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Abstract: Measuring the consensus for a group of ordinal-type responses is of practical importance
in decision making. Many consensus measures appear in the literature, but they sometimes provide
inconsistent results. Therefore, it is crucial to compare these consensus measures, and analyze their
relationships. In this study, we targeted five consensus measures: Φe (from entropy), Φ1 (from
absolute deviation), Φ2 (from variance), Φ3 (from skewness), and Φmv (from conditional probability).
We generated 316,251 probability distributions, and analyzed the relationships among their consensus
values. Our results showed that Φ1, Φe, Φ2, and Φ3 tended to provide consistent results, and the
ordering Φ1 ≤ Φe ≤ Φ2 ≤ Φ3 held at a high probability. Although Φmv had a positive correlation
with Φ1, Φe, Φ2, and Φ3, it had a much lower tolerance for even a small proportion of extreme
opposite opinions than Φ1, Φe, Φ2, and Φ3 did.

Keywords: consensus measure; Likert scale; variance

1. Introduction

A consensus measure quantifies the consensus in ratings of a target. It provides fundamental
implications of the group’s decision. For example, it can reveal whether the opinions of the group’s
members are converging during a successive voting process [1], or whether averaging the members’
ratings to the group level is appropriate [2]. Because of its practicality, the problem of measuring
consensus has received much attention, both in academic and applied research [3].

Many consensus measures appear in the literature. Most of them are derived from the deviation
of individual ratings from the mean [3,4], while some are based on the extension of entropy [1],
or the application of conditional probability [5]. Because consensus measures intend to quantify
consensus, one tends to assume that similar conclusions can be drawn using different consensus
measures. Although this assumption usually holds, it is still possible that a set of ratings which
receives the lowest consensus score using one consensus measure may get a very high consensus
score using another consensus measure (see Table 9). It is reasonable that using different consensus
measures might lead to different conclusions because they are built on different theoretical concepts.
For example, let A1 and A2 denote two sets of ratings collected at time t1 and t2, t1 < t2. Using one
consensus measure might conclude that the consensus of A1 is smaller than that of A2 (i.e., the group
members’ opinions are converging), but using another consensus measure might yield the opposite
conclusion. Therefore, it is crucial to compare these consensus measures in more detail so that one can
adequately interpret the meanings of the consensus values.

The objective of this study was to analyze the relationships among different consensus measures
so that one can adequately utilize these consensus measures going forward. We first reviewed
five consensus measures, and their properties. Then, we took a numerical analysis approach to
comparing these consensus measures. This approach proceeded by generating a large number of
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possible rating distributions, and calculating their consensus scores using each consensus measure.
Then, these consensus scores were analyzed to reveal the relationships among these consensus
measures. Finally, we discussed how to interpret these consensus scores, and how to select a suitable
consensus measure.

2. Review of Consensus Measures

2.1. Basic Properties of a Consensus Measure

In this paper, we assumed that a rating was an integer in X = {1, 2, . . . , n}. For Likert-type
scale responses, n = 5 or 7 is often used. Then, the ratings of all group members can be described as a
probability distribution p(x) over X. Let pi denote the probability p(x = i) of getting a rating i. Then,

pi ≥ 0, for i = 1 to n, (1)

∑n
i=1 pi = 1, (2)

mean m(p) = ∑n
i=1 ipi, (3)

variance V(p) = ∑n
i=1 pi(i−m(p))2. (4)

Notably, the rating data are ordinal, and thus, calculating the mean or variance of p(x) is
inappropriate. However, mean, variance, or a combination of both was used intensively in the
literature to design consensus measures for ordinal attributes.

Let Φ denote a consensus measure, and Φ(p). denote the consensus score of p(x), based on
Φ. It is common to restrict the range of Φ(p) between zero and one. This restriction also facilitates
comparing different consensus measures. Thus, 0 ≤ Φ(p) ≤ 1, and Φ(p) = 1 and Φ(p) = 0 indicate
the maximum and minimum consensus scores, respectively [5]. In this paper, we divided the consensus
measures into three categories, as described in the three subsections below.

2.2. Deviation-Based Consensus Measures

Deviation-based consensus measures use the absolute deviation of individual ratings from their
mean to measure the consensus. They mainly differ in the power of the absolute deviation. In the
literature, power = 1 or 2 was used to measure consensus. In this study, we extended the power to 3.

The average deviation (AD) [6] is the average difference between each rating and the mean, as
shown in Equation (5). It is a measure of variability, and its range is between 0 and n−1

2 , as proven
in Corollary 1. Based on AD, we can design a consensus measure Φ1(p) such that 0 ≤ Φ1(p) ≤ 1
(see Definition 1).

AD(p) =
n

∑
i=1

pi|i−m(p)|. (5)

Corollary 1. Given a probability distribution p(x) over X = {1, 2, ..., n}, 0 ≤ AD(p) ≤ n−1
2 holds.

Proof. See Appendix A. �

Definition 1. Consensus measure Φ1(p) = 1− AD(p)
(n−1)/2 .

Similar to AD, variance (V) is also a measure of variability, and is defined as the average of the
squared difference between each rating and the mean, as shown in Equation (4). Its range is between 0

and
(

n−1
2

)2
, as proven in Corollary 2. Elzinga et al. [4] designed a consensus measure Φ2(p) based on

V (see Definition 2).
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Corollary 2. Given a probability distribution p(x) over X = {1, 2, ..., n}, 0 ≤ V(p) ≤
(

n−1
2

)2
holds.

Proof. See Appendix B. �

Definition 2. Consensus measure Φ2(p) = 1− V(p)
((n−1)/2)2 [4].

Notably, AD uses the absolute difference between each rating and the mean, while variance uses
the squared difference between each rating and the mean. We can raise the power of the absolute
difference to three, and design a new consensus measure Φ3(p) as follows: let S denote the average of
the cubed absolute difference between each rating and the mean, as shown in Equation (6). The range

of S is between 0 and
(

n−1
2

)3
, as proven in Corollary 3. A consensus measure Φ3(p) based on S is

shown in Definition 3.
S(p) = ∑n

i=1 pi|i−m|3. (6)

Corollary 3. Given a probability distribution p(x) over X = {1, 2, . . . , n}, 0 ≤ S(p) ≤
(

n−1
2

)3
holds.

Proof. See Appendix C. �

Definition 3. Consensus measure Φ3(p) = 1− S(p)
((n−1)/2)3 .

The maximum values of Φ1(p), Φ2(p), and Φ3(p) all occur when pk = 1 for some k ∈ X and
pi∈X\{k} = 0. The minimum values of Φ1(p), Φ2(p), and Φ3(p) all occur when p1 = pn = 0.5, and
pi∈X\{1,n} = 0. Please see the proofs of Corollaries 1, 2, and 3 in Appendix A, Appendix B, and
Appendix C, respectively, for details.

Essentially, in Φ1(p), Φ2(p), and Φ3(p), raising the power of the absolute deviation increases the
impact of those ratings further from the mean. An example is given below.

Example 1. Given a probability distribution p(x) over X = {1, 2, 3, 4, 5} where pi∈X = 0.2, a (less
consensus) probability distribution q(x) with more probabilities further from the mean is generated from p(x) by
shifting 0.05 probability at x = 4 to x = 5, i.e., q1 = q2 = q3 = 0.2, q4 = 0.15, and q5 = 0.25. Table 1 shows
AD, V, S, Φ1, Φ2, and Φ3 of p(x) and q(x). The last row of Table 1 indicates that from p to q, the consensus
is reduced by 0.03 with Φ1, 0.03688 with Φ2, and 0.04211 with Φ3. That is, the impact of increasing the
probability further from the mean is greatest in Φ3, less in Φ2, and least in Φ1.

Table 1. From p(x) to q(x), consensus score reduces the most in Φ3, less in Φ2, and least in Φ1.

