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Abstract: Kurtogram can adaptively select the resonant frequency band, and then the characteristic
fault frequency can be obtained by analyzing the selected band. However, the kurtogram is easily
affected by random impulses and noise. In recent years, improvements to kurtogram have been
concentrated on two aspects: (a) the decomposition method of the frequency band; and (b) the
selection index of the optimal frequency band. In this article, a new method called Teager Energy
Entropy Ratio Gram (TEERgram) is proposed. The TEER algorithm takes the wavelet packet
transform (WPT) as the signal frequency band decomposition method, which can adaptively segment
the frequency band and control the noise. At the same time, Teager Energy Entropy Ratio (TEER)
is proposed as a computing index for wavelet packet subbands. WPT has better decomposition
properties than traditional finite impulse response (FIR) filtering and Fourier decomposition in the
kurtogram algorithm. At the same time, TEER has better performance than the envelope spectrum or
even the square envelope spectrum. Therefore, the TEERgram method can accurately identify the
resonant frequency band under strong background noise. The effectiveness of the proposed method
is verified by simulation and experimental analysis.
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1. Introduction

The rolling bearing is one of the most common components in rotating machinery, and it is also
one of the components with the highest failure rate. The running condition of bearings is directly
related to the safe and stable operation of the whole rotating machinery system. Extracting fault
feature information from bearing vibration signals under strong background noise is a hot issue in
the field of mechanical fault diagnosis. The process of bearing fault diagnosis is divided into two
parts: vibration parameter (displacement, velocity and acceleration) acquisition and vibration data
processing. Adamczak et al. analyzed the existing bearing fault testing system. They strived for more
accurate bearing fault measurement equipment and fault measurement parameters by comparing and
analyzing existing measuring devices [1]. Meanwhile, a large number of vibration signal processing
methods have been put forward, among which the kurtogram method is able to adaptively recognize
the resonance frequency band of the vibration signal. By filtering the resonance frequency band and
integrating the spectrum analysis of filtered signals, the fault characteristics of vibration signals can be
effectively extracted.

Kurtosis is the 4th-order cumulant of random variables. This index cannot reflect the change of
specific signals, and is not suitable for condition monitoring under strong noise environments. In order
to overcome the shortage of kurtosis in engineering applications, Antoni made a formal definition of
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kurtosis [2]. Subsequently, Antoni further proposed the kurtogram. The core idea of the algorithm is
that the spectral kurtosis index of the unstable signal is maximized by reasonable selection of frequency
resolution [3]. In order to reduce the operation time of the kurtogram and enable it to be widely used in
engineering practice, Antoni further proposed a fast spectral kurtosis (FSK) calculation method based
on a fast algorithm for computing the kurtogram over a grid. FSK can simplify the process of selecting
the optimal band ( f , ∆ f ) [4]. In the FSK algorithm, the horizontal axis represents the frequency, the
vertical axis represents the number of decomposition layers, and the depth of the color indicates the
spectral kurtosis value of each sub band.

Since then, many algorithms based on the kurtogram have been proposed. Lei et al. proposed an
improved kurtogram method [5], which uses wavelet packet transform (WPT) instead of the short
time Fourier transform (STFT) and FIR filters used in the traditional kurtogram. A filter based on
WPT can accurately divide the frequency bands and control the noise effectively [5]. Then, on the
basis of Lei et al., Wang et al. made further improvements. The kurtosis calculation method in the
traditional kurtogram was changed to calculate the power spectrum of the envelope of different nodes
of WPT. The power spectrum of the envelope signal reflects the sparsity of the signal and helps to
capture the resonance band in the signal [6]. Based on the same idea, Tse and Wang proposed a new
method called sparsogram. The power spectrum of the envelope was applied to improve the kurtosis
index in the kurtogram, so that it reflected the sparsity of signals [6,7]. Gu proposed a method for
analyzing kurtograms in the frequency domain [8]. The correlated kurtosis of the envelope was used
to replace the traditional calculating method in the kurtogram, which makes the calculation index
sensitive to periodic impulses and has better robustness. To obtain the correct relationship between
the node and frequency band in WPT, a vital process called frequency ordering is conducted to solve
the frequency folding problem due to down-sampling. Tian et al. proposed the modulation signal
bispectrum (MSB)-based robust detector to reduce the noise and accurately identify the resonance
frequency band [9]. The high-magnitude features that result from the use of the MSB also enhance
the modulation effects of a bearing fault. In gearboxes, the kurtogram method would fail when gears
and bearings partially malfunctioned at the same time. In view of this, Wang proposed an improved
method by combining kurtogram and menshing resonance (MRgram) [10]. Random impulses often
occur in the frequency bands of vibration signals of bearings, making the selection of kurtogram
resonance frequency bands inaccurate. Xu et al. proposed a periodicity-based kurtogram to deal with
random impulse resistance [11]. The periodic component to aperiodic component ratio (PAR) was
utilized in this method to differentiate the types of impulses. Li et al. improved the kurtogram based
on an impulse step dictionary and a reweighted minimizing nonconvex penalty Lq regular for rolling
bearing fault diagnosis [12].

