → 0 limit: u0(x) = 1.
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The two functions lnκ(x) and uκ(x) are closely related each other in several ways. For instance,
from the calculus we have

d
dx

lnκ(x) = uκ(x)
x

,
d

dx
uκ(x) = κ2 lnκ(x)

x
. (3)

These two relations can be rewritten in an integral form according to

lnκ(x) =
x

∫
1

uκ(y)
y

dy , uκ(x) = κ2
x

∫
1

lnκ(y)
y

dy + 1 , (4)

that can be assumed as the defining relations for these κ-deformed functions.
A very general approach to introduce deformed logarithms using an integral relation has been

formulated in [26]. Let φ(s) be a strictly increasing function, we can define a deformed logarithm,
namely φ-logarithm, in

lnφ(x) =
x

∫
1

1
φ(s) ds . (5)

When we choose φ(s) = s, the φ-logarithm reduces to the standard logarithm ln(x). Otherwise,
by posing φ(s) = s/uκ(s), Equation (5) is just the first of Equation (4), and the φ-logarithm reproduces
the κ-logarithm (1).

It is interesting to note that, according to Equation (4), the function uκ(x) can be introduced as
like as the κ-logarithm, by posing φ(s) = s/(κ2 lnκ(s)). However, it should be noted that uκ(x) is not a
deformed logarithm since s/(κ2 lnκ(s)) is not a monotonic increasing function.

The φ-logarithm admits the inverse function, namely the φ-exponential, defined in an implicit
form as

expφ(x) = 1+
x

∫
0

φ( expφ(s)) ds . (6)

In the κ-formalism, this equation can be solved explicitly so that the κ-deformed exponential takes
the expression

expκ(x) = (κ x +
√

1+ κ2 x2)
1/κ

. (7)

Its analytic properties follows from those of the κ-logarithm, i.e., for κ2 < 1, expκ(x) = exp
−κ(x)

is a continuous, monotonic, increasing and convex function, with expκ(R) ⊆ R+ and expκ(0) = 1.
Moreover, it satisfies the relation expκ(−x) expκ(x) = 1 like the standard exponential does.

On the physical ground, equilibrium distribution of a system described by an entropic form
S(p) constrained by a given observable U, for instance, the internal energy, can be obtained from the
optimal problem

Maxp (S(p)− βEp[ε]) = 0 , (8)

where β is the Lagrange multipliers associated to the constraint U = Ep[ε], with Ep[x] = ∑µ pµ xµ the
standard linear average and εµ are the outcomes of the observable corresponding, for instance, to the
available energy levels of the system (hereinafter, Greek indices run on 0 to n; Latin indices run on
1 to n).
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In Equation (8) we assumed, at priori, the normalization of pdf so that, we consider p0 = 1−∑i pi
as a function of the other pi avoiding to introduce, in this way, the normalization as a further constraint.
In the κ-formalism, entropy assumes the following trace-form expression [29,30]

Sκ(p) = −∑
ν

pν lnκ(pν) ≡ −Ep [lnκ(p)] , (9)

which reduces to the Boltzmann–Gibbs–Shannon entropy SBGS(p) = −∑µ pµ ln(pµ) in the κ → 0 limit.
The optimal problem (8) becomes

δ

δpi
{−(1−∑

i
pi) lnκ (1−∑

i
pi)−∑

i
pi lnκ(pi)− β [ε0 (1−∑

i
pi)+∑

i
εi pi]} = 0 , (10)

that, solved for pi, gives

pi =
1
ε

expκ ( 1
λ

(θi − γ(θ)) , (11)

where we have posed θ ≡ {θi}, with

θi = −β (εi − ε0) , and γ(θ) = −λ lnκ (ε p0) . (12)

Here, γ(θ) is a function of parameters θi and is fixed by the normalization condition.
Strictly related to a given entropic form, the divergence function plays a relevant role in

information theory. In a sense, it measures the “distance” between an arbitrary distribution pµ

and the reference distribution qµ, although it is not rigorously a “distance” function since, in general,
is not symmetric in its arguments and does not satisfy the triangle inequality.

