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Abstract: Agents in financial networks can simultaneously be both creditors and debtors, creating
the possibility that a default may cause a subsequent default cascade. Resolution of unpayable debts
in these situations will have a distributional impact. Using a relative entropy-based measure of the
distributional impact of the subsequent default resolution process, it is argued that minimum mutual
information estimation of unknown cells in the matrix of funds originally owed by the network
participants to each other does not introduce systematic biases when estimating that impact.
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1. Introduction

The standard representation of a payments network starts with a snapshot of gross liabilities
owed by each agent (bank, firm, trader, etc.) to each other agent, in the form of a matrix L

L =


0 L12 . . . L1N

L21 0 . . . L2N
...

...
. . .

...
LN1 LN2 . . . 0


in which Lij is an amount that agent i owes to agent j. These are gross rather than net liabilities, so that
Lji need not be −Lij; in fact, all elements are nonnegative. The entries could represent outstanding
loan balances, or loan payments that are due, or checks drawn on one bank that must be deposited
in accounts at another bank, or payments owed as a result of mutual trading activities, etc. Total
interagent liabilities (assets) of agent i are the row sum li (column sum ai), in L and their corresponding
shares of the grand totals are Li = li/∑

k
lk and Ai = ai/∑

k
ak.

We will use the following numerical example for illustration throughout

Lij ≡



Agent #1 #2 #3 #4 l L
#1 0 0 10 0 10 0.063
#2 30 0 20 20 70 0.437
#3 10 30 0 10 50 0.313
#4 10 0 20 0 30 0.187
a 50 30 50 30 160
A 0.313 0.187 0.313 0.187


(1)

Examining (1), we see that agent #2 owes l2 = 70 to others but is owed only a2 = 30 by others.
Without some additional funds (a.k.a., collateral) available, it cannot pay all its liabilities, and hence
will have to default on some of the debts owed. Agent #2 owes 20 to agent #3, who has no surplus
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available from its a3 = 50 in assets to pay its l3 = 50 in total liabilities, and hence will also have to
default on some payments if it does not receive payment from the defaulting agent #2. In this way,
default by one agent may trigger defaults by others. A cascade of defaults that is triggered by a single
default is a type of financial contagion. Here, the contagion was triggered by some situation that
resulted in agent #2 owing more in the aggregate than it was due to receive, without collateral that
could be seized by its creditors. With other matrices, there may be more than one agent initially in
default, and those may trigger subsequent defaults.

This aspect of credit/payment systems is not only relevant, it may have motivated the advent of
bankruptcy law centuries ago. As noted in Kadens ([1], pp. 1237–1238):

The merchant or trader who relied on credit lived constantly on the edge. The still relatively
primitive state of communication, travel, and production meant that he could not be sure
when he would receive the next shipment or the next payment on which his ability to pay
his own creditors depended. His goal was to “synchronize the payments being made to
him as a creditor with those he had to make as a debtor”, and this he could never do with
complete assurance. As all merchants and traders who depended on credit existed in this
state of financial instability, the insolvency of one person who owed significant debts could
lead to the failure of many others.

Because defaults prevent all the promised payments from being made, the severity and
distributional impact of defaults also depends on the procedure for resolving them. Following
Elimam et al. [2] and Eisenberg and Noe [3], the literature has focused on the following default
resolution rule: after any default cascade has ended, an agent that can pay only θ% of its total liabilities
must pay exactly θ% of the funds owed to each of its creditors. The resolution procedure is detailed
Section 2, and used to formulate a relative entropy-based index of the interagent distributional impact
of the default resolution process. In Section 3, we describe the use of minimum mutual information
estimation when analysts are faced with the very practical need to estimate unknown cells in the
interagent liabilities matrix L. This raises the issue of whether or not this estimator of unknown
cells systematically biases estimation of the distributional impact index. That issue is investigated in
Section 4, using simulations that failed to uncover a systematic bias. Section 5 provides a statistical
rationale for this. Section 6 concludes.