Entropy was originally a thermodynamic concept describing the regularity of information.
Because entropy has some statistical properties superior to kurtosis in some respects, the application
scope of entropy was gradually extended to the field of mechanical fault diagnosis. Antoni introduced
Shannon entropy into the kurtogram algorithm and proposed infogram [13]. Infogram contains three
parts, the envelope (SE) infogram, squared envelope spectrum (SES) infogram, and SE1/2/SES1/2
infogram. The calculation index of the SE infogram is the negative entropy of the square envelope, and
the calculation index of the SES infogram is the negative entropy of the square envelope spectrum. On
the basis of infogram, the multiscale clustering grey infogram (MCGI) was proposed by Li et al. [14].
Hemmati et al. proposed an index that combines kurtosis and Shannon entropy, and the index was
used to obtain the optimal band pass filter utilizing wavelet packet transform (WPT) and envelope
detection [15]. The MCGI combined the negentropies of the time and frequency domains in a grey
fashion using multiscale clustering. Chen et al. proposed a fault classification method combining
time-spectral kurtosis, entropy and support vector machines (SVM). Combining the advantages of
time-spectral kurtosis (T-SK) and entropy, this method makes fault extraction more obvious [16].

To sum up, the improvement of kurtogram has mainly focused on two aspects. On the one hand,
the decomposition methods (STFT, FIR) of the traditional kurtogram algorithm have been improved,
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so that the frequency band segmentation will have better results. On the other hand, the calculation
index of each sub-band has been improved. The aim is to make the calculation index sensitive to the
periodic impact caused by the fault, and to have strong robustness to the interference caused by noise
or accidental impact. These improvements have made a significant contribution in some respects.
In order to further improve the accuracy and efficiency of the algorithm in determining the center
frequency and bandwidth, a new adaptive method called TEERgram is proposed in this article.

2. The Index of Teager Energy Entropy

In 2016, Antoni proposed the infogram method. Infogram theories include the squared envelope
(SE) infogram, the squared envelope spectrum (SES) infogram, and the SE1/2/SES1/2 infogram. The
SE and SES were defined as Equations (1) and (2).

∆Ie =
SE(n; f , ∆ f )2〈
SE(n; f , ∆ f )2

〉 In

 SE(n; f , ∆ f )2〈
SE(n; f , ∆ f )2

〉
 (1)

∆IE =
SES(n; f , ∆ f )2〈
SES(n; f , ∆ f )2

〉 In

 SES(n; f , ∆ f )2〈
SES(n; f , ∆ f )2

〉
 (2)

where n ∈ Z, f is the frequency, and ∆ f is the frequency resolution. ∆Ie and ∆IE are entropy values
in the time domain and entropy in the frequency domain respectively. That is, they were used to
represent the impact characteristics and cyclostationarity characteristics of fault signals, respectively.
Antoni further proposed the SE1/2/SES1/2 infogram to characterize the impact characteristics and
cyclostationarity. The SE1/2/SES1/2 infogram was defined by Equation (3):

∆I1/2 = ∆Ie/2 + ∆IE/2 (3)

2.1. Teager Energy Operator

Teager energy operator (TEO) can enhance transient impact components, which is suitable for
detecting impact characteristics in signal, and has good effect in fault impact feature extraction. For
signal x(t), the Teager energy operator ψ can be defined as Equation (4):