Within the Shannon entropy, the Kullback–Leibler divergence D[p; q] [79] is defined as

D[p; q] =∑
µ

pµ ln(
pµ

qµ
) , (13)

and can be written in the equivalent forms

D[p/q] =∑
µ

pµ (ln(pµ)− ln(qµ)) , (14)

that we will call, with abuse of language, “Kerridge” divergency, because the cross term is known in
information theory as Kerridge inaccuracy [80], or also in

D[p∥q] = S[q]− S[p]+∑
µ

∂S[q]
∂qµ

(pµ − qµ) , (15)

where, this last expression is known as Brègman divergence [81].
However, the situation is more complicated in the κ-formalism [44] since, in this case, the above

expressions, rewritten in

Dκ[p; q] = ∑
µ

pµ lnκ (
pµ

qµ
) , (16)

Dκ[p/q] = ∑
µ

pµ (lnκ(pµ)− lnκ(qµ)) , (17)

Dκ[p∥q] = Sκ[q]− Sκ[p]− λ∑
µ

(pµ − qµ) lnκ (ε qµ) , (18)

turn out to be no more equivalent, nor related to each other in a simple manner, as in the κ = 0 case.
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Functionals (16)–(18) are non-negative definite and vanish iff p = q, a property that follows from
the concavity of lnκ(x). In particular, the κ-Brègman divergence (18) has been introduced and studied
in [37].

3. Statistical Manifold and Its Hessian Structure

In this section, we summarize the main aspects of a statistical manifold [1,2].
Let θ ≡ {θ1, . . . , θm} ∈ Ξ a set of m real parameters, where Ξ is an open subset of Rm. We introduce

a discrete statistical model S , the (n + 1)-dimensional simplex of discrete probability functions on the
simple space Ω:

S =
⎧⎪⎪⎨⎪⎪⎩

p ≡ {pµ(θ)} ∶ Ω →R
RRRRRRRRRRR
∑
µ

pµ(θ) = 1, pµ(θ) > 0
⎫⎪⎪⎬⎪⎪⎭

, (19)

where µ = 0, . . . , n, labels the n + 1 possible outcomes with probability pµ.
Under suitable conditions S can be regarded as a manifold with local coordinates system θ,

endowed by a metric tensor

gij = Ep[∂i` ∂j`] , (20)

with ∂i = ∂/∂θi and ` ≡ {`ν(θ)} = {ln pν(θ)}, by a cubic form

Cijl = Ep[∂i` ∂j` ∂l`] , (21)

that is a third-order completely symmetric tensor and by a Riemannian (Levi-Civita) connection

Γ(0)ij,l = 1
2
(∂igjl + ∂jgil − ∂l gij) . (22)

Starting from definitions (21)–(22) we can introduce a family of affine connections, named
α-connection ∇(α), with α ∈ R, defined in

Γ(α)ij,l = Γ(0)ij,l −
α

2
Cijl . (23)

In particular, 1-connection and −1-connection play a special role in information geometry.
They are called, respectively, exponential-connection ∇(e) ≡ ∇(1), and mixture-connection
∇(m) ≡ ∇(−1) and in a local representation are given by

Γ(1)ij,l = Ep [∂ij` ∂l`] , Γ(−1)
ij,l = Ep [ 1

p
∂ij p ∂l`] . (24)

We recall that metric (20) is known in statistics as Fisher information and is the only Riemannian
metric invariant under sufficient statistics on the manifold of a probability distribution. For this reason,
the geometry defined by Equations (20)–(22) is called invariant geometry.

More in general, starting from the affine connection ∇, we can introduce with respect to g a dual
connection ∇∗, defined by of the relation

∂l gij = Γli,j + Γ∗l j,i . (25)

We say the triplet (Ξ, g, ∇) is a statistical manifold if ∇g is totally symmetric, that is

∂jgil − Γji,l − Γjl,i = ∂igjl − Γij,l − Γil,j , (26)
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and in addition, if g is torsion-free, also ∇∗g is totally symmetric. Therefore, (Ξ, g, ∇∗) is again a
statistical manifold dual to (Ξ, g, ∇).

We say the statistical manifold (Ξ, g, ∇) is flat if ∇ is curvature-free. In this case, there exist locally
on Ξ a coordinate systems θ, named affine coordinate systems, such that the connection Γij,l vanish on
its coordinates neighbourhood.