2. The Proportional Payment Rule and the Entropic Index of Distributional Impact

In calculations concerning default, we first must consider the simultaneity problem in the liabilities
network: an agent owes funds to others, but in turn is owed funds from them. Suppose we assume the
proportional payment rule that requires each defaulting agent i to pay a maximal proportion 0 ≤ θi < 1
of its separate liabilities to each of its creditors when it cannot fully pay all of them. In our example (1),
suppose that θ2 = 15%. Then agent #2 must pay the same 15% of the amounts owed to each of its three
creditors. Eisenberg and Noe (op. cit.) proved that it is possible to find a vector θ∗ = (θ∗1 , θ∗2 , . . . , θ∗N)

that implements the proportional payment rule and showed that a linear programming problem can
be solved to find it.

We follow the lucid exposition of Demange [4] to define the linear programming problem and
its solution. The proportional payment rule specifies that agent i pays agent j Xij = θiLij, so that
the aggregate of payments from agent i will be ∑

j 6=i
Xij = θi ∑

j 6=i
Lij, while the aggregate of payments to

agent i will be ∑
j 6=i

Xji = ∑
j 6=i

θjLji. To focus sole attention on the role of the liabilities matrix, in what

follows I assume that the agent has no collateral that can be seized to pay shortfalls in the event that
the aggregate of payments made to agent i are insufficient to cover its aggregate liabilities. Letting
agents have exogenous funds to cover defaults only complicates the issues addressed here. In actuality,
rules or laws must be mutually or externally enacted and enforced to ensure that agents maintain fixed
levels of collateral that can be assigned to cover defaults, so such analyses will be situation-dependent.
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Also, if such collateral requirements are high enough, there will be no initial bankruptcies, much less
contagion. When collateral requirements are less than that, simulations of default and contagion would
be dependent not just on the structure of L, but also on both the magnitudes and the distribution of the
collateral, complicating our goal of understanding the relationships between the estimation of L and the
distributional impact of the default resolution process. That understanding is enhanced by assuming
situations in which default is not a rare event, as it will be when assumed collateral is high enough.
Readers interested in estimates for a particular financial network can easily modify the analysis herein
to incorporate that network’s distribution of assignable collateral. So the proportional payment rule
requires that the vector θ satisfy the linear inequalities θi ∑

j 6=i
Lij − ∑

j 6=i
θjLji ≤ 0; i = 1, . . . , N.

Now use these constraints to formulate the following linear programming problem

θ∗ = argmaxθ1,...,θN ∑
i

θi ∑
j 6=i

Lij

s.t. θi ∑
j 6=i

Lij − ∑
j 6=i

θjLji ≤ 0; i = 1, . . . , N
(2)

We see that the objective function in (2) is the aggregate amount paid in default resolution.
Eisenberg and Noe (op. cit.) proved the existence of a solution to (2).

In our illustrative example (1), the solution to (2) is θ∗ = (100%, 14.8%, 34.4%, 21.3%). Applying
the proportional payment rule Xij = θ∗i Lij to (1), the default resolution payments Xij are

Xij ≡



Agent #1 #2 #3 #4 l∗ L∗

#1 0 0 10 0 10 0.228
#2 4.426 0 2.951 2.951 10.328 0.235
#3 3.443 10.328 0 3.443 17.213 0.392
#4 2.131 0 4.262 0 6.393 0.146
a∗ 10 10.328 17.213 6.393 43.934
A∗ 0.228 0.235 0.392 0.146


(3)

We see that the defaulting agents #2, #3, and #4 all fully pay out the amounts they each receive,
i.e., l∗ i = a∗ i for each of them, so the corresponding constraints in (2) are binding. Thus the solution
incorporates the common legal provision that receivables of defaulting agents are fully paid out to
creditors. While ex-ante aggregate liabilities (and hence aggregate assets) owed both totaled 160,
after default resolution, total liabilities paid are only 43.934. Because the latter is the objective function
in (2), this is the maximum feasible aggregate that can be paid after resolution.