ψ(x(t)) =
(
x′(t)

)2 − x(t)x′′ (t) (4)

where x′(t) and x′′(t) are the first- and second-order derivatives of signal x relative to time t. The
general expression of the amplitude modulation frequency modulation signal is shown in Equation (5):

s(t) = a(t) cos(ψ(t)) (5)

where a(t) is the instantaneous amplitude of s(t) and ψ(t) is the instantaneous phase of s(t). The
instantaneous frequency of the signal s(t) is ω = dψ/dt. The effect of the energy operator on s(t) is
shown in Equation (6):

ψ(s(t)) =
(
a(t)ψ′(t)

)
/2 + a2(t)ψ(t)× sin(2ψ(t))/2 + cos2(ψ(t))ψ(a(t)) (6)

Because the change of the carrier signal is much faster than the modulated signal, the
instantaneous amplitude and the instantaneous frequency of the modulated signal are relatively
slow relative to the high-frequency carrier, and can be approximately equal to the constant. Therefore,
if ψ′′ (t) ≈ 0, ψ(a(t)) ≈ 0, then the Formula (6) can be approximately expressed as Equation (7).

ψ(s(t)) ≈
(
a(t)ψ′(t)

)2
= a2(t)ω2(t) (7)
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Meanwhile,
ψ
(
s′(t)

)
≈ a2(t)ω4(t) (8)

Therefore, the envelope signal (instantaneous amplitude) |a(t)| obtained by demodulation and
separation of signal s can be expressed as Equation (9):

|a(t)| ≈ ψ(s(t))√
ψ(s′(t))

(9)

The signal energy in transmission is defined as the square of the amplitude of the signal. If the
impact amplitude is small, the impact component may be drowned by other components. The Teager
energy operator is the product of squared instantaneous amplitude and instantaneous frequency. Due
to the high vibration frequency of transient impact, the Teager energy operator can effectively enhance
transient impact components and significantly suppress noise.

In order to verify the superiority of the Teager energy operator spectrum (TEOS) compared with
the envelope spectrum (ES) and the square envelope spectrum (SES), the following simulation signals
are defined as Equation (10).

y1 =
n

∑
i=1

Ae−ξ(t−qi(t)/ f outer)
2
× sin(2π fot) + n(t) (10)

where ξ is the damping ratio, A is the amplitude, qi(t) = bt× fic (i = 1, 2, . . . , n), fo is the natural
frequency, fouter = 25 Hz is the characteristic frequency and n(t) is the Gauss white noise. The
parameters of the simulation signal are shown in Table 1.

Table 1. Parameters of the simulated signal.

Amplitude Rotating
Frequency fr (Hz)

Natural Frequency
(Hz)

Sampling
Frequency (Hz)

Fault Frequency
(Hz)

2 20 1500 8192 25

The waveforms of the synthetic signal with fault impulses and noise are shown in Figure 1,
Figure 1a shows a periodic signal, which is used to simulate the fault impulses. Figure 1b shows
a synthetic signal with fault impulses and noise (–12 dB). The envelope spectrum (ES), the square
envelope spectrum (SES) and the Teager energy operator spectrum (TEOS) of the simulation signal
are analyzed, respectively. The results are shown in Figure 2. It can be seen from Figure 2 that
the amplitude of TEOS is higher than the amplitude of ES and the amplitude of SES at the fault
characteristic frequency spectrum line. However, in the rest of the spectrum, the result is just the
opposite. That is to say, the signal-to-noise ratio (SNR) of the Teager energy operator spectrum is much
higher than that of the square envelope spectrum and the envelope spectrum.Entropy 2018, 20, x 5 of 18 
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Figure 2. The analysis results of envelope spectrum, square envelope spectrum and Teager
energy spectrum.