AD V S Φ1 Φ2 Φ3

p(x) 1.2 2 3.6 0.4 0.5 0.55
q(x) 1.26 2.1475 3.9369 0.37 0.463125 0.507888

Φ(p)−Φ(q) - - - 0.03 0.03688 0.04211

2.3. Conditional-Probability-Based Consensus Measure

Corollary 2 shows that the range of variance V is between 0 and
(

n−1
2

)2
, and the consensus

measure Φ2 is constructed based on this range. However, the range of V is a function of the mean m.
Specifically, for a given value of m, the range of V is between (m−m)(m + 1−m) and (m− 1)(n−m),
where m is the greatest integer ≤ n. The size of this range is small as the value of m approaches
either end of the interval [1, n], and is large as the value of m approaches the center of the interval
[1, n]. Thus, Akiyama et al. [5] proposed a new consensus measure via the conditional probability
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p(V|m) . Because this consensus measure is calculated using both m and V, we denoted it as Φmv(p)
in this paper. Figure 1 shows the steps to calculate Φmv(p) for a probability distribution p(x) over
X = {1, 2, 3, 4, 5}.
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Figure 1. Steps to calculate Φmv(p) for a probability distribution p(x) (revised from Reference [5]).

Table 2 shows some examples of the probability distribution p(x) with Φmv(p) = 1 or 0. Unlike Φ1,
Φ2, and Φ3, Φmv(p) = 1 not only occurs when pk = 1 for some k ∈ X, and pi∈X\{k} = 0, but also
occurs in many other cases. The first four examples in Table 2 show that the maximum value of
Φmv(p) occurs when all probabilities are distributed on one side, and none on the other side of x.
Similarly, Φmv(p) = 0 not only happens when p1 = pn = 0.5, and pi∈X\{1,n} = 0, but also occurs in
many other cases. The last three examples in Table 2 show that a small proportion of extreme opposite
opinions can drag Φmv(p) to zero.

Table 2. Some examples of the probability distribution p(x) satisfying Φmv(p) = 1 or 0.

p1 p2 p3 p4 p5 Φmv(p)

1 0 0 0 0 1
0.75 0.25 0 0 0 1
0.50 0.50 0 0 0 1

0 0.96 0.40 0 0 1
0.50 0 0 0 0.50 0
0.90 0 0 0 0.10 0
0.96 0 0 0 0.04 0
0.98 0 0 0 0.02 0

2.4. Entropy-Based Consensus Measure

In the literature, the Shannon entropy equation and its extensions were used to quantify the
diversity of a probability distribution [7]. Given a probability distribution p(x), the Shannon entropy
of p(x) is −∑n

i=1 pi ln(pi) where n is the number of possible values of x, and pi denotes the probability
of x = i. Because diversity appears to be the opposite concept of consensus, and the range of the
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Shannon entropy is between 0 and ln(n), a consensus measure between 0 and 1 based on the Shannon
entropy equation can be defined as follows [1,8]:

Φ = 1 +
∑n

i=1 pi ln(pi)

ln(n)
. (7)

Notably, the Shannon entropy equation treats the variable x as a nominal variable, and not
as an ordinal variable; thus, the Shannon entropy equation and Equation (7) are inappropriate for
quantifying the consensus of ordinal data, such as Likert-type scale responses. To resolve this problem,
Tastle and Wierman [1,8] extended the Shannon entropy equation to define a new consensus measure,
denoted as Φe in this paper, as follows:

Φe = 1 + ∑n
i=1 pi log2(1−

|i−m|
n− 1

), (8)

where m is the mean of p(x), as defined in Equation (3). Similar to Φ1(p), Φ2(p), and Φ3(p),
the maximum value of Φe(p) only occurs when pk = 1 for some k ∈ X, and pi∈X\{k} = 0; the minimum
value of Φe(p) only occurs when p1 = pn = 0.5, and pi∈X\{1,n} = 0.

3. Experimental Study

3.1. Experiment Setup

Given a probability distribution, the five consensus measures reviewed in Section 2 often yielded
different consensus scores, and sometimes the differences among these scores were substantial, and
led to opposite conclusions. This phenomenon makes it difficult to interpret the meaning of these
scores. In this study, we performed a numerical experiment to analyze the relationships among these
five consensus measures.

This experiment used the probability distribution p(x) over X = {1, 2, 3, 4, 5}, which is common
for Likert-type scale data. Specifically, we wrote a small computer program containing a five-level
for loop to generate 316,251 probability distributions, where the i-th level of the for loop changed
the value of pi from 0 to 1 with a step size of 0.2, and cases not satisfying ∑5

i=1 pi = 1 were skipped.
Thus, these 316,251 probability distributions covered all of the possible probability distributions of
p(x) satisfying pi ∈ {0, 0.2, 0.4, . . . , 0.98, 1} for i = 1 to 5, and ∑5

i=1 pi = 1. Then, the consensus scores
of each generated probability distribution were calculated and compared to study the relationships
among the five consensus measures. Table 3 shows the distribution of the mean values of the 316,251
probability distributions. Most of the generated probability distributions had mean values between 2
and 4.

Table 3. The distribution of the mean values of the 316,251 generated probability distributions.

Range of Mean 1 ≤ m ≤ 2 2 < m ≤ 3 3 < m ≤ 4 4 < m ≤ 5

Number of probability distributions 16,390 143,747 140,878 15,236
Probability 5.18% 45.45% 44.55% 4.82%

3.2. Correlation

Table 4 shows the Kendall rank correlation coefficients between any two consensus measures.
As expected, the results reflected higher than 0.887 correlation between any two consensus measures.
That is, if a probability distribution A is ranked higher than another probability distribution B based
on one consensus measure, it is very likely that A is also ranked higher than B based on another
consensus measure. Let τ

(
Φi, Φj

)
denote the Kendall rank correlation coefficient between Φi and Φj.

According to Table 4, the lowest correlation occurred at τ(Φ1, Φ3), and the highest occurs at τ(Φ1, Φe).
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Specifically, τ(Φ1, Φe) > τ(Φ2, Φe) > τ(Φ3, Φmv) > τ(Φ2, Φmv) > τ(Φ2, Φ3) > τ(Φ1, Φ2) >

τ(Φe, Φmv) > τ(Φe, Φ3) > τ(Φ1, Φmv) > τ(Φ1, Φ3).
According to Table 3, only 5.18% and 4.82% of the 316,251 generated probability distributions

had their mean values in the intervals [1, 2] and (4, 5], respectively. To check whether high correlation
still existed for probability distributions with small or large mean values, we calculated the Kendall
rank correlation coefficients using both subsets of probability distributions, and the results are shown
in Tables 5 and 6. Every value in Tables 5 and 6 was smaller than its corresponding value in Table 4.
Particularly, τ(Φ1, Φ3) dropped from 0.887252 in Table 4 to 0.774093 in Table 5, and 0.772132 in Table 6;
τ(Φ1, Φmv) dropped from 0.925708 in Table 4 to 0.785614 in Table 5, and 0.776873 in Table 6.

Table 4. Kendall rank correlation coefficients between consensus measures using all 316,251
probability distributions.

Φ1 Φe Φ2 Φ3 Φmv

Φ1 1 0.990202 0.967755 0.887252 0.925708
Φe 0.990202 1 0.99008 0.940635 0.964478
Φ2 0.967755 0.99008 1 0.969419 0.970876
Φ3 0.887252 0.940635 0.969419 1 0.974605

Φmv 0.925708 0.964478 0.970876 0.974605 1

Table 5. Kendall rank correlation coefficients between consensus measures using the 16,390 probability
distributions where 1 ≤ m ≤ 2.

Φ1 Φe Φ2 Φ3 Φmv

Φ1 1 0.967110 0.930117 0.774093 0.785614
Φe 0.967110 1 0.985489 0.904147 0.891701
Φ2 0.930117 0.985489 1 0.942186 0.900688
Φ3 0.774093 0.904147 0.942186 1 0.940492

Φmv 0.785614 0.891701 0.900688 0.940492 1

Table 6. Kendall rank correlation coefficients between consensus measures using the 15,236 probability
distributions where 4 < m ≤ 5.

Φ1 Φe Φ2 Φ3 Φmv

Φ1 1 0.965686 0.930352 0.772132 0.776873
Φe 0.965686 1 0.986604 0.905085 0.886878
Φ2 0.930352 0.986604 1 0.941809 0.897223
Φ3 0.772132 0.905085 0.941809 1 0.939574

Φmv 0.776873 0.886878 0.897223 0.939574 1

3.3. Range of Difference

Although Table 4 shows that a positive correlation existed between any two consensus measures
of the 316,251 generated probability distributions, some of the generated probability distributions
did not follow this general trend. In this section, we calculated the range of differences between two
consensus measures to show that this difference was usually small, but was sometimes very big.