Comparing (3) to (1), note that the shares of liabilities L∗i paid in resolution by defaulting agents
#2 and #4 fell from the fractions Li they owed ex-ante, while the opposite occurred for agents #1 and
#3—despite default by the latter. The least distributional impact would arise if the distribution
L = L∗. Accordingly, we propose that the entropy of L relative to L∗ be used to measure the
distributional impact of the bankruptcy resolution. That is, our measure of distributional impact
I is the Kullback–Leibler divergence (a.k.a., relative entropy) measure of directed distance between the
distribution L and the distribution L∗

I = ∑
i

Li log
Li
L∗ i

(4)

Index (4) is nonnegative, and has the value 0 only when L ≡ L∗. A well-known alternative is the
χ2 index ∑

i
(Li − L∗i )

2/L∗i which arises as a first-order approximation of (4) (see Cover and Thomas ([5],

p. 333), and lacks the axiomatic rationalization of relative entropy derived by Shore and Johnson [6].
Plug the last columns of (1) and (3) into (4) to calculate I = 0.168.

We now turn to the practical problem of estimating unknown cells in the liabilities matrix L.
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3. The Entropy of the Liabilities Matrix

Golan et al. [7] describe a now widely-used procedure to define the entropy of a nonnegative
matrix L. One first normalizes it by dividing each of its cells by the grand total of all cells, i.e., define
Pij = Lij/∑

i
∑
j

Lij, and compute the Shannon entropy of the normalized matrix H = −∑
i

∑
j

Pij log Pij.

By adopting the convention 0 log 0 = 0, cells containing zeros, e.g., those along the diagonal (no agent
owes anything to itself), contribute nothing to entropy. Hence we calculate H = − ∑

ij;i 6=j
Pij log Pij = 2.10

using the data in (1).
Now suppose that all cells in another interagent liabilities matrix L are unknown, but that its

N row sums li (total liabilities of each agent i) and column sums aj (total assets of each agent j) are
known. This situation is faced by researchers with access to financial reports that list total liabilities
and assets of agents without breaking out the bilateral specifics. A researcher could estimate values for
the unknown cells by maximizing this entropy subject to the constraints that row and column sums
have their observed values. That is

maxPij −∑
ij

Pij log Pij

subj.to : ∑
j

Pij = Li; ∑
i

Pij = Aj; ∑
ij

Pij = 1
(5)

where we recall that Li = li/∑
k

lk and Aj = aj/∑
k

ak. See Shore and Johnson [6] for a widely-used

axiomatic rationale for this constrained maximum entropy estimation, or the constrained minimization
of the cross-entropy (a.k.a., relative entropy) when the reference distribution is nonuniform, as we will
soon do. The solution of (5) is Pij = Li Aj, i.e., the constrained maximum entropy joint distribution
is the product of the marginals defined by the distributions of row and column totals, as if we had
assumed the distribution of agents’ total liabilities was independent of the distribution of their total
assets. This is a consequence of Theorem 2.6.6 in Cover and Thomas ([5], p. 28). Using the solution
to (5), the researcher estimates the amount owed by agent i to agent j by calculating Lij = Pij ∗∑

k
lk.

However, that would imply the counterfactual Pii = Li Ai 6= 0, i.e., that each agent owes something
to itself. To remedy this problem, Upper and Worms [8] reformulate the problem to find the joint
distribution that is as close to the product of the marginals as possible (measured by the relative entropy
of the former relative to the latter) when Pii = 0. Formally, one minimizes the mutual information
(see Cover and Thomas [op. cit., pp. 18–20] for the definition of “mutual information”) subject to the
known row and column totals

minPi 6=j ∑
ij;i 6=j

Pij log
Pij

Li Aj

s.t. ∑
j 6=i

Pij = Li; ∑
i 6=j

Pij = Aj; ∑
ij;i 6=j

Pij = 1
(6)

