M entropy MBPY

Article
Finite Difference Method for Time-Space Fractional
Advection-Diffusion Equations with Riesz Derivative

Sadia Arshad %*, Dumitru Baleanu 3, Jianfei Huang 5 Maysaa Mohamed Al Qurashi 6
Yifa Tang 7* and Yue Zhao 7

1 The State Key Laboratory of Scientific and Engineering Computing (LSEC),

The Institute of Computational Mathematics and Scientific/Engineering Computing (ICMSEC),
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
zhaoyue@Isec.cc.ac.cn

COMSATS Institute of Information Technology, Lahore 54500, Pakistan

Department of Mathematics, Cankaya University, Ankara 06530, Turkey; dumitru@cankaya.edu.tr
Institute of Space Sciences, Magurele-Bucharest 077125, Romania

College of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China; jfhuang@lsec.cc.ac.cn
Department of Mathematics, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
maysaa@ksu.edu.sa

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
*  Correspondence: sadia_735@yahoo.com or s.arshad.pak@gmail.com (S.A.); tyf@lsec.cc.ac.cn (Y.T.)

N G = W N

check for
Received: 1 March 2018; Accepted: 20 April 2018; Published: 26 April 2018 updates

Abstract: In this article, a numerical scheme is formulated and analysed to solve the time-space
fractional advection—diffusion equation, where the Riesz derivative and the Caputo derivative are
considered in spatial and temporal directions, respectively. The Riesz space derivative is approximated
by the second-order fractional weighted and shifted Griinwald-Letnikov formula. Based on
the equivalence between the fractional differential equation and the integral equation, we have
transformed the fractional differential equation into an equivalent integral equation. Then, the integral
is approximated by the trapezoidal formula. Further, the stability and convergence analysis are
discussed rigorously. The resulting scheme is formally proved with the second order accuracy both
in space and time. Numerical experiments are also presented to verify the theoretical analysis.

Keywords: fractional advection dispersion equation; riesz derivative; caputo derivative; trapezoidal
formula

1. Introduction

The concepts of fractional calculus and entropy are becoming more popular for analyzing the
dynamics of complex systems. The idea of entropy was introduced in the field of thermodynamics by
Clausius (1862) and Boltzmann (1896) and was later applied by Shannon (1948) and Jaynes (1957) in
information theory. Recently, more general entropy measures have being proposed for application in
several types of complex systems due to the relaxation of the additivity axiom. The concept of entropy
for analyzing the dynamics of multi-particle systems with integer and fractional order behavior was
proposed in [1]. The entropy production rate for the fractional diffusion process was calculated in [2].
In [3] it has been shown that the total spectral entropy can be used as a measure of the information
content in a fractional order model of anomalous diffusion.

Fractional calculus has been applied to almost every field of science, engineering, and mathematics
during the last decades [4-8]. Particularly fractional calculus has significant impact in the fields
of viscoelasticity and rheology, physics, electrical engineering, electrochemistry, signal and image
processing, biology, biophysics and bioengineering, mechanics, mechatronics, and control theory.
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Fractional calculus is indeed a worthwhile mathematical tool that can undertake more than integer
calculus. The monographs authored by Samko, Kilbas, Marichev [9], Podlubny [10] and Kilbas,
Srivastava, Trujillo [7] have been helpful in understanding the theory and applications of fractional
differential equations.