Table 7 shows the mean differences between any two consensus measures of the 316,251 generated
probability distributions. All of the mean differences were small (<0.167), where the largest mean
difference occurred between Φ1 and Φ3, and the smallest mean difference occurred between Φ1 and
Φe. The results were consistent with Table 4, where the smallest and the largest correlation coefficients
were R(Φ1, Φ3) and R(Φ1, Φe), respectively.

Table 8 shows the maximum difference between any two consensus measures of the
316,251 generated probability distributions. Some of the maximum differences were very large.
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For example, the maximum difference between Φmv and other consensus measures was larger than
0.84. Notably, all of the correlation coefficients between Φmv and the other consensus measures were
greater than 0.92 (see Table 4), and the mean difference between Φmv and the other consensus measures
was less than 0.16 (see Table 7). Thus, it is reasonable to infer that, although for most probability
distributions, the difference between Φmv and the other consensus measures was not large, but for
some probability distributions, this difference could be huge. Therefore, it is important to understand
for which kinds of probability distributions does such a big difference between various consensus
measures occur.

Table 7. Mean differences between any two consensus measures.

Φ1 Φe Φ2 Φ3 Φmv

Φ1 0 0.0381011 0.1258246 0.16606489 0.15698299
Φe 0.0381011 0 0.0895491 0.1281988 0.1429986
Φ2 0.1258246 0.0895491 0 0.0491733 0.14278058
Φ3 0.16606489 0.1281988 0.0491733 0 0.149693

Φmv 0.15698299 0.1429986 0.14278058 0.149693 0

Table 8. Maximum differences between two consensus measures.

Φ1 Φe Φ2 Φ3 Φmv

Φ1 0 0.108996 0.25 0.375 0.9216
Φe 0.108996 0 0.165037 0.290037 0.858559
Φ2 0.25 0.165037 0 0.249661 0.9216
Φ3 0.375 0.290037 0.249661 0 0.849347

Φmv 0.9216 0.858559 0.9216 0.849347 0

The first four examples in Table 9 show some of the generated probability distributions where the
maximum differences between two consensus measures occurred. Example 1 had a large proportion
(98%) of probability at x = 1, thus rendering high consensus scores using Φ1, Φe, Φ2, and Φ3.
However, this large proportion of probability at x = 1 also made values of m close to 1, where
m was the mean of the probability distribution. As discussed in Section 2.3, the range of variance is
small when m approaches either end of the interval [0, 1]. Thus, for values of m close to 1, the range
of variance was small, making Φmv very sensitive to even a small proportion of probability at the
opposite end of x (2% at x = 5 in this example). As a result, Example 1 yielded Φmv = 0. This example
was also one of the probability distributions among the 316,251 generated probability distributions
that had the maximum difference (in Table 8) between Φmv and other consensus measures.

Table 9. Some examples of the probability distribution p(x), and their consensus scores.

Example
Number p1 p2 p3 p4 p5 Φ1 Φe Φ2 Φ3 Φmv

1 0.98 0 0 0 0.02 0.9216 0.858559 0.9216 0.849347 0
2 0.90 0 0 0 0.10 0.64 0.531004 0.64 0.4096 0
3 0.86 0 0 0 0.14 0.5184 0.415761 0.5184 0.268739 0
4 0 0 0.50 0 0.50 0.5 0.584963 0.75 0.875 0.833333
5 0.02 0 0 0.16 0.82 0.8032 0.796982 0.8944 0.85691 0.833333
6 0.98 0 0.02 0 0 0.9608 0.966392 0.9804 0.981168 0.833333
7 0.98 0 0 0.02 0 0.9412 0.940313 0.9559 0.936443 0.166667
8 0. 0.96 0 0 0.04 0.8848 0.884354 0.9136 0.880353 0.99176

Examples 2 and 3 in Table 9 were similar to Example 1, where a large proportion of probability
occurred at x = 1, and a small proportion of probability occurred at x = 5. The values of Φmv

remained 0 for Examples 2 and 3. However, the difference between p1 and p5 decreased from
Example 1 through to Example 3, making Φ1, Φe, Φ2, and Φ3 smaller for Examples 2 and 3 than
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for Example 1. Notably, Example 2 was one of the probability distributions that had the maximum
difference (in Table 8) between Φ1 and Φe; Example 3 was one of the probability distributions that had
the maximum difference between Φ2 and Φ3.

Example 4 had p3 = p5 = 0.5, and yielded the maximum difference (in Table 8) between Φ1

and Φ2, between Φ1 and Φ3, between Φe and Φ2, and between Φe and Φ3. Suppose that the first
four examples in Table 9 describe the voting results at four different stages during a successive
voting process. From Example 1 through to Example 4, the value of Φ1 decreased, indicating the
group’s consensus was diverging. However, using Φmv concluded the opposite. For Φe, Φ2, and
Φ3, the consensus first decreased (from Example 1 through to Example 3), and then increased (from
Example 4 onward). However, the differences between the consensus values in Examples 1 and 4 were
0.273596 with Φe, 0.1716 with Φ2, and −0.02565 with Φ3. Thus, using different consensus measures
could lead to different conclusions.

A small change in the probability distribution could result in a different impact on different
consensus measures. Consider Examples 1, 7, and 6. They differed by moving a small proportion (2%)
of probability from x = 5, to x = 4, and to x = 3, respectively. Although they were similar probability
distributions, the value of Φmv was 0 in Example 1, and gradually increased to 0.166667 in Example 7,
but quickly increased to 0.833333 in Example 6. However, the values of Φ1, Φe, Φ2, and Φ3 did not
change much among these three examples. Notably, the proportion of probabilities further from the
mean had a greater negative impact on Φ3, than on Φ2 and Φ1. Thus, by moving 2% of probability
from x = 5 to x = 4 (i.e., moving closer to the mean), the ordering of Φ1, Φ2, and Φ3 changed from
Φ3 < Φ2 = Φ1 in Example 1 to Φ3 < Φ1 < Φ2 in Example 7. Then, by moving 2% of probability from
x = 4 to x = 5, the ordering of Φ1, Φ2, and Φ3 changed to Φ1 < Φ2 < Φ3 in Example 6.

The ordering of the values of these consensus measures depended on the probability distribution.
For Examples 4, 5, and 6, the value of Φmv was the same, but Φ1 < Φe < Φ2 < Φmv < Φ3 held in
Example 4, Φe < Φ1 < Φmv < Φ3 < Φ2 held in Example 5, and Φmv < Φ1 < Φe < Φ2 < Φ3 held in
Example 6. In Example 7, Φmv was the smallest among all consensus measures; however, in Example 8,
Φmv was the greatest.

3.4. Ordering

From the examples in Table 9, it appeared that no fixed ordering existed among the consensus
scores calculated using different consensus measures. Figure 2 shows the distributions of consensus
scores of the 316,251 probability distributions generated in this experiment. The distributions of
consensus scores based on Φ1, Φe, Φ2, and Φ3 were similar, but were very different from the
distribution of consensus scores based on Φmv. For the consensus values close to 1, the ordering
of the probabilities among Φ1, Φe, Φ2, and Φ3 was Φ1 < Φe < Φ2 < Φ3, but for the consensus values
close to 0, the ordering of the probabilities became Φ1 ≥ Φe ≥ Φ2 ≥ Φ3.

In Table 10, we compared the consensus scores of the 316,251 generated probability distributions,
and calculated the probabilities of scores based on one consensus measure being less than or equal
to scores based on another consensus measure. According to Table 10, Φ1 ≤ Φ2 and Φe ≤ Φ2

always held, while Φ2 ≤ Φ3, Φe ≤ Φ3, Φ1 ≤ Φ3, and Φ1 ≤ Φe also held at very high probabilities.
Thus, Φ1 ≤ Φe ≤ Φ2 ≤ Φ3 was the most probable ordering among the scores based on these four
consensus measures. The orderings between Φmv, and Φ1 or Φe were not apparent, where Φ1 ≤ Φmv

and Φe ≤ Φmv only held at 58.12% and 52.04% probabilities, respectively. Finally, Φ2 > Φmv and
Φ3 > Φmv were likely to occur because Φ2 ≤ Φmv and Φ3 ≤ Φmv held at 36.84% and 28.01%
probabilities, respectively.
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Table 10. The probability of scores based on one consensus measure to be equal to or less than scores
based on another consensus measure for the 316,251 generated probability distributions.