It can be shown that Γ(α) and Γ(−α) are dual to each other and this hold also for the exponential
and the mixture connection. In particular, as it is well-known, the statistical model defined by the
exponential family

S exp =
⎧⎪⎪⎨⎪⎪⎩

p ≡ {pµ(θ)} ∶ Ω →R
RRRRRRRRRRR

pi(θ) = exp
⎡⎢⎢⎢⎢⎣
∑

j
θ j cj(xi)− γ(θ)

⎤⎥⎥⎥⎥⎦
, p0(θ) = 1−∑

i
pi(θ)

⎫⎪⎪⎬⎪⎪⎭
, (27)

where cj(χ) are given functions of a random variable χ and γ(θ) is the normalization factor, admits a
set of affine coordinates such that the exponential connection vanishes and the corresponding statistical
manifold is said exponential-flat. In the same way, the statistical model defined by the mixture family

S mix =
⎧⎪⎪⎨⎪⎪⎩

p ≡ {pµ(η)} ∶ Ω →R
RRRRRRRRRRR

pi(η) =
⎛
⎝

1−∑
j

ηi
⎞
⎠

r0(xi)+∑
j

ηj rj(xi), p0(η) = 1−∑
i

pi(η)
⎫⎪⎪⎬⎪⎪⎭

, (28)

where r(χ) = {rµ(χ)} are given distribution functions of a random variable χ, with ∑µ ηµ = 1, admits a
set of affine coordinates such that the mixture connection vanishes and the corresponding statistical
manifold is said mixture flat.

If ∇ is flat on Ξ, we say that the statistical manifold (Ξ, g, ∇) form a Hessian structure on Ξ if
there exists a function ψ ≡ ψ(θ) such that, at least locally, the following formula holds

gij(θ) = ∂ijψ . (29)

In this case, be θ a ∇-affine coordinate system on Ξ, there exist a dual ∇-affine coordinate system
η ≡ {ηj} on the dual space Ξ, such that

g(∂i, ∂j) = δ
j
i , (30)

where ∂j = ∂/∂ηj and in addition, the following relation hold

gij(η) = ∂ij ϕ , (31)

for some function ϕ, where gij is the inverse of the Riemannian metric gij, with

gil gl j = δi
j , gij = ∂iθ j , gij = ∂iηj , (32)

while the cubic form is given by

Cijl = ∂ijlψ , and Cijl = ∂ijl ϕ . (33)

It can be shown that the two dual-affine coordinate systems can be introduced according to

ηi = ∂iψ , θi = ∂i ϕ , (34)

where the two functions, named respectively ψ-potential and ϕ-potential, are related by the relation

ψ(θ)+ ϕ(η)−∑
i

θi ηi = 0 , (35)
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that introduces a Legendre structure on the statistical manifold.
Finally, let us define on Ξ ×Ξ the function

D[p, q] = ψ(θ(p))+ ϕ(η(q))−∑
i

θi(p) ηi(q) , (36)

called canonical divergence on the Hessian manifold (Ξ, g, ∇), that is a Brégman divergence [81].
It introduces a pseudo-distance that is asymmetric, with D[p, q] ≥ 0, where equality holds iff p = q,
in agreement with Equation (35).

If (Ξ, g, ∇) form a Hessian structure, it is easy to verify the following relations

∂pi D[p, q]∣
p=q

= 0 , ∂pi D[p, q]∣
p=q

= 0 , (37)

∂piqj D[p, q]∣
p=q

= −gij , ∂piqj D[p, q]∣
p=q

= −gij , (38)

∂pi pjql D[p, q]∣
p=q

= −Cijl , ∂pi pjql D[p, q]∣
p=q

= −Cijl , (39)

∂piqjql D[p, q]∣
p=q

= 0 , ∂piqjql D[p, q]∣
p=q

= 0 , (40)

where ∂pi ≡ ∂/∂θi(p), ∂pi ≡ ∂/∂ηi(p) and similarly for q.
More in general, following [82], any definite positive contrast function ρ[p, q], that is a divergence

compatible with the structure of the statistical manifold, induces a Riemannian geometry on Ξ,
not necessarily flat, whose metric and connections are given by

∂piqj ρ[p, q]∣
p=q

= −gij , ∂pi pjql ρ[p, q]∣
p=q

= −Γij,l , ∂pl qiqj ρ[p, q]∣
p=q

= −Γ∗ ij,l , (41)

and similarly for the low indices.
Remarkably, different contrast functions that share the same cross term induce the same geometric

structure, since, according to the above equations, the crossing derivative vanishes for terms depending
only on p or q.

4. Statistical Manifolds in κ-Formalism

As known, any discrete distribution is in an exponential family and in a mixture family at the
same time [2]. In fact, starting from the statistical model (19) we can define the distribution

pν(θ) =∑
µ

pµ ϑµ(ν) = (1−∑
i

pi) ϑ0(ν)+∑
i

pi ϑi(ν) , (42)

with

ϑ0(ν) = 1−∑
i

ϑi(ν) , (43)

where ϑi(ν) = 1 when the discrete random variable ν = i and zero otherwise, that clearly belongs to the
mixture-family (28), with rµ(xν) ≡ ϑµ(ν) and ηi ≡ pi.