2.2. Shannon Entropy

In 1948, Shannon put forward the concept of “Shannon entropy” and solved the problem of
quantitative measurement of information. There is a direct relationship between the amount of
information in a signal and its uncertainty, so from this point of view, we can think that the measure of
the amount of information is equal to how much uncertainty there is. Shannon entropy reflects the
degree of disordering (ordering) of a system, the more orderly a system is, the lower the entropy, and
vice versa. In view of this, Shannon entropy can reflect the order of vibration signals. Given a random
sequence {x1, x2, . . . , xn}, the calculation method of Shannon entropy is shown in Equation (11):

Sh = −c
n

∑
i=1

p(xi)× log(p(xi)) (11)

where Sh is the value of Shannon entropy, p(xi) is the probability mass associated with the value xi
and c is an arbitrary positive constant that dictates the units.

The Shannon entropy index can reflect the regularity of the vibration signal, and its value has a
certain relation with the SNR, so it can be used as an indicator to reflect the intensity of the impact of
the fault. To verify this conclusion, the simulation signal model in Equation (10) is added with different
degrees of noise to simulate the numerical changes of Shannon under different SNR. It can be seen
from Figure 3 that the numerical regularity of Shannon entropy decreases with the increase of SNR.
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2.3. Teager Energy Entropy

In view of the superiority of the Teager energy operator relative to the square envelope spectrum,
we propose a Teager Energy Entropy (TEE) index. Inspired by infogram, we define the Teager energy
entropy in the time domain (TEEt) and the Teager energy entropy in the frequency domain (TEEf)
respectively as Equations (12) and (13).

∆ITEEt =
TEOt(n; f , ∆ f )2〈
TEOt(n; f , ∆ f )2

〉 In

 TEOt(n; f , ∆ f )2〈
TEOt(n; f , ∆ f )2

〉
 (12)

∆ITEEf =
TEO f (n; f , ∆ f )2〈
TEO f (n; f , ∆ f )2

〉 In

 TEO f (n; f , ∆ f )2〈
TEO f (n; f , ∆ f )2

〉
 (13)

In order to optimize the proportion of time domain and frequency domain components, an
adaptive weighting method is proposed. Firstly, the regularization of TEEt and TEEf is carried out
using Equations (14) and (15).

Tit =
∆ITEEti −

N
min
i=1

∆ITEEti

N
max
i=1

∆ITEEti −
N

min
i=1

∆ITEEti

(14)

Ti f =
∆ITEEfi −

N
min
i=1

∆ITEEfi

N
max
i=1

∆ITEEfi −
N

min
i=1

∆ITEEfi

(15)

In these, m = 1, 2, . . . , M (n = 1, 2, . . . , N) represents the M(N)-th signal component. Then the
mean value (µ) and standard deviation (σ) of the two regularization sequences are calculated separately
using Equations (16)–(19).

µt =
1
M

M

∑
i=1

Tit (16)

µ f =
1
N

N

∑
i=1

Ti f (17)

σt =

√√√√ 1
M

M

∑
i=1

(Tit − µt)
2 (18)

σf =

√√√√ 1
N

N

∑
i=1

(
Ti f − µ f

)2
(19)

Then the weight coefficients of the regularized sequence are calculated as Equations (20) and (21).

Ct =
1
σt

1
σt
+ 1

σf

(20)

C f =

1
σf

1
σt
+ 1

σf

(21)

The Teager energy entropy, combined with the time domain and the frequency domain, is finally
expressed as Equation (22):

TEE = Ct∆ITEEt + C f ∆ITEEf (22)
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2.4. Teager Energy Entropy Ratio of Wavelet Packet

Lei et al. introduced wavelet packet transform (WPT) into the kurtogram algorithm to replace the
traditional decomposition method (FIR, STFT) in kurtogram. Meanwhile, Stępień et al. confirmed that
the entropy-based WPT is the most suitable approach that is not limited to one level of decomposition,
and it allows us to find an optimal decomposition tree [17]. Inspired by this idea, the algorithm is
further improved by the TEE index in this paper. The paving of the kurtogram and the TEEgram are
shown in Figure 4.
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In many cases, the components that reflect the characteristics of fault impact are likely to be
drowned out by noise. This can easily cause misdiagnosis during the confirmation of the resonance
frequency band. To illustrate these problems, different degrees of noise are added to the simulated
signals in Equation (10). Figure 5a shows the simulated fault signal with SNR = −12 dB, Figure 5b
shows the simulated fault signal with SNR = −16 dB, Figure 5c shows the TEEgram of (a), while
Figure 5d shows the TEEgram of (b). When the signal-to-noise ratio (SNR) is −12 dB, the TEEgram
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can accurately locate the resonance frequency band (Table 1; the natural frequency is about 1500 Hz),
but when the SNR is reduced to −16 dB, the resonance frequency band is inaccurate.