We see that the objective function in (6), i.e., the mutual information, is the Kullback–Leibler
divergence of the joint distribution with typical element Pij from the distribution under independence,
with corresponding element Li Aj. Using the data in our illustrative example (1), numerically solve (6)
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for Pij to find the following estimated liabilities Lij = Pij/∑
i

li, rounded to two decimal places below

(causing some minor adding-up errors)

Agent #1 #2 #3 #4 l L
#1 0 3.13 4.69 2.17 10 0.063
#2 22.36 0 32.56 15.08 70 0.437
#3 18.89 18.36 0 12.74 50 0.313
#4 8.75 8.50 12.74 0 30 0.187
a 50 30 50 30 160
A 0.313 0.187 0.313 0.187


(7)

Comparing (7) to (1) illustrates how the minimum mutual information estimator (6) spreads the
liabilities more evenly. Three off-diagonal cells in (1) were zeroes. None of them are zero in (7). In (1),
agent #1 owed all liabilities to a single agent (#3). The (minimized) mutual information i.e., the value
of the objective function in (6), is only 0.288. The necessarily higher mutual information in (1) is 0.466,
reflecting the fact the actual (but from the researchers’ standpoint, unknown) joint distribution of L
and A is not the product of its marginals.

If more information is known than just the row and column totals, e.g., some of the individual
cells’ values in L are observed, we need only subtract them from their respective row and column
totals, and then drop the corresponding probabilities from the estimation problem (6).

4. Will Entropic Estimation of L Bias Estimation of the Distributional Impact?

If minimization of the mutual information (6) is achieved by spreading an agent i’s estimated
liabilities more evenly across the other agents, default by agent i may adversely affect more agents.
However, perhaps each of those other agents can absorb relatively small losses better than in matrices
in which the defaulting agent i’s liabilities are more concentrated. This suggests that the estimation
procedure (6) might lead to underestimates of distributional impact. In other words, the lower the
mutual information in a liabilities matrix L, the lower the impact might be, but suppose instead that the
more evenly-spread liabilities are larger than what the other agents can absorb without also defaulting.
This suggests that the estimation procedure might lead to overestimates of the distributional impact.

Which of these two occurred in our example? The mutual information in (1) is 0.466 vs. 0.288 for
the minimal mutual information estimated matrix (7). We saw that the lower mutual information in (7)
was indeed achieved by spreading liabilities in (1) more evenly across cells. We calculated that the
impact index (4) is 0.168 when the liabilities matrix is (1). When the liabilities matrix is the minimal
mutual information matrix (7), the impact index is 0.162. So in this case, we see that the tendency of
the minimum mutual information estimator to more evenly spread liabilities across cells led to a slight
underestimate of the impact.

To generate more evidence, a simple, easily replicable way to simulate liability matrices is now
adopted. First, we permute the off-diagonal elements in (1), to produce other possible liabilities
matrices with identical numbers in them. Note that permuting the off-diagonal elements will result
in matrices with the same Shannon entropy, because permutation of matrix elements will permute
the labels of the various Pij, but will not change the sum of products defining the Shannon entropy.
However, because the row and column totals will not be preserved by these permutations, the mutual
information of these matrices will differ, and hence in principle can be related to the impact of
contagion. In order to provide evidence based on comparisons to matrices with identical row and
column totals, each matrix produced by permutation is considered as another matrix (1) and paired
with the minimum mutual information matrix produced from its row and column totals, considered as
matrix (7). Another advantage of this procedure is that it fixes the network’s total liabilities (and hence
network total assets) in each pair to be the same as in the base example.
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Specifically, our example (1) has total liabilities of 160. A simulated liabilities matrix Lpmut was
produced by permuting the off-diagonal cells in (1). The proportional payments rule solving (2) was
used to derive the default resolution payments matrix Xpmut analog of (3) from Lpmut, and these two
matrices are used to calculate the distributional impact index (4), with index value Ipmut. If only
the rows and columns of Lpmut were known, the researcher would estimate the full liabilities matrix
by solving (6) to produce the minimum mutual information estimated Lmmi analog of matrix (7).
The proportional payments rule solving (2) was then used to derive the default resolution payments
Xmmi analog of (3) from Lmmi, and these two matrices were used to calculate the estimated distributional
impact index (4), dubbed Immi, resulting from resolution of Lmmi. The estimation error is the difference
between Ipmut and the estimate Immi. The process was repeated 500 times.