Otherwise, by applying the logarithm to Equation (42) we obtain the distribution

pν(θ) = exp(∑
i
( ln(pi)− ln(p0))ϑi(ν)+ ln(p0)) , (44)

that belongs to the exponential-family (27), with θν ≡ ∑i(ln(pi) − ln(p0)), cν(xi) = ϑi(ν) and
γ(θ) ≡ − ln(p0).
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More in general, given a generalized logarithm function lnφ(x), from Equation (42) we can
introduce the distribution

pν(θ) = expφ (∑
i
( lnφ(pi)− lnφ(p0))ϑi(ν)+ lnφ(p0)) , (45)

that is in a discrete generalized exponential-family with parameters θν ≡ ∑i(lnφ(pi) − lnφ(p0)),
cν(xi) = ϑi(ν) and γ(θ) ≡ − lnφ(p0).

Therefore, the manifold of a discrete probability distribution is a super-manifold in which any
statistical model of a discrete random variable, including φ-exponential family a là Naudts, is embedded
as a submanifold. Different embedding of the same distribution induces different geometric structures
which are related to non equivalent divergence functionals. In the following, we explore these
alternatives starting from the divergence functionals introduced in Equations (16)–(18).

It is worth noticing that in the above arguments no hypothesis has been done on the origin of
distribution p. However, if this distribution came from an optimization problem, as in Equation (10),
the coordinates θi would coincide with those introduced in Equation (12) and are related to the
Lagrange multipliers of the corresponding constraints.

4.1. First Statistical Structure

The first geometric structure we are introducing came from the κ-deformed version of
Kullback–Leibler divergence (16). It belongs to the family of the f -divergence studied by Csiszár [15]

D[p, q] =∑
µ

pµ f (
qµ

pµ
) , (46)

where, in general, f (x) is any convex differentiable function satisfying the condition f (1) = 0. Clearly,
Equation (16) follows from (46) for f (x) = − lnκ(x).

As known, any f -divergence induces a geometry invariant under sufficient statistics and,
excepting the Kullback–Leibler divergence, the corresponding statistical manifold has not a Hessian
structure nor is dually-flat and thence is characterized by a not vanishing curvature [2].

In this case, the embedding we are implementing is given by the standard logarithmic

pµ → `µ = ln (pµ) , (47)

where the natural coordinates are those of the exponential family η ≡ {pi} and θ ≡ {θi}.
By posing ρ[p, q] ≡ Dκ[q; p] from Equations (41) we straightforward derive metric and connection

in the Ξ space, according to

gij = 1
p0

+ δij

pi
, (48)

Γij,l = (1+ κ2) ( 1
p2

0
− δijl

p2
i
) , (49)

Γ∗ ij,l = −κ2 ( 1
p2

0
− δijl

p2
i
) , (50)

where δijl = 1 for i = j = l and zero otherwise, and coincide, as expected, with the definitions of
statistical Fisher information matrix and α-connection.
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The inverse relations are given by

gij = pi (δij − pj) , (51)

Γij,l = (1+ κ2) pi [(δijl − pj δjl)− pj (δil − pl)− pl (δl j − pj)] , (52)

Γ∗ij,l = −κ2 pi [(δijl − pj δjl)− pj (δil − pl)− pl (δl j − pj)] , (53)

while from Equation (23) we can derive the Levi-Civita connection

Γ(0)ij,l = 1
2 (1+ κ2) Γij,l , (54)

that does not depend on the deformation parameter and the cubic form

C(κ)ij,l = −1+ 2 κ2

1+ κ2 Γij,l .

These relations confirm that κ-Kullback–Leibler divergence actually introduces the α-geometry in
the framework of the κ-formalism where

α = 1+ 2 κ2 , (55)

in agreement with the general relation α = 3+ 2 f ′′′(1) [23].
Remark that this correspondence holds only for α ≥ 1, considering that the exponential family

follows in the κ → 0 limit. This should be compared with the results discussed in [25], where an
invariant geometry has been derived in the framework of the Tsallis formalism of statistical mechanics
starting from the corresponding relative entropy. In that case, the analogue relationships between
parameters is given by α = 1− 2 q, which is consistent for α < 1.