≤ Φe Φ2 Φ3 Φmv

Φ1 94.66% 100% 96.41% 58.12%
Φe - 100% 96.96% 52.04%
Φ2 - - 84.35% 36.84%
Φ3 - - - 28.01%

3.5. Relationships

To visually inspect the relationships among different consensus measures, we plotted the
consensus values of the 316,251 generated probability distributions in two-dimensional (2D)
scatter charts.

Figure 3 shows the scatter charts of Φ1 scores versus scores based on the other consensus measures,
where the red dashed lines represent equality between two consensus scores. As expected, a positively
correlated trend existed. No fixed ordering existed between Φ1 and the other consensus measures
except that Φ1 ≤ Φ2 always held, as shown in Figure 3b. According to Figure 3a–c, as the value of Φ1

approached 0 or 1, the ranges of Φe, Φ2 and Φ3 narrowed, indicating that the maximum differences
between Φ1 and Φe, Φ2, and Φ3 decreased. However, when the value of Φ1 approached 0.5, the ranges
of Φe, Φ2, and Φ3 increased, indicating that the maximum differences between Φ1 and Φe, Φ2, and
Φ3 also increased. Furthermore, the maximum difference between Φ1 and Φe was smaller than both
the maximum differences between Φ1 and Φ2, and between Φ1 and Φ3.

Figure 3d shows that, for Φ1 < 1, as the value of Φ1 increased, the range of Φmv increased, and the
maximum difference between Φ1 and Φmv became huge. For any probability distribution satisfying
Φ1 = 1, its Φmv was also 1. However, for any probability distribution satisfying Φmv = 1, its value of
Φ1 was not necessarily 1. In fact, there were only n probability distributions satisfying Φ1 = 1, that
is, when pk = 1 for some k ∈ X, and pi∈X\{k} = 0 (this statement also applies to Φe, Φ2, and Φ3).
However, there were many probability distributions satisfying Φmv = 1 (see Table 2 for examples).
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Figure 3. Φ1 vs. other consensus measures. (a) Φ1 vs. Φe; (b) Φ1 vs. Φ2; (c) Φ1 vs. Φ3; and
(d) Φ1 vs. Φmv.

Figure 4 shows the scatter charts of the consensus scores based on Φe, Φ2, Φ3, and Φmv. No fixed
ordering existed among these consensus measures except that Φe ≤ Φ2 always held, as shown in
Figure 4a. According to Figure 4a,b,d, for Φe, Φ2, and Φ3, as the value of one consensus measure
approached either end of the interval [0, 1], the range of another consensus measure decreased.
According to Figure 4a,b, the maximum difference between Φe and Φ2 was smaller than that between
Φe and Φ3. According to Figures 3b and 4a,d, the maximum difference between Φ2 and Φe was
smaller than those between Φ2 and Φ1, and between Φ2 and Φ3. Figure 4c,e,f show a similar pattern
to Figure 3d. As the value of Φe (or Φ2, Φ3) increased (before reaching 1), the range of Φmv increased,
and the maximum difference between Φe (or Φ2 and Φ3) and Φmv became huge.
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4. Discussions

Given a probability distribution, using different consensus measures often yields different
consensus scores. If there exists a fixed ordering among these scores, then consistent results can
be drawn using different consensus measures. Unfortunately, such an ordering depends on the given
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probability distribution. However, according to Table 10, the following orderings among the consensus
scores held at high probabilities: Φ1 ≤ Φe ≤ Φ2 ≤ Φ3, Φ2 > Φmv, and Φ3 > Φmv.

Because there exists no fixed ordering among consensus scores based on different consensus
measures, it is crucial to know the relationships among the consensus measures. Figures 3 and 4
revealed that, for Φ1, Φe, Φ2, and Φ3, as the value of one consensus measure approached either end of
the interval [0, 1], the ranges of the other consensus measures decreased. Thus, one can expect smaller
differences among Φe, Φ1, Φ2, and Φ3 for consensus scores close to 0 or 1, than for consensus scores
close to 0.5.

According to Figures 3d and 4c,e,f, the range of Φmv increased rapidly as the value of Φe, Φ1, Φ2,
or Φ3 increased. Thus, Φmv often gave results inconsistent with those from Φe, Φ1, Φ2, and Φ3,
especially when the value of Φe, Φ1, Φ2, or Φ3 was large. Looking at these figures from another
perspective, the ranges of Φ1, Φe, Φ2, and Φ3 decreased as the value of Φmv increased. Notably, Φmv

tended to give low scores to probability distributions where some probability was located at the
opposite end of the mean. Thus, for values of Φmv close to zero, one should also check the values of
Φ1, Φe, Φ2, and Φ3 for possibly inconsistent results.

Choosing a consensus measure remains a task for the users. If one has a low tolerance for even
a small proportion of extreme opposite opinions, then Φmv is a good choice. Otherwise, the other
consensus measures tend to provide consistent results. If one prefers to emphasize the opinions further
from the mean, then Φ3 is a good choice. Otherwise, either Φ1 or Φe can be used, both yielding similar
results. Finally, Φ2 provides a middle ground between Φ3 and Φ1.

5. Conclusions

An understanding of the characteristics of consensus measures helps users interpret results.
For example, according to Figure 3b, Φ1 tended to yield a smaller consensus score than Φ2 for the
same probability distribution; thus, a probability distribution A with Φ1(A) = 0.6 might have more
consensus than another probability distribution B with Φ2(B) = 0.7, even though Φ1(A) < Φ2(B).

In essence, two opposite forces shape the design of a consensus measure: the force of obeying the
majority, and the force of respecting the minority. Consensus measure Φe stressed on the former, and
the opinion of the minority has a weak impact on the consensus scores. In contrast, Φmv emphasizes
the latter, and the opinion of the minority substantially influences the consensus scores, as shown in
the first four examples in Table 9.

Deviation-based consensus measures (i.e., Φ1, Φ2, and Φ3) allow users to adjust the strengths
of these two forces. As described in Section 2.2, raising the power of the absolute deviation in
the deviation-based consensus measures increases the impact of ratings further from the mean.
Intuitively, unless the probabilities of all opinions are distributed evenly on opposite sides of the
mean (e.g., p1 = pn = 0.5), ratings further from the mean represent the opinions of the minority. Thus,
going from Φ1 through to Φ3, the impact of the minority increases. Overall, fine-tuning the balance
between the force of obeying the majority, and the force of respecting the minority in a consensus
measure provides the consensus measure with more flexibility for various situations, and is a direction
of research worth exploring.

Funding: This research is supported by the Ministry of Science and Technology, Taiwan, under Grant
MOST 106-2221-E-155-038.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

In this section, we derived the range of AD(p), where p is a probability distribution over
X = {1, 2, ..., n} with mean m. Lemma 1 shows that, by moving each pi≤m gradually toward
p1, the AD of the resulting distribution keeps increasing. Similarly, Lemma 2 shows that by moving
each pi>m gradually toward pn, the AD of the resulting distribution also keeps increasing.
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Lemma 1. Let p(x) and q(x) be two probability distributions over X = {1, 2, ..., n}, pi and qi denote p(x = i)
and q(x = i), respectively, and pi < 1 and qi < 1 for each i ∈ X. Let m = ∑n

i=1 ipi, and k denote the greatest
integer satisfying 1 < k ≤ m and pk > 0. If qk−1 = pk + pk−1, qk = 0, and qi = pi for each i ∈ X\{k− 1, k},
then AD(q) > AD(p).

Proof. By Equation (3), the mean of q(x) is

m′ = (∑k−2
i=1 ipi) + (k− 1)(pk−1 + pk) + (∑n

i=k+1 ipi) = (∑n
i=1 ipi)− pk = m− pk.

Let j denote the smallest integer such that m < j and pj > 0. Then, pi = 0 for k + 1 ≤ i ≤ j− 1,
and qi = 0 for k ≤ i ≤ j− 1. Thus,

∑j−1
i=k+1 |i−m|pi =∑j−1

i=k |i−m′|qi = 0.

Also, 0 < pk < 1, k ≤ m, and m < j yield k− 1 ≤ m− 1 < m′ < m < j.