In view of the defect that kurtogram is too sensitive to strong background noise and singular
points, Wang et al. proposed an improved method named SKRgram [18]. Subsequently, Miao et al.
used the Gini coefficient as an index to further improve the SKRgram [19]. The essence of the SKRgram
is to compare the change of spectral kurtosis before and after failure. Based on this, the potential bands
of fault impact hidden in noise and other constant interference components can be found. Inspired by
this idea, we further modify the TEE index as Equation (23):

TEER = TEE f ailure/TEEhealth (23)

2.5. Process of the Proposed Method

1. The bearing vibration signals are collected under healthy state and fault state conditions
(Figure 6a,b). According to the bearing parameters, the characteristic frequency of bearing
fault is calculated based on the theoretical equations (Equation (24)).

fi =
Z
2 (1 +

d
D cos β) N

60 , fo =
Z
2 (1−

d
D cos β) N

60
fball =

D
2d (1− ( d

D )2 cos2 β) N
60 , fcage = 1

2 (1−
d
D cos β) N

60
(24)

where fi, fo, fball and fcage respectively represent inner ring fault, outer ring fault, rolling element
fault and cage fault. d is the ball diameter, D is the pitch diameter, β is the contact angle, N is the
speed of rotation, Z is the number of the balls.
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Figure 6. The process of the proposed method. (a) Healthy signal; (b) Fault signal; (c) TEEgram of the
healthy signal; (d) TEEgram of the fault signal; (e) TEERgram; (f) Envelope spectrum.

2. Wavelet packet transform (WPT) is applied, in turn, to vibration signals in healthy state and fault
state. The time domain Teager energy entropy (∆ITEEt) and the frequency domain Teager energy
entropy (∆ITEEf) are calculated for each sub-band of the signal under the healthy condition. ∆ITEEt

and ∆ITEEf are weighted to obtain Teager energy entropy (TEEhealth = Ct∆ITEEt + C f ∆ITEEt) in
the healthy state. Similarly, the energy entropy of Teager (TEE f ailure) under the fault condition is
obtained. Teager energy entropy diagram (TEEgram) of wavelet sub-band of health status and
fault state signals is constructed respectively (Figure 6c,d).
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3. According to the Teager energy entropy of the signal in the healthy state (TEEhealth) and the
Teager energy entropy of the signal in the fault state (TEE f ailure), the Teager energy entropy rate
(TEER = TEE f ailure/TEEhealth) is calculated. Teager energy entropy ratio diagram (TEERgram)
of wavelet sub-band is constructed as shown in Figure 6e. It can be seen from Figure 6e that the
location of the relative change of TEE value is the fault resonance frequency band. The wavelet
subband with the largest TEER value is selected as the optimal band. The center frequency and
bandwidth are extracted to set the parameters of the bandpass filter, and the filter is used to filter
the selected wavelet sub-bands. Then the envelope spectrum of the filtered signal is analyzed
(Figure 6f). The fault type is analyzed by comparing the characteristic frequency of the spectrum
line with the theoretical characteristic frequency calculated in step 1.

3. Simulation Analysis

The effectiveness of the proposed algorithm is verified by the mathematical model of the inner
ring fault simulation signal in Equation (25) [20].

x(t) = s(t) + n(t) = ∑
i

Aih(t− iT − τi) + n(t)

Ai = A0 cos(2π frt + φA)

h(t) = e−Bt cos(2π fnt + φω)

(25)

where τi is the ith shock; T is the period of shock; fr is the rotating frequency; Ai is the amplitude
modulation with 1/ fr as a cycle; h(t) is an exponential decay pulse; B is the attenuation coefficient of
vibration caused by damping; and φA, φω represent the phase. The other parameters of the simulation
signal are shown in Table 2.

Table 2. Parameters of the inner fault simulation.