The statistical manifold introduced in Equations (48)–(50) has not a dually flat structure, nor a
Hessian structure, but it has a constant curvature whose Riemann-Christoffel tensor, given by

R(κ)ijls = ∂iΓjls − ∂jΓils +∑
r
(Γirs Γ r

jl − Γjrs Γ r
il ) , (56)

becomes

R(κ)ijls = c(κ) (gjl gis − gil gjs) , (57)

with

c(κ) = κ2 (κ2 − 1) . (58)

As expected, R(κ)ijls vanishes in the κ → 0 limit, where the whole geometric structure collapses to
the dually-flat 1-geometry.

The Ricci curvature tensor and the scalar curvature are readily evaluated in

Rij = (1− n) c(κ) gij , R = (n − n2) c(κ) , (59)

that are positive definite quantities for κ2 < 1.
Finally, in spite of the lack of an entropic form related to this invariant geometry, we can derive a

particular family of discrete distributions within the κ-formalism adopting an optimization procedure
based on the κ-deformed Kullback–Leibler divergence.
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In this way, the equilibrium distribution achieving the minimum divergence of the function (16)
is given by the following problem

δ

δpi

⎧⎪⎪⎨⎪⎪⎩
∑
µ

pµ lnκ (
pµ

qµ
)+ β∑

µ
εµ pµ

⎫⎪⎪⎬⎪⎪⎭
= 0 , (60)

where we assume, at priori, the normalization for p, that is p0 = 1−∑i pi, and similar for the target
distribution q. We get the κ-distribution in the form

pi =
qi

ε
expκ ( 1

λ
(θ̃i − γ(θ̃)) , (61)

with γ(θ̃) = −λ lnκ(ε p0/q0) and θ̃, defined in a similar manner, as in Equation (12), are related to the
natural coordinates θ in

θi = ln( qi

q0
)+ 1

κ
[arcsinh( κ

λ
(θ̃i − γ(θ̃)))+ arcsinh( κ

λ
γ(θ̃))] . (62)

Therefore, let q be a reference probability distribution on S , the sub-manifold of the
statistical family

S κ
(1) =

⎧⎪⎪⎨⎪⎪⎩
p ≡ {pµ(θ̃)} ∶ Ω →R

RRRRRRRRRRR
pi =

qi

ε
expκ ( 1

λ
(θ̃i − γ(θ̃))) ; p0 = 1−∑

i
pi

⎫⎪⎪⎬⎪⎪⎭
, (63)

that optimize the divergence function (16) admits a Riemannian structure described by the Fisher
metric (48), dual connection (49) and (50) and constant positive curvature (59). This geometric structure
collapses, in the κ → 0 limit, in the dually-flat geometry of the exponential distribution families.

4.2. Second Statistical Structure

The next geometric structure we are introducing came from κ-deformed version of “Kerridge”
divergence (17). It is strictly related to the following statistical model

S κ
(2) =

⎧⎪⎪⎨⎪⎪⎩
p ≡ {pµ(θ)} ∶ Ω →R

RRRRRRRRRRR
pi = expκ (θi − γ(θ)) ; p0 = 1−∑

i
pi

⎫⎪⎪⎬⎪⎪⎭
, (64)

consistent with the embedding

pµ → lnκ(pµ) . (65)

To introduce a manifold structure on S κ
(2) we pose η ≡ {pi} so that, from relations (41) applied to

ρ[p, q] ≡ Dκ[q/ p], we obtain metric and connection as

gij = uκ (η0)
η0

+ uκ (ηi)
ηi

δij , (66)

Γij,l = λ
uκ (η0/ε)

η2
0

− λ
uκ (ηi/ε)

η2
i

δijl , (67)

Γ∗ ij,l = 0 . (68)

These quantities define a dually-flat structure on S κ
(2) compatible with a Hessian geometry.