We examine whether or not the decrease in mutual information occurring when Lpmut is estimated
by Lmmi results in a systematically higher or lower value of the estimate Immi compared to Ipmut.
On average across the pairs, the estimated index was about 16% higher than its correct counterpart,
but examining the relationship depicted in Figure 1 shows that there were some severe outliers among
the 500 pairs. One way to help correct for them is to substitute the median change for the average.
Doing so, we find that this bias is less than 2%, reflecting the concentration of points along the
horizontal axis.
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Figure 1. L matrices paired with minimum mutual information estimates: results of permutations of
example (1).

As an additional check, instead of permuting the elements in (1), a simulated liabilities matrix was
produced bootstrapping the off-diagonal elements in (1). That is, we sampled the off-diagonal elements
in (1) with replacement rather than without, and then proceeded as described above. In contrast to the
permutations, this will produce simulated liabilities matrices with different total network liabilities.
The results as depicted in Figure 2 are quite similar: the median bias is 3.5%, still quite small.



Entropy 2018, 20, 369 7 of 9

Entropy 2018, 20, x 7 of 9 

 

As an additional check, instead of permuting the elements in (1), a simulated liabilities matrix 
was produced bootstrapping the off-diagonal elements in (1). That is, we sampled the off-diagonal 
elements in (1) with replacement rather than without, and then proceeded as described above. In 
contrast to the permutations, this will produce simulated liabilities matrices with different total 
network liabilities. The results as depicted in Figure 2 are quite similar: the median bias is 3.5%, still 
quite small. 

 
Figure 2. L matrices paired with minimum mutual information estimates: results of bootstrapping 
example (1). 

5. Why Doesn’t Mutual Information Estimation Systematically Bias Estimates of  
Distributional Impact?  

The mutual information is an unsigned measure of the dependence between the row proportions 
vector 1, , NL L  and the column proportions vector 1, , NA A  considered as two probability 
distributions determined by a random liability matrix L . While the mutual information is zero 
when the row and column proportions are independent, when there is dependence it is always 
positive regardless of whether the dependence is positive or negative. However, there is a signed 
dependency measure that is closely connected to the distributional impact index (4). That 
characteristic is the rank correlation between agent liabilities and agent assets. The (sound) intuition 
is that the distributional impact of default resolution will be more severe when agents with a 
relatively high share of total liabilities iL  have relative low share of total assets iA  that must be 
used to pay the liabilities. Because there is no reason to expect a linear correlation measured by the 
Pearson correlation, we accordingly surmise that the Kendall rank correlation ,L A  between the 

agents’ respective shares of liabilities and assets will be negatively related to the distributional impact 
index (7). Moreover, the Pearson correlation is not as robust (i.e., insensitive to outliers) as the Kendall 
 rank correlation or the Spearman rank correlation, as shown in Croux and Dehon ([9], p. 509), who 
further establish that “the Kendall correlation measure is more robust and slightly more efficient than 
Spearman’s rank correlation, making it the preferable estimator from both perspectives”. Evidence 
for that is now provided. 

Figure 3 uses the same permutations used to produce Figure 1 to illustrate the negative 
relationship between the distributional impact index I and ,L A —because the two vectors L  and 

A  have only four elements apiece, Kendall’s .L A  can only assume a small number of values. This 
accounts for the discreteness of the horizontal axis values plotted in Figures 3 and 4—evinced by the 
negative slope of the trend. Figure 4 depicts that the negative relationship also holds when 
bootstrapped matrices used to produce Figure 2 are substituted for the permutations.  