Amplitude Rotating
Frequency fr (Hz)

Natural Frequency
(Hz)

Sampling
Frequency (Hz)

Fault Frequency
(Hz)

2 20 2500 8192 130

Figure 7a shows the waveform of the inner fault impulses; Figure 7b shows the noise; Figure 7c
shows the synthetic signal with fault impulses and noise (−16 dB). Figure 7d shows the spectrum of
Figure 7c. It can be seen from Figure 7d that the fault feature information cannot be found, and there is
a suspected resonance frequency band near 2500 Hz.

The simulation signal is respectively analyzed by kurtogram, kurtosis of the wavelet packet
transform (KWPT) and the proposed method. The results of kurtogram analysis are shown in Figure 8.
The results of KWPT analysis are shown in Figure 9. The two methods are inaccurate in locating the
resonant frequency band, and are significantly affected by noise. In the envelope spectrum of their
sub-bands, the characteristic frequencies of faults can be found. Figure 10 is the method proposed
in this paper. By calculating the Teager energy operator ratio (TEER) of the signal before and after
the fault, the resonant frequency band that changes before and after the fault is obtained, that is, the
resonance frequency band caused by the fault.
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4. Experiment Analysis

4.1. Experiment 1

Data from the bearing data center, Case Western Reserve University, are widely used in the field
of fault diagnosis as common open data, and have a high degree of recognition (Figure 11) [21]. The
experimental data with the weakest degree (0.007 inch) of failure are used to verify the effectiveness
of the proposed method in experimental applications. The sampling frequency is 12 kHz, and the
rotation speed is 1772 r/min. The bearing parameter dimensions (JEMSKF6023-2RS) are shown in
Table 3, and the characteristic frequency of the bearing fault calculated by the theoretical formula is
shown in Table 4.
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Table 3. Structure parameters of the inner fault simulation.

Bearing Type Pitch Diameter
(mm)

Ball Diameter
(mm) Number of Balls Contact Angle (◦)

SKF6023-2RS 28.5 6.7 8 0

Table 4. Fault feature frequency of the rolling bearing.

Types of Failures Outer Ring Inner Ring Rolling Element

Defect frequencies/Hz 90 145 118

8192 points of vibration signal of rolling element fault (Figure 12) are analyzed. The vibration
signal of rolling element fault is respectively analyzed by kurtogram, KWPT and the proposed
method. The results of kurtogram analysis are shown in Figure 13. The results of KWPT analysis
are shown in Figure 14. The two methods are inaccurate for locating the resonant frequency band,
and are significantly affected by noise. In the envelope spectrum of their sub-bands, the characteristic
frequencies of faults can be found. Figure 15 shows the method proposed in this paper. The center of
the resonance band determined by the TEEgram is about 3500 Hz. The partial band is filtered, and then
the envelope spectrum of the filtered signal is analyzed. It can be seen from the envelope spectrum
(Figure 15c) that the fault characteristic frequency and its first harmonic are effectively extracted.
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the selected band.
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Figure 15. The processing results of proposed method: (a) the TEERgram; (b) the filtered signal, and
(c) the envelope spectrum of (b).

4.2. Experiment 2

Experiment 2 is designed on the experiment platform to further verify the robustness of the
proposed method. Experiment 2 contains two parts, which are the outer ring fault experiment and
the inner and outer ring compound fault experiment. The bearing failure experiments are carried
out on the QPZZ-II rotating machinery failure experiment platform. The structure of the experiment
platform is shown in Figure 16. The type of bearing used in the experiment is LYC6205E (Figure 17).
The parameters of the rolling bearing are shown in Table 5. The spark erosion technique is used to
process faults in inner rings and outer rings of bearings. The degrees of failure are 1.5 mm deep and
0.2 mm wide. The acceleration sensor arranged on the bearing seat is used to collect vibration signals
generated during the rotation of the bearing. The sampling frequency is 12,800 Hz, and the motor
speed is 1466 r/min.
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Table 5. Structure parameters of the inner fault simulation.

Bearing Type Pitch Diameter
(mm)

Ball Diameter
(mm) Number of Balls Contact Angle (◦)

LYC6205E 39 7.9 9 0

The characteristic frequency of inner ring and outer ring fault can be calculated from the following
equations:

fo =
Z
2
(1− d

D
cos α)

N
60

= 87.7 Hz, fi =
Z
2
(1 +

d
D

cos β)
N
60

= 132.2Hz

4.2.1. Case 1: Analysis of Outer Ring Fault

8192 points of vibration signal of outer ring fault (Figure 17a) are analyzed, and the time domain
waveform of the outer ring fault is shown in Figure 18.