AD(q) =
(

∑k−2
i=1 (m

′ − i)pi

)
+ ((m′ − (k− 1))(pk−1 + pk) +

(
∑

j−1
i=k |i−m′|qi

)
+

(
∑n

i=j(i−m′)pi

)
=

(
∑k−2

i=1 (m
′ − i)pi

)
+ ((m′ − (k− 1))(pk−1 + pk) +

(
∑

j−1
i=k+1 |i−m|pi

)
+

(
∑n

i=j(i−m′)pi

)
=

((
∑k−2

i=1 (m− i)pi

)
− pk

(
∑k−2

i=1 pi

))
+ (m− pk − (k− 1))(pk−1 + pk) +

(
∑

j−1
i=k+1 |i−m|pi

)
+

((
∑n

i=j(i−m)pi

)
+ pk

(
∑n

i=j pi

))
=

(
∑k−2

i=1 (m− i)pi

)
− pk

(
∑k−2

i=1 pi

)
+ (m− (k− 1))pk−1 + (m− k)pk + pk − pk(pk−1 + pk) +

(
∑

j−1
i=k+1 |i−m|pi

)
+

(
∑n

i=j(i−m)pi

)
+ pk

(
∑n

i=j pi

)
= AD(p) + pk

((
−∑k−2

i=1 pi

)
+ 1− (pk−1 + pk) +

(
∑n

i=j pi

))
= AD(p) + pk

(
1−∑k

i=1 pi + ∑n
i=j pi

)
= AD(p) + 2pk ∑n

i=j pi > AD(p).

�

Lemma 2. Let p(x) and q(x) be two probability distributions over X = {1, 2, ..., n}, pi and qi denote p(x = i)
and q(x = i), respectively, and pi < 1 and qi < 1 for each i ∈ X. Let m = ∑n

i=1 ipi, and j denote the smallest
integer satisfying m < j < n and pj > 0. If qj = 0, qj+1 = pj + pj+1, and qi = pi for each i ∈ X\{j, j + 1},
then AD(q) > AD(p).

Proof. By Equation (3), the mean of q(x) is

m′ = (∑j−1
i=1 ipi) + (j + 1)

(
pj + pj+1

)
+ (∑n

i=j+2 ipi) = (∑n
i=1 ipi) + pj = m + pj.

Let k denote the greatest integer such that 1 < k ≤ m and pk > 0. Then, pi = 0 for k+ 1 ≤ i ≤ j− 1,
and qi = 0 for k + 1 ≤ i ≤ j. Thus,

∑j−1
i=k+1 |i−m|pi = ∑j

i=k+1 |i−m′|qi = 0.

Also, 0 < pj < 1, k ≤ m and m < j yield k ≤ m < m′ < m + 1 < j + 1.

AD(q) =
(

∑k
i=1(m

′ − i)pi

)
+

(
∑

j
i=k+1 |i−m′|qi

)
+ ((j + 1)−m′ )

(
pj + pj+1

)
+

(
∑n

i=j+2(i−m′)pi

)
=

(
∑k

i=1(m
′ − i)pi

)
+

(
∑

j−1
i=k+1 |i−m|pi

)
+ ((j + 1)−m′ )

(
pj + pj+1

)
+

(
∑n

i=j+2(i−m′)pi

)
=

((
∑k

i=1(m− i)pi

)
+ pj

(
∑k

i=1 pi

))
+

(
∑

j−1
i=k+1 |i−m|pi

)
+ ((j + 1)−m)

(
pj + pj+1

)
− pj

(
pj + pj+1

)
+

((
∑n

i=j+2(i−m)pi

)
− pj

(
∑n

i=j+2 pi

))
=

(
∑k

i=1(m− i)pi

)
+ pj

(
∑k

i=1 pi

)
+

(
∑

j−1
i=k+1 |i−m|pi

)
+ (j−m)pj + pj + ((j + 1)−m)pj+1 − pj

(
pj + pj+1

)
+

(
∑n

i=j+2(i−m)pi

)
− pj

(
∑n

i=j+2 pi

)
= AD(p) + pj

((
∑k

i=1 pi

)
+ 1−

(
pj + pj+1

)
−

(
∑n

i=j+2 pi

))
= AD(p) + pj

((
∑k

i=1 pi

)
+ 1−∑n

i=j pi

)
= AD(p) + 2pj ∑k

i=1 pi > AD(p).

�

Lemmas 3 and 4 were used to derive the upper bound of AD in Corollary 1.



Entropy 2018, 20, 408 14 of 22

Lemma 3. Given a distribution p(x) over X = {1, 2, ..., n}, there exists a distribution q(x) with q1 + qn = 1
and qi = 0 for each i ∈ X\{1, n}, satisfying AD(q) ≥ AD(p).

Proof. First, consider the trivial case of pi = 1 for some i ∈ X. Let q1 = 1, then AD(q) = AD(p) holds,
obviously. Next, consider the case of pi < 1 for each i ∈ X.

Let m = ∑n
i=1 ipi denote the mean of p(x), k denote the greatest integer satisfying 1 < k ≤ m

and pk > 0, and j denote the smallest integer satisfying m < j < n and pj > 0. We can generate a
new distribution q(x) by repeatedly applying Lemma 1 to move each pi≤k gradually toward p1, and
by repeatedly applying Lemma 2 to move each pi≥j gradually toward pn. As a result, q1 = ∑k

i=1 pi,
qn = ∑n

i=j pi, and qi = 0 for each i ∈ X\{1, n}, and AD(q) > AD(p). �

Lemma 4. Given a distribution p(x) over X = {1, 2, ..., n}. where p1 + pn = 1 and pi = 0 for each
i ∈ X\{1, n}, AD(p) is maximized when p1 = pn = 0.5.

Proof. Without loss of generality, let p1 = 1
2 + δ and pn = 1

2 − δ. for some δ ≥ 0. Then, Equation (3)

yields m = 1p1 + npn =
(

1
2 + δ

)
+ n

(
1
2 − δ

)
= 1+n

2 + δ(1− n).
If δ = 0, then p1 = pn = 0.5. Use AD0 to denote the value of AD(p) at δ = 0. Then,

AD0 = p1(m− 1) + pn(n−m) = 1
2 (

1+n
2 − 1) + 1

2 (n−
1+n

2 ) = n−1
2 .

AD(p) =
(

1
2 + δ

)
(m− 1) +

(
1
2 − δ

)
(n−m)

=
(

1
2 + δ

)(
1+n

2 + δ(1− n)− 1
)
+

(
1
2 − δ

)(
n− 1+n

2 − δ(1− n)
)

=
(

1
2 + δ

)(
n−1

2 + δ(1− n)
)
+

(
1
2 − δ

)(
n−1

2 − δ(1− n)
)

= 1
2

(
n−1

2 + δ(1− n)
)
+ δ

(
n−1

2 + δ(1− n)
)
+ 1

2

(
n−1

2 − δ(1− n)
)
− δ

(
n−1

2 − δ(1− n)
)

= n−1
2 − 2δ2(n− 1) ≤ AD0.

�

Corollary 1. Given a probability distribution p(x) over X = {1, 2, ..., n}, 0 ≤ AD(p) ≤ n−1
2 holds.

Proof. The upper bound n−1
2 is the direct result from Lemmas 3 and 4, and occurs when p1 = pn = 0.5.

The lower bound 0 is by the definition of AD(p) in Equation (5), and occurs when pi = 1 for some
i ∈ X. �

Appendix B

In this section, we derived the range of V(p), where p is a probability distribution over
X = {1, 2, ..., n} with mean m. The proof follows similar steps to those in Appendix A.

Lemma 5. Let p(x) and q(x) be two probability distributions over X = {1, 2, ..., n}, pi and qi denote p(x = i)
and q(x = i), respectively, and pi < 1 and qi < 1 for each i ∈ X. Let m = ∑n

i=1 ipi, and k denote the greatest
integer satisfying 1 < k ≤ m and pk > 0. If qk−1 = pk + pk−1, qk = 0, and qi = pi for each i ∈ X\{k− 1, k},
then V(q) > V(p).

Proof. The mean of q(x) is m′ = m− pk.
Let j denote the smallest integer such that m < j and pj > 0. Then, pi = 0 for k + 1 ≤ i ≤ j− 1,

and qi = 0 for k ≤ i ≤ j− 1. Thus,

∑j−1
i=k+1(i−m)2 pi =∑j−1

i=k

(
i−m′

)2qi = 0.
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Also, 0 < pk < 1, k ≤ m and m < j yield k− 1 ≤ m− 1 < m′ < m < j.