Figure 2. L matrices paired with minimum mutual information estimates: results of bootstrapping
example (1).

5. Why Doesn’t Mutual Information Estimation Systematically Bias Estimates of
Distributional Impact?

The mutual information is an unsigned measure of the dependence between the row proportions
vector L1, . . . , LN and the column proportions vector A1, . . . , AN considered as two probability
distributions determined by a random liability matrix L. While the mutual information is zero
when the row and column proportions are independent, when there is dependence it is always
positive regardless of whether the dependence is positive or negative. However, there is a signed
dependency measure that is closely connected to the distributional impact index (4). That characteristic
is the rank correlation between agent liabilities and agent assets. The (sound) intuition is that the
distributional impact of default resolution will be more severe when agents with a relatively high
share of total liabilities Li have relative low share of total assets Ai that must be used to pay the
liabilities. Because there is no reason to expect a linear correlation measured by the Pearson correlation,
we accordingly surmise that the Kendall rank correlation τL,A between the agents’ respective shares
of liabilities and assets will be negatively related to the distributional impact index (7). Moreover,
the Pearson correlation is not as robust (i.e., insensitive to outliers) as the Kendall τ rank correlation
or the Spearman rank correlation, as shown in Croux and Dehon ([9], p. 509), who further establish
that “the Kendall correlation measure is more robust and slightly more efficient than Spearman’s
rank correlation, making it the preferable estimator from both perspectives”. Evidence for that is
now provided.

Figure 3 uses the same permutations used to produce Figure 1 to illustrate the negative relationship
between the distributional impact index I and τL,A—because the two vectors L and A have only four
elements apiece, Kendall’s τL.A can only assume a small number of values. This accounts for the
discreteness of the horizontal axis values plotted in Figures 3 and 4—evinced by the negative slope of
the trend. Figure 4 depicts that the negative relationship also holds when bootstrapped matrices used
to produce Figure 2 are substituted for the permutations.
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matrices arising in the social sciences. Interagent liability matrices are important inputs for studies
estimating the impact of default and possible subsequent default cascades (a.k.a., contagion) in financial
payments networks. This raises the possibility that this estimator might systematically bias measures
of the impacts that resolution of unpayable debts might have.

Using a relative entropy-based index of a default resolution’s impact, a simple simulation
study did not evince systematic impact estimation bias resulting from minimum mutual information
estimation of unknown cells in liability matrices. It was argued that negative dependence between the
interagent distribution of money owed by them to the distribution of money owed to them should
have a strong effect on the impact of default and any subsequent contagion. Measuring dependence
by Kendall’s τ rank correlation statistic of signed dependence confirmed this intuition. Because the
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mutual information in the two distributions is an unsigned measure of such dependence, there is not as
close a connection between it and the distributional impact of default and any subsequent contagion.

This paper’s modest contribution augments different, but foundationally similar, entropic
statistical methods in finance. One of the more common uses is to select a probability distribution
with minimum relative entropy, subject to moment constraints that are tailored to the particular
application. A recent survey of this approach in finance is provided by Chen [10], who utilizes
it to estimate distributions of the error term in GARCH models of stock returns. Another topic
has been to produce asset pricing model error diagnostics that augment findings gleaned from the
popular Hansen–Jagannathan [11] specification error diagnostic for pricing model’s implied stochastic
discount factors. Most recently, Ghosh et al. [12] exploited the permanent vs. temporary component
decomposition of stochastic discount factors to derive a new entropic diagnostic statistic, with enhanced
ability to identify serious pricing errors in otherwise promising consumption-based asset pricing
models. Finally, Golan [13] provides a comprehensive text that both develops the foundations as well
as exposits other important entropic applications in economics and finance (e.g., option pricing).
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