In fact, give the ϕ-potential as

ϕ(η) = − 1
λ2 S̃κ(η) , (69)
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where S̃κ(η) is the parentropy introduced in [34] and related to the κ-entropy in

S̃κ(η) = λ Sκ (η

ε
) , (70)

metric and connection follows straightforward from Equations (31) and (33), respectively.
Equation (68) states that coordinate η is ∇-affine on Ξ, whereas its dual coordinate system is

given by

θi = lnκ (ηi)+ γ(θ) , (71)

with γ(θ) = − lnκ(η0).
The ψ-potential can be obtained from the Legendre transform (35) on ϕ(η) and is given by

ψ(θ) = 1
λ
Ĩκ(θ)+ γ(θ) , (72)

where the pull-back of Ĩκ(θ) on Ξ, denoted in Ĩ∗κ (η), is defined in

Ĩ∗κ (η) =∑
i

ηi uκ (η

ε
) ≡ Ep [uκ (η

ε
)] . (73)

Function Ĩ∗κ (η) is related to I∗κ (η), usually introduced in the κ-deformed statistical mechanics [35],
according to

Ĩ∗κ (η) = λ I∗κ (η

ε
) , (74)

where

I∗κ (η) =∑
i

ηi uκ(η) ≡ Ep [uκ(η)] , (75)

reduces to unity in the κ → 0 limit. In [34], functional I∗κ (η) has been related to the parentropy S̃κ[η],
through the relation

I∗κ (η) = S̃κ(η)− Sκ(η)+ 1 . (76)

As will be highlighted in Section 4.3, ψ-potential is related on the physical ground to the
κ-logarithm of partition function and to the scaled free energy, the para-free energy, of a physical
system described by the parentropy (70), in agreement with the relation

F̃κ = −
1
β
(̃Iκ + γ) . (77)

By using the expression (72) we can verify the relation

ηi = ∂i
⎛
⎝

1
λ
Ĩ∗κ (η

ε
)+ γ(θ)

⎞
⎠

, (78)
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so that metric and connections on the Ξ-space reads

gij =
ηi

uκ (ηi)
(δij − ∂jγ) , (79)

Γij,l = 0 , (80)

Γ∗ij,l =
ηi

uκ(ηi)
⎡⎢⎢⎢⎣

λ
uκ ( ηi

ε )
u2

κ(ηi)
(δij − ∂iγ) (δil − ∂jγ)− ∂jlγ

⎤⎥⎥⎥⎦
, (81)

confirming the dually-flat structure of S κ
(2), with θ the ∇-affine coordinate on Ξ.

It is worthy to derive the canonical divergence for S κ
(2), that is a Brégman-like divergence

obtainable from Equation (36). In fact, by using κ-parentropy it reads

D[p, q] = 1
λ2 (S̃κ(q)− S̃κ(p))−∑

µ
(pµ − qµ) lnκ (qκ) , (82)

and, as expected, although differs from divergence (17), they share the same cross term so that both
divergences (17) and (82) give rise to the same geometric structure.

Finally, it is easy to verify that exponential family S κ
(2) can be derived from the optimization

problem (8), where the entropic form is given by the parentropy S̃κ(η) and the dual coordinate are
related to the Lagrange multiplier according to Equation (12).

To go over in the study of this geometry, we show that the Hessian structure on Ξ is consistent
with a scalar product on S κ

(2) induced by the κ-escort probability distribution

⟨A, B⟩ = EP̃(1) [A B] , (83)

where

EP̃(1)[ f ] =∑
µ

P̃(1)µ f µ , (84)

with

P̃ (1)µ = 1

Ũ
(1)

κ

pµ

uκ (pµ)
, and Ũ

(1)
κ =∑

µ

pµ

uκ (pµ)
. (85)

We employ the embedding

pµ → ̃̀(κ)
µ = lnκ (pµ) , (86)

such that EP̃(1) [∂ĩ̀(κ)] = 0, which is our bias condition [69].

Introducing the tangent vector at point θ as

T j = ∂j̃̀(κ) , (87)

the metric follows from the standard definition

g̃ ij = ⟨T i, T j⟩ = 1

Ũ
(1)

κ

∑
µ

uκ (pµ)
pµ

∂i pµ∂j pµ , (88)

that is conformal equivalent to metric (66) according to [73]

g̃ ij = gij

Ũ
(1)

κ

. (89)
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In the same manner, recalling that connection is related to the variation of the tangent vectors T j

under infinitesimal changing of the parameters θ→ θ+ dθ, we consider the quantities ∂iT j ≡ ∂ij ̃̀(κ),
that projected on the base vectors T l , gives

Γ̃ij,l = ⟨∂iT j, T l⟩ = EP̃(1) [∂ij̃̀(κ) ∂l̃̀(κ)] , (90)

which is related to Equation (67) by means of the conformal factor U
(1)

κ .
It is a duty to observe that ∂iT j is actually unbiased because

EP̃(1) [∂iT j] /= 0 , (91)

therefore the right way to obtain the connection elements is by biasing these quantities and then project
them on the base vectors T l according to