The outer ring fault signal is analyzed via the kurtogram (Figure 19). As shown in Figure 19a,
the central frequency of the resonant band determined by the kurtogram method is 860 Hz. The
band pass filtering is applied to the resonant frequency band and envelope spectrum analysis of
filtered signals is carried out. As shown in Figure 14b, fault feature information is not found in the
envelope spectrum. This means that the resonant frequency identified by kurtogram does not contain
fault feature information; that is, kurtogram is not accurate at locating the resonant frequency band.
Similarly, the resonant frequency band in Figure 20a is filtered and envelope spectrum analysis is
performed, and the fault characteristic spectrum is not found in Figure 20b. This indicates that the
KWPT method is also invalid. Finally, the vibration signal is analyzed by the proposed method. The
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center of the resonant frequency band is about 2600 Hz from the TEERgram shown in Figure 21a. The
envelope spectrum analysis of the band is shown in Figure 21c. The characteristic frequency and its
harmonics of the bearing outer ring fault can be found.
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the selected band.
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Figure 20. The processing results of KWPT: (a) the kurtogram; and (b) the envelope spectrum of the
selected band.
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Figure 21. The processing results of the proposed method: (a) the TEERgram; and (b) the filtered signal;
and (c) the envelope spectrum of (b).

4.2.2. Case 2: Analysis of Compound Fault in Inner and Outer Ring

8192 points of vibration signal of inner and outer ring fault are analyzed (Figure 17b), and the
time domain waveform is shown in Figure 22. Figure 23 shows the processing result of KWPT. It can be
seen that due to noise interference, the sub-band determined by KWPT is a sub-band containing more
noise, rather than a sub-band containing more fault feature information. The sub-band containing the
characteristic information of the outer ring fault is not obvious, and the sub-band containing the fault
information of the inner ring is completely submerged. The kurtogram analysis of compound fault
vibration signal is shown in Figure 24. It can be seen from Figure 24a that the resonant frequency band
of the outer ring fault is found, but the resonant frequency band of the relatively weak inner ring fault
is submerged. The resonance frequency band is filtered, and the characteristic frequency and frequency
doubling of the outer ring fault can be found in the envelope spectrum shown in Figure 24b, but there
is no characteristic information of the inner ring fault. Then, the composite fault signal is analyzed by
the method proposed in this paper. With the benefits of the relative change rate of the resonance band
before and after failure, the main frequency band and the secondary frequency band can be found
in the TEERgram in Figure 25a. The two frequency bands are filtered respectively, and the envelope
spectrum analysis of filtered signals are shown in Figure 25b. The fault characteristic frequency and its
harmonics of inner ring and outer ring fault are separated and extracted. The advantage of TEERgram
is that the ratio of Teager energy entropy before and after fault is calculated as an index. This ratio
reflects the relative change value caused by faults, not the size of the absolute quantity; that is, the
change caused by the failure. This will avoid the influence of the absolute amount caused by random
impulses and noise to the analysis process, and to a certain extent, it avoids the influence of stronger
faults on the weaker faults. Therefore, we think that this method is effective for single faults submerged
in random impulses and noise, and also has certain effect for some compound faults.
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5. Conclusions

In this paper, the TEERgram method is proposed. On one hand, WPT is used to replace the
STFT and FIR filters in traditional kurtogram. WPT can divide the frequency band meticulously and
suppress noise at the same time. On the other hand, the TEER is used as the computing index of the
wavelet sub-band to find the optimal resonance frequency band. The time domain entropy (∆ITEEt)
and frequency domain entropy (∆ITEEf) of wavelet sub-bands are processed statistically so that the
TEE index can reflect the impact characteristics and periodic characteristics adaptively. By calculating
the change of the TEER value before and after the fault, it can highlight the effect of the fault. Finally,
simulations and experiments are carried out to demonstrate the effectiveness of the proposed method
and its superiority over kurtogram.
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