V(q) =
(

∑k−2
i=1 (i−m′)2 pi

)
+ ((k− 1)−m′)2(pk−1 + pk) +

(
∑

j−1
i=k (i−m′)2qi

)
+

(
∑n

i=j(i−m′)2 pi

)
=

((
∑k−2

i=1 (i−m)2 pi

)
+ 2pk

(
∑k−2

i=1 (i−m)pi

)
+ p2

k

(
∑k−2

i=1 pi

))
+((k− 1)−m + pk)

2(pk−1 + pk) +
(

∑
j−1
i=k+1(i−m)2 pi

)
+
((

∑n
i=j(i−m)2 pi

)
+ 2pk

(
∑n

i=j(i−m)pi

)
+ p2

k

(
∑n

i=j pi

))
=

(
∑k−2

i=1 (i−m)2 pi

)
+ 2pk

(
∑k−2

i=1 (i−m)pi

)
+ p2

k

(
∑k−2

i=1 pi

)
+ ((k− 1)−m + pk)

2 pk−1

+(k−m + pk − 1)2 pk +
(

∑
j−1
i=k+1(i−m)2 pi

)
+

(
∑n

i=j(i−m)2 pi

)
+ 2pk

(
∑n

i=j(i−m)pi

)
+ p2

k

(
∑n

i=j pi

)
=

(
∑k−2

i=1 (i−m)2 pi

)
+ 2pk

(
∑k−2

i=1 (i−m)pi

)
+ p2

k

(
∑k−2

i=1 pi

)
+
(
((k− 1)−m)2 + 2pk((k− 1)−m) + p2

k

)
pk−1

+
(
(k−m)2 + 2(k−m)(pk − 1) + (pk − 1)2

)
pk +

(
∑

j−1
i=k+1(i−m)2 pi

)
+
(

∑n
i=j(i−m)2 pi

)
+ 2pk

(
∑n

i=j(i−m)pi

)
+ p2

k

(
∑n

i=j pi

)
= V(p) + 2pk

((
∑k−2

i=1 (i−m)pi

)
+ ((k− 1)−m)pk−1 + (k−m)(pk − 1)− pk

+
(

∑n
i=j(i−m)pi

))
+ p2

k

((
∑k−2

i=1 pi

)
+ pk−1 + pk +

(
∑n

i=j pi

))
+ pk

= V(p) + 2pk((∑
n
i=1(i−m)pi)− pk) + p2

k(∑
n
i=1 pi) + pk

= V(p)− 2p2
k + p2

k + pk = V(p) + pk(1− pk) > V(p).

�

Lemma 6. Let p(x) and q(x) be two probability distributions over X = {1, 2, ..., n}, pi and qi denote p(x = i)
and q(x = i), respectively, and pi < 1 and qi < 1 for each i ∈ X. Let m = ∑n

i=1 ipi, and j denote the smallest
integer satisfying m < j < n and pj > 0. If qj = 0, qj+1 = pj + pj+1, and qi = pi for each i ∈ X\{j, j + 1},
then V(q) > V(p).

Proof. The mean of q(x) is m′ = m + pj.
Let k denote the greatest integer such that 1 < k ≤ m and pk > 0. Then, pi = 0 for k+ 1 ≤ i ≤ j− 1,

and qi = 0 for k + 1 ≤ i ≤ j. Thus,

∑j−1
i=k+1(i−m)2 pi = ∑j

i=k+1

(
i−m′

)2qi = 0.

Also, 0 < pj < 1, k ≤ m and m < j yield k ≤ m < m′ < m + 1 < j + 1.
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V(q) =
(

∑k
i=1(i−m′)2 pi

)
+

(
∑

j
i=k+1(i−m′)2qi

)
+ ((j + 1)−m′)2(pj + pj+1

)
+
(

∑n
i=j+2(i−m′)2 pi

)
=

((
∑k

i=1(i−m)2 pi

)
− 2pj

(
∑k

i=1(i−m)pi

)
+ p2

j

(
∑k

i=1 pi

))
+ ∑

j−1
i=k+1(i−m)2 pi

+
(
(j + 1)−m− pj

)2(pj + pj+1
)

+
((

∑n
i=j+2(i−m)2 pi

)
− 2pj

(
∑n

i=j+2(i−m)pi

)
+ p2

j

(
∑n

i=j+2 pi

))
=

(
∑k

i=1(i−m)2 pi

)
− 2pj

(
∑k

i=1(i−m)pi

)
+ p2

j

(
∑k

i=1 pi

)
+ ∑

j−1
i=k+1(i−m)2 pi

+
(
(j−m) +

(
1− pj

))2 pj +
(
(j + 1−m)− pj

)2 pj+1 +
(

∑n
i=j+2(i−m)2 pi

)
−2pj

(
∑n

i=j+2(i−m)pi

)
+ p2

j

(
∑n

i=j+2 pi

)
=

(
∑k

i=1(i−m)2 pi

)
− 2pj

(
∑k

i=1(i−m)pi

)
+ p2

j

(
∑k

i=1 pi

)
+ ∑

j−1
i=k+1(i−m)2 pi

+
(
(j−m)2 + 2(j−m)

(
1− pj

)
+

(
1− pj

)2
)

pj

+
(
(j + 1−m)2 − 2pj(j + 1−m) + p2

j

)
pj+1 +

(
∑n

i=j+2(i−m)2 pi

)
−2pj

(
∑n

i=j+2(i−m)pi

)
+ p2

j

(
∑n

i=j+2 pi

)
= V(p)− 2pj

(
∑k

i=1(i−m)pi

)
+ p2

j

(
∑k

i=1 pi

)
− 2pj

(
pj(j−m) + pj+1(j + 1−m)

)
+p2

j
(

pj + pj+1
)
+ pj

(
2j− 2m + 1− 2pj

)
− 2pj

(
∑n

i=j+2(i−m)pi

)
+p2

j

(
∑n

i=j+2 pi

)
= V(p)− 2pj(∑n

i=1(i−m)pi) + p2
j (∑

n
i=1 pi) + pj

(
2j− 2m + 1− 2pj

)
= V(p) + p2

j + 2jpj − 2mpj + pj − 2p2
j

= V(p) + 2pj(j−m) + pj
(
1− pj

)
> V(p).

�

Lemma 7. Given a distribution p(x) over X = {1, 2, ..., n}, there exists a distribution q(x) with q1 + qn = 1
and qi = 0 for each i ∈ X\{1, n}, satisfying V(q) ≥ V(p).

Proof. First, consider the trivial case of pi = 1 for some i ∈ X. Let q1 = 1, then V(q) = V(p) holds,
obviously. Next, consider the case of pi < 1 for each i ∈ X.

Let m = ∑n
i=1 ipi denote the mean of p(x), k denote the greatest integer satisfying 1 < k ≤ m

and pk > 0, and j denote the smallest integer satisfying m < j < n and pj > 0. We can generate a
new distribution q(x) by repeatedly applying Lemma 5 to move each pi≤k gradually toward p1, and
by repeatedly applying Lemma 6 to move each pi≥j gradually toward pn. As a result, q1 = ∑k

i=1 pi,
qn = ∑n

i=j pi, and qi = 0 for each i ∈ X\{1, n}, and V(q) > V(p). �

Lemma 8. Given a distribution p(x) over X = {1, 2, ..., n} where p1 + pn = 1 and pi = 0 for each
i ∈ X\{1, n}, V(p) is maximized when p1 = pn = 0.5.

Proof. Without loss of generality, let p1 = 1
2 + δ and pn = 1

2 − δ for some δ ≥ 0. Then, Equation (3)

yields m = 1p1 + npn =
(

1
2 + δ

)
+ n

(
1
2 − δ

)
= 1+n

2 + δ(1− n).
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If δ = 0, then p1 = pn = 0.5. Use V0 to denote the value of V(p) at δ = 0. Then,

V0 = p1(1−m)2 + pn(n−m)2 = 1
2 (

1+n
2 − 1)

2
+ 1

2 (n−
1+n

2 )
2
=

(
n−1

2

)2
.

V(p) =
(

1
2 + δ

)
(m− 1)2 +

(
1
2 − δ

)
(n−m)2

=
(

1
2 + δ

)(
1+n

2 + δ(1− n)− 1
)2

+
(

1
2 − δ

)(
n− 1+n

2 − δ(1− n)
)2

=
(

1
2 + δ

)(
n−1

2 + δ(1− n)
)2

+
(

1
2 − δ

)(
n−1

2 − δ(1− n)
)2

= 1
2

(
n−1

2 + δ(1− n)
)2

+ δ
(

n−1
2 + δ(1− n)

)2
+ 1

2

(
n−1

2 − δ(1− n)
)2

−δ
(

n−1
2 − δ(1− n)

)2

=
(

n−1
2

)2
+ δ2(1− n)2 + 4δ2(1− n)

(
n−1

2

)
=

(
n−1

2

)2
− δ2(1− n)2 ≤ V0.