Γ̃ij,l = ⟨∂iT j −EP̃(1) [∂iT j] , T l⟩ , (92)

that, nevertheless, reproduce the result (90) due to our bias condition.
Finally, Equation (68) follows from relation (25) and the results (66) and (67).
In a similar way, we can derive the expressions (79)–(81) from the definitions of gij, Γij,l and Γ∗ij,l ,

that here rewrite in the κ-escort formalism

gij = Ũ
(1)

κ P̃ (1)i (δij − P̃ (1)j ) , (93)

Γij,l = 0 , (94)

Γ∗ij,l = Ũ
(2)

κ P̃ (2)i (δij − P̃ (1)j ) (δil − P̃ (1)l )− Ũ
(1)

κ P̃ (1)i ∂j P̃
(1)

l , (95)

where we introduced the double-escort probability P̃(2)i [70]

P̃ (2)i = λ

Ũ
(2)

κ

pi uκ(pi/ε)
u3

κ (pi)
, with Ũ

(2)
κ = λ∑

µ

pµ uκ(pµ/ε)
u3

κ (pµ)
, (96)

and used the relation

∂iγ = 1

Ũ
(1)

κ

pi

uκ (pi)
≡ P̃ (1)i , (97)

obtained from of the condition ∂i(∑µ pµ) = 0.
Remarkably, in the escort formalism, the κ-Brègman divergence can be express in the language of

the escort distribution according to

D[p, q] = EP [lnκ(p)− lnκ(q)] , (98)

which has a very straightforward interpretation.

4.3. Third Statistical Structure

The last geometric structure that we are introducing came from the Brégman-like divergence and
has been already studied from a different perspective in [68–70].

It is consistent with the following statistical model

S κ
(3) =

⎧⎪⎪⎨⎪⎪⎩
p ≡ {pµ(θ)} ∶ Ω →R

RRRRRRRRRRR
pi =

1
ε

expκ ( 1
λ

(θi − γ(θ))) ; p0 = 1−∑
i

pi

⎫⎪⎪⎬⎪⎪⎭
, (99)
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derived from the embedding

pµ → λ lnκ(εpµ) . (100)

To introduce a manifold structure on S κ
(3), let us identify the η-coordinate in η ≡ {pi} and apply

relations (41) to ρ[p, q] ≡ Dκ[q∥ p]. We obtain metric and connections as

gij = λ
uκ (ε η0)

η0
+ λ

uκ (ε ηi)
ηi

δij , (101)

Γij,l = λ2 uκ(η0)
η2

0
− λ2 uκ(ηi)

η2
i

δijl , (102)

Γ∗ ij,l = 0 . (103)

Clearly, S κ
(3) has a dually-flat structure compatible with the Hessian geometry related to the

ϕ-potential ϕ(η) ≡ −Sκ(η), that is the negentropy of Sκ(η) given in Equation (9), so that the dual
∇-affine coordinate on Ξ are

θi = −∂Sκ(η)
∂ηi

≡ λ lnκ (ε ηi)+ γ(θ) , (104)

while the ψ-potential follows from the Legendre transform on ϕ(η) and reads

ψ(θ) = Iκ(θ)+ γ(θ) . (105)

Remark that for positive measures, not constrained by ∑µ pµ = 1, Iκ is just the full Legendre
transform of Sκ in the probability space [68].

On the physical ground, the potential (105) corresponds to the κ-logarithm of partition function
and is related to the free energy of the system according to

Fκ = −
1
β
(Iκ + γ) . (106)

Therefore, the third statistical structure, as well as the second one in its scaled formulation,
reproduces and confirms the Legendre structure of the κ-deformed thermostatics previously derived
by using standard arguments of statistical mechanics [35].

By using the expression of ψ(θ) it is ready to verify the first of Equations (34), that is

ηi = ∂i (Iκ(θ)+ γ(θ)) , (107)

so that metric and connections on the Ξ-space read:

gij =
1
λ

ηi

uκ (ε ηi)
(δij − ∂jγ) , (108)

Γij,l = 0 , (109)

Γ∗ij,l =
ηi

uκ(ε ηi)
[ 1

λ

uκ(ηi)
u2

κ(ε ηi)
(δij − ∂iγ) (δil − ∂jγ)− ∂jlγ] , (110)

that confirm the dually-flat structure of S κ
(3).

It is trivial to verify that canonical divergence D[p, q] on the statistical manifold S κ
(3) coincides,

as expected, with the κ-Brègman divergence Dκ[q∥ p] according to [68]

D[p, q] = Dκ[q∥ p] . (111)
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Finally, let us just to observe that, in complete analogy with the discussion done in Section 4.2,
the Hessian structure on S κ

(3) is also compatible with the scalar product

⟨A, B⟩ = EP(1) [A B] , (112)

where

EP(1)[ f ] =∑
µ

P(1)µ f µ , (113)

are the escort average and the κ-escort distribution P(1) is

P(1)µ = 1

U
(1)

κ

pµ

λ uκ (ε pµ)
, with U

(1)
κ =∑

µ

pµ

λ uκ (ε pµ)
. (114)

Again, in the escort formalism, the κ-Brègman divergence can be written in the straightforward
manner given by

Dκ[q∥ p] = EP(1) [lnκ(p)− lnκ(q)] . (115)

5. Concluding Remarks

In the framework of the κ-formalism we have derived several geometric structures starting from
non-equivalent κ-divergence functions corresponding, in the κ → 0 limit, to the Kullback–Leibler,
“Kerridge” and Brégman divergences, respectively.

The main results that characterize the emerging geometries, such as metric, connection,
θ-coordinate and ϕ- and ψ-potentials, when available, are reported in the final Table 1, for an
easy comparison.

In particular, the statistical manifold derived from the κ-Kullback–Leibler divergence has an
invariant geometry with a dual structure and constant curvature. This geometric structure corresponds
to the well-known α-geometry [1,2], with α = 1+ 2 κ2, and is related to the natural embedding of the
standard logarithm.

The other two statistical manifolds, derived from the κ-Kerridge and κ-Brégman divergences,
have a dually-flat structure with dual potentials related to each other by the corresponding Legendre
transform. Their respective potentials are given by the scaled entropy (or parentropy) and scaled
free energy in the first case and by the entropic form and free energy in the latter case. Both these
geometries are compatible with an embedding based on the κ-logarithm and a scalar product based
on the escort probability average. Moreover, the κ-Brégman functional turns out to be the natural
canonical divergence in the own statistical manifold while the κ-Kerridge functional share with the
canonical divergence the same cross term and therefore, it is equivalent to the corresponding canonical
divergence. These dually-flat structures are together related by a merely scaling transformation of
the potentials and the distributions. In this way, the structure based on the κ-Brégman functional has
simplest expressions for the potentials with respect to the structure based on the κ-Kerridge functional
that has a slimmer expression for the distribution.
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Table 1. Geometrical structures emerging from different κ-deformed versions of divergent function.

κ-Kullback–Leibler D[p, q] = ∑µ pµ lnκ (
pµ

qµ
)

metric gij
=

1
p0
+

δij

pi

connection Γij,l
= (1+ κ2

) (
1
p2

0
−

δijl

p2
i
)

distribution pi =
qi
ε expκ (

1
λ (

̃θi
− γ(θ̃)))

̃θ-coordinate ̃θi
= λ( lnκ (ε

pi
qi
)+ lnκ (ε

p0
q0
) )

θ-coordinate θi
= ln(pi)− ln(p0)

φ-potential / /

ψ-potential / /

κ-Kerridge D[p, q] = ∑µ pµ (lnκ(pµ)− lnκ(qµ))

metric gij
=

uκ(η0)

η0
+

uκ(ηi)

ηi
δij

connection Γij,l
= λ

uκ(η0/ε)

η2
0
− λ

uκ(ηi/ε)

η2
i

δijl

distribution pi = expκ (θi
− γ(θ))

θ-coordinate θi
= lnκ (pi)+ lnκ (p0)

φ-potential ϕ(η) = − 1
λ Sκ (

η
ε )

ψ-potential ψ(θ) = 1
λ
̃Iκ(θ)+ γ(θ)

κ-Brégman D[p, q] = Sκ (q)− Sκ (p)− λ∑µ (pµ − qµ) lnκ (ε qµ)

metric gij
= λ

uκ(ε η0)

η0
+ λ

uκ(ε ηi)

ηi
δij

connection Γij,l
= λ2 uκ(η0)

η2
0
− λ2 uκ(ηi)

η2
i

δijl

distribution pi =
1
ε expκ (

1
λ (θi

− γ(θ)))

θ-coordinate θi
= λ( lnκ (ε pi)+ lnκ (ε p0) )

φ-potential ϕ(η) = −Sκ[η]
ψ-potential ψ(θ) = Iκ(θ)+ γ(θ)
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