�

Corollary 2. Given a probability distribution p(x) over X = {1, 2, ..., n}, 0 ≤ V(p) ≤
(

n−1
2

)2
holds.

Proof. The upper bound
(

n−1
2

)2
is the direct result from Lemmas 7 and 8, and occurs when

p1 = pn = 0.5. The lower bound 0 is by the definition of V(p) in Equation (6), and occurs
when pi = 1 for some i ∈ X. �

Appendix C

In this section, we derived the range of S(p), where p is a probability distribution over
X = {1, 2, ..., n} with mean m. First, Lemma 9 is used to split the probability at x = j into the
probabilities at x = 1 and at x = m for 1 < j < m. We can repeatedly apply Lemma 9 until pj = 0 for
1 < j < m, and yield a new probability distribution q such that S(q) > S(p).

Lemma 9. Let p(x) be a probability distribution over X = {1, 2, ..., n}. Let m = ∑n
i=1 ipi and k = m. If there

exists pj > 0 where 1 < j < k, then S(q) > S(p) where q(x) is a probability distribution over X with

q1 = p1 +
k−j
k−1 pj, qj = 0, qk = pk +

j−1
k−1 pj, and qi = pi for i ∈ X\{1, j, k}.
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Proof. By Equation (3), the mean of q(x) is also m.

S(q) =
(

∑i 6=1,j,k|m− i|3 pi

)
+ (m− 1)3

(
p1 +

k−j
k−1 pj

)
+ (m− j)3(0) + (m− k)3

(
pk +

j−1
k−1 pj

)
=

(
∑i 6=1,j,k|m− i|3 pi

)
+ (m− 1)3 p1 + (m− 1)3

(
k−j
k−1 pj

)
+ (m− k)3 pk + (m− k)3

(
j−1
k−1 pj

)
=

(
∑i 6=j|m− i|3 pi

)
+ (m− 1)3

(
k−j
k−1 pj

)
+ (m− k)3

(
j−1
k−1 pj

)
=

(
∑i 6=j|m− i|3 pi

)
+

( pj
k−1

)(
(m− 1)3(k− j) + (m− k)3(j− 1)

)
=

(
∑i 6=j|m− i|3 pi

)
+
( pj

k−1

)
(
(
m3 − 3m2 + 3m− 1

)
(k− j) +

(
m3 − 3m2k + 3mk2 − k3)(j− 1))

=
(

∑i 6=j|m− i|3 pi

)
+
( pj

k−1

)
(m3k− 3m2k + 3mk− k−m3 j + 3m2 j− 3mj + j + m3 j− 3m2kj

+3mk2 j− k3 j−m3 + 3m2k− 3mk2 + k3)

=
(

∑i 6=j|m− i|3 pi

)
+
( pj

k−1

)
(
(
m3k−m3)+ (

3mk− 3mk2)+ (
k3 − k

)
+

(
3m2 j− 3m2kj

)
+
(
3mk2 j− 3mj

)
+

(
j− k3 j

)
)

=
(

∑i 6=j|m− i|3 pi

)
+
( pj

k−1

)
(m3(k− 1) + 3mk(1− k) + k

(
k2 − 1

)
+ 3m2 j(1− k) + 3mj

(
k2 − 1

)
+j

(
1− k3))

=
(

∑i 6=j|m− i|3 pi

)
+ pj(m3 − 3mk + k(k + 1)− 3m2 j + 3mj(k + 1)− j

(
k2 + k + 1

)
)

=
(

∑i 6=j|m− i|3 pi

)
+pj((m3 − 3m2 j + 3mj2 − j3)− 3mj2 + j3 − 3mk + k(k + 1) + 3mj(k + 1)

−j
(
k2 + k + 1

)
)

= S(p) + pj
(
−3mj2 + j3 − 3mk + k(k + 1) + 3mj(k + 1)− j

(
k2 + k + 1

))
= S(p) + pj

(
3m

(
−j2 − k + j(k + 1)

)
+ k(k + 1)(1− j) + j

(
j2 − 1

))
= S(p) + pj(3m(j− 1)(k− j)− k(k + 1)(j− 1) + j(j + 1)(j− 1))

= S(p) + pj(j− 1)(3m(k− j)− k(k + 1) + j(j + 1))

= S(p) + pj(j− 1)
(
3m(k− j)−

(
k2 − j2

)
− (k− j)

)
= S(p) + pj(j− 1)(k− j)(3m− (k + j)− 1).

Then 1 < j < k = m ≤ m < n yields 3m− (k + j)− 1 > 0. Thus, S(q) > S(p). �

Similar to Lemma 9, Lemma 10 is used to split the probability at x = j into the probabilities at
x = m and at x = n for m < j < n. We can repeatedly apply Lemma 10 until pj = 0 for m < j < n, and
yield a new probability distribution q such that S(q) > S(p).

Lemma 10. Let p(x) be a probability distribution over X = {1, 2, ..., n}. Let m = ∑n
i=1 ipi and k = m.

If there exists pj > 0 where k < j < n, then S(q) > S(p) where q(x) is a probability distribution over X with

qk = pk +
n−j
n−k pj, qj = 0, qn = pn +

j−k
n−k pj, and qi = pi for i ∈ X\{k, j, n}.
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Proof. By Equation (3), the mean of q(x) is also m.

S(q) =
(

∑i 6=k,j, n|m− i|3 pi

)
+ (k−m)3

(
pk +

n−j
n−k pj

)
+ (j−m)3(0)

+(n−m)3
(

pn +
j−k
n−k pj

)
=

(
∑i 6=k,j, n|m− i|3 pi

)
+ (k−m)3 pk + (k−m)3

(
n−j
n−k pj

)
+ (n−m)3 pn

+(n−m)3
(

j−k
n−k pj

)
=

(
∑i 6=j|m− i|3 pi

)
+ (k−m)3

(
n−j
n−k pj

)
+ (n−m)3

(
j−k
n−k pj

)
=

(
∑i 6=j|m− i|3 pi

)
+

( pj
n−k

)(
(k−m)3(n− j) + (n−m)3(j− k)

)
=

(
∑i 6=j|m− i|3 pi

)
+
( pj

n−k

)
(
(
k3 − 3k2m + 3km2 −m3)(n− j)

+
(
n3 − 3n2m + 3nm2 −m3)(j− k))

=
(

∑i 6=j|m− i|3 pi

)
+
( pj

n−k

)
(k3n− 3k2mn + 3km2n−m3n− k3 j + 3k2mj− 3km2 j + m3 j + n3 j

−3n2mj + 3nm2 j−m3 j− n3k + 3n2mk− 3nm2k + m3k)

=
(

∑i 6=j|m− i|3 pi

)
+
( pj

n−k

)
(
(
−3k2mn + 3n2mk

)
+

(
3k2mj− 3n2mj

)
+

(
−3km2 j + 3nm2 j

)
+
(
−m3n + m3k

)
+

(
−k3 j + n3 j

)
+

(
k3n− n3k

)
)

=
(

∑i 6=j|m− i|3 pi

)
+
( pj

n−k

)
(3kmn(n− k)− 3mj

(
n2 − k2)+ 3m2 j(n− k)−m3(n− k)

+j
(
n3 − k3)− nk

(
n2 − k2))

=
(

∑i 6=j|m− i|3 pi

)
+ pj

(
3kmn− 3mj(n + k) + 3m2 j−m3 + j

(
n2 + nk + k2)− nk(n + k)

)
=

(
∑i 6=j|m− i|3 pi

)
+pj(

(
j3 − 3mj2 + 3m2 j−m3)+ 3mj2 − j3 + 3kmn− 3mj(n + k)

+j
(
n2 + nk + k2)− nk(n + k))

= S(p) + pj
(
3mj2 − j3 + 3kmn− 3mj(n + k) + j

(
n2 + nk + k2)− nk(n + k)

)
= S(p) + pj

(
3m(j− k)(j− n) + n(n + k)(j− k)− j

(
j2 − k2))

= S(p) + pj(j− k)(3m(j− n) + n(n + k)− j(j + k))

= S(p) + pj(j− k)
(
3m(j− n) +

(
n2 − j2

)
+ k(n− j)

)
= S(p) + pj(j− k)(n− j)(−3m + (n + j) + k).

Then 1 < m ≤ m = k < j < n yields −3m + (n + j) + k > 0. Thus, S(q) > S(p). �

Lemmas 11, 12, and 13 are used to split the probabilities at x = m, x = m, and x = m, respectively,
into x = 1 and x = n.

Lemma 11. Let p(x) be a probability distribution over X = {1, 2, ..., n}. Let m = ∑n
i=1 ipi. If m ∈ X and

pm > 0, then S(q) > S(p) where q(x) is a probability distribution over X with q1 = p1 +
n−m
n−1 pm, qm = 0,

qn = pn +
m−1
n−1 pm, and qi = pi for i ∈ X\{1, m, n}.
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Proof. By Equation (3), the mean of q(x) is also m.

S(q) =
(

∑i 6=1,m, n|m− i|3 pi

)
+ (m− 1)3(p1 +

n−m
n−1 pm

)
+ |m−m|3(0)

+(n−m)3
(

pn +
m−1
n−1 pm

)
= S(p) + (m− 1)3( n−m

n−1 pm
)
+ (n−m)3

(
m−1
n−1 pm

)
= S(p) + pm(m−1)(n−m)

n−1

(
(m− 1)2 + (n−m)2

)
> S(p).

�

Lemma 12. Let p(x) be a probability distribution over X = {1, 2, ..., n}, m = ∑n
i=1 ipi, and k = m.

If 1 < k < m and pk > 0, then S(q) > S(p) where q(x) is a probability distribution over X with
q1 = p1 +

n−k
n−1 pk, qk = 0, qn = pn +

k−1
n−1 pk, and qi = pi for i ∈ X\{1, k, n}.

Proof. By Equation (3), the mean of q(x) is also m.

S(q) =
(

∑i 6=1,k,n|m− i|3 pi

)
+ (m− 1)3

(
p1 +

n−k
n−1 pk

)
+ (m− k)3(0) + (n−m)3

(
pn +

k−1
n−1 pk

)
= S(p) + (m− 1)3

(
n−k
n−1 pk

)
+ (n−m)3

(
k−1
n−1 pk

)
− (m− k)3 pk

= S(p) + pk
n−1 ((m− 1)3(n− k) + (n−m)3(k− 1)− (m− k)3(n− 1))

= S(p) + pk
n−1 ((m− 1)3(n− k) + (n−m)3(k− 1)− (m− k)3(n− k + k− 1))

= S(p) + pk
n−1 ((m− 1)3(n− k)− (m− k)3(n− k) + (n−m)3(k− 1)− (m− k)3(k− 1))

= S(p) + pk
n−1 ((m− k + k− 1)3(n− k)− (m− k)3(n− k) + (n−m)3(k− 1)− (m− k)3(k− 1))

> S(p) + pk
n−1 ((k− 1)3(n− k) + (n−m)3(k− 1)− (m− k)3(k− 1))

= S(p) + pk(k−1)
n−1 ((k− 1)2(n− k) + (n−m)3 − (m− k)3).

Then, k− 1 ≥ 1 > m− k > 0 and n > m yield (k− 1)2 > (m− k)2 > 0 and n− k > m− k, and
thus, (k− 1)2(n− k) > (m− k)3. Therefore, S(q) > S(p) holds. �

Lemma 13. Let p(x) be a probability distribution over X = {1, 2, ..., n}, m = ∑n
i=1 ipi, and k = m.

If m < k < n and pk > 0, then S(q) > S(p) where q(x) is a probability distribution over X with
q1 = p1 +

n−k
n−1 pk, qk = 0, qn = pn +

k−1
n−1 pk, and qi = pi for i ∈ X\{1, k, n}.

Proof. By Equation (3), the mean of q(x) is also m.

S(q) =
(

∑i 6=1,k,n|m− i|3 pi

)
+ (m− 1)3

(
p1 +

n−k
n−1 pk

)
+ (k−m)3(0) + (n−m)3

(
pn +

k−1
n−1 pk

)
= S(p) + (m− 1)3

(
n−k
n−1 pk

)
+ (n−m)3

(
k−1
n−1 pk

)
− (k−m)3 pk

= S(p) + pk
n−1

(
(m− 1)3(n− k) + (n−m)3(k− 1)− (k−m)3(n− 1)

)
= S(p) + pk

n−1

(
(m− 1)3(n− k) + (n−m)3(k− 1)− (k−m)3(n− k + k− 1)

)
= S(p) + pk

n−1

(
(m− 1)3(n− k)− (k−m)3(n− k) + (n−m)3(k− 1)− (k−m)3(k− 1)

)
= S(p) + pk

n−1

(
(m− 1)3(n− k)− (k−m)3(n− k) + (n− k + k−m)3(k− 1)− (k−m)3(k− 1)

)
> S(p) + pk

n−1

(
(m− 1)3(n− k)− (k−m)3(n− k) + (n− k)3(k− 1)

)
= S(p) + pk(n−k)

n−1 ((m− 1)3 − (k−m)3 + (n− k)2(k− 1)).
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Then, n− k ≥ 1 > k−m > 0 and m > 1 yield (n− k)2 > (k−m)2 > 0 and k− 1 > k−m, and
thus, (n− k)2(k− 1) > (k−m)3. Therefore, S(q) > S(p) holds. �

Given a probability distribution p(x) with the probability concentrating at both ends, Lemma 14
shows that S(p) is maximized when the probability is evenly distributed.

Lemma 14. Given a probability distribution p(x) over X = {1, 2, ..., n} where p1 + pn = 1 and pi = 0 for
each i ∈ X\{1, n}, S(p) is maximized when p1 = pn = 0.5.

Proof. Without loss of generality, let p1 = 1
2 + δ and pn = 1

2 − δ where 0 ≤ δ ≤ 1
2 . Then, Equation (3)

yields m = p1 + npn =
(

1
2 + δ

)
+ n

(
1
2 − δ

)
= 1+n

2 + δ(1− n).
Use S0 to denote the value of S(p) at δ = 0. Then,

S0 = p1(m− 1)3 + pn(n−m)3 = 1
2 (

1+n
2 − 1)

3
+ 1

2 (n−
1+n

2 )
3
=

(
n−1

2

)3
.

S(p) =
(

1
2 + δ

)
(m− 1)3 +

(
1
2 − δ

)
(n−m)3

=
(

1
2 + δ

)(
1+n

2 + δ(1− n)− 1
)3

+
(

1
2 − δ

)(
n− 1+n

2 − δ(1− n)
)3

=
(

1
2 + δ

)(
n−1

2 + δ(1− n)
)3

+
(

1
2 − δ

)(
n−1

2 − δ(1− n)
)3

= 1
2

(
n−1

2 + δ(1− n)
)3

+ δ
(

n−1
2 + δ(1− n)

)3
+ 1

2

(
n−1

2 − δ(1− n)
)3

−δ
(

n−1
2 − δ(1− n)

)3

= 1
2
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(
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(
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2
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δ2(1− n)2 − δ3(1− n)3

)
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((
n−1

2

)3
+ 3

(
n−1

2
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δ2(1− n)2

)
+ 2δ

(
3
(

n−1
2

)2
δ(1− n) + δ3(1− n)3

)
=

(
n−1

2

)3
− 2δ4(n− 1)3 ≤ S0.

�

Corollary 3. Given a probability distribution p(x) over X = {1, 2, ..., n}, 0 ≤ S(p) ≤
(

n−1
2

)3
holds.

Proof. The lower bound 0 is by the definition of S(p) in Equation (6), and occurs when pi = 1 for

some i ∈ X. The upper bound
(

n−1
2

)3
is the direct result from Lemmas 9 to 14, and occurs when

p1 = pn = 0.5. First, we can repeatedly apply Lemmas 9 and 10 to yield a new distribution q(x) such
that S(q) > S(p) and qj = 0 for 1 < j < m and for m < j < n. Then, we apply Lemmas 11, 12, and 13
to yield a new probability distribution r such that S(r) > S(q) and rj = 0 for 1 < j < n. Finally, we

apply Lemma 14 to show that S(r) ≤ S0 where S0 =
(

n−1
2

)3
is the value of S(r) when r1 = rn = 0.5.
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