Numerous numerical methods have been proposed for solving the time-fractional differential
equations. In this paper, we convert the fractional differential equation into the equivalent integral
equation. Then, fractional trapezoidal formula is used to approximate fractional integral which has
second-order accuracy [11,12]. Early in 1993, Tang [13] presented a finite difference method for the
numerical solution of the partial integro-differential equations with a weakly singular kernel based
on the product trapezoidal formula. Chen et al. [14] proposed fractional trapezoidal rule (FTR) type
difference scheme by combining the second order difference quotient for spatial discretization and
the FTR alternating direction implicit method in the time stepping for a two-dimensional fractional
evolution equation. Chen et al. [15] derived a fractional trapezoidal rule type difference scheme
for fractional order integro-differential equation with second order accuracy both in temporal and
spatial directions. Recently, a finite difference scheme has been proposed in [16] to solve time-space
fractional diffusion equation of second-order accuracy in both time and space by employing trapezoidal
rule. Numerical schemes for linear and nonlinear time-space fractional diffusion equations were
constructed in [17] using the trapezoidal formula for temporal approximation and the centred
difference approximation for the spatial Riesz fractional derivative. Several numerical schemes have
been proposed to approximate Riesz fractional derivative based on numerical methods to approximate
Riemann-Liouville derivative such as standard Griinwald-Letnikov formula (first-order accuracy),
shifted Griinwald-Letnikov formula (first-order accuracy) [18], L-2 approximation method [19]
(first-order accuracy), spline interpolation method [20] (second-order accuracy), weighted and shifted
Griinwald-Letnikov formulas [21] (second and third-order accuracy), fractional average central
difference formula [22] (second and fourth-order accuracy). It is worth mentioning that high-order
algorithms for Riemann-Liouville derivatives were first proposed by Lubich [23], however, the high
order algorithms for Riesz derivatives were constructed by Ding and Li [22,24,25].

Many researchers studied the fractional advection—dispersion equation (ADE) recently. Fractional
ADE is used for the description of transport dynamics in the complex systems which are controlled
by the anomalous diffusion and the non-exponential relaxation patterns [26]. The fractional ADE is
also used in groundwater hydrology research to model the transport of passive tracers carried by
the fluid flow in a porous medium [27]. Our aim is to investigate the time-space fractional ADE.
Time nonlocality deals with memory effects, whereas space nonlocality describes the long-range
interaction. The fundamental idea is that fractional order models convey more information about
the underlying structure and dynamics of complex systems. Total Shannon spectral entropy for
the case of anomalous diffusion governed by a fractional order diffusion equation generalized in
space and in time is calculated in [3] as it can be used as a measure of the information content in a
fractional order model of anomalous diffusion. This fractional order representation of the continuous
time, random walk model of diffusion gives a spectral entropy minimum for normal (i.e., Gaussian)
diffusion with surrounding values leading to greater values of spectral entropy. Povstenko et al. [28]
examined the fundamental solutions to space-time fractional diffusion equation with mass absorption
(mass release) in the case of axial symmetry. Liu et al. [29] considered time fractional ADE and the
solution was obtained using variable transformation, Mellin and Laplace transforms, and H-functions.
Povstenko and Kyrylych [30] discussed two different generalizations of the space-time fractional
advection—diffusion equation. They studied the fundamental solutions to the corresponding Cauchy
and source problems for one spatial variable using Laplace transform and Fourier transform with
respect to time and spatial coordinate, respectively. Huang and Liu [31] also considered time-space
fractional ADE and obtained the solution in terms of Green functions. Meerschaert et al. [18] proposed
numerical methods to solve the one-dimensional space fractional ADE with variable coefficients
on a finite domain. Tripathi et al. [32] investigated the approximate analytical solution of fractional
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order nonlinear diffusion equations by using the homotopy analysis method. Momani et al. [33]
developed a reliable algorithm using the Adomian decomposition method to construct a numerical
solution for the time-space fractional ADE. Liu et al. [34] proposed an approximation of the
Lévy-Feller advection—dispersion process by employing a random walk and finite difference methods.
Finite difference methods [35], finite element methods [36], finite volume methods [37], homotopy
perturbation methods [38] and spectral methods [39,40] are also employed to approximate the
fractional ADE. Furthermore, recent advances in numerical linear algebra had a substantial impact on
designing efficient methods for the solution of the resulting linear systems which are dense but whose
computational cost can be essentially reduced to O(N log(N)) where N is the size of the underlying
coefficient matrix (see [41-44] and references therein). In this article, we construct a numerical scheme
for the time-space fractional ADE by transforming the fractional differential equations into equivalent
Volterra integral equations. As it is known that numerical methods for an integral equation have better
numerical stability over the schemes designed for equivalent differential equation. Also the numerical
methods for an integral equation can be constructed based on the weaker smoothness requirement
than that for the differential equation. To the best of our knowledge, all of the other higher order
methods are proposed based on the discretizations for fractional derivative directly.

This paper is organized as follows. In Section 2, some useful notations and auxiliary lemmas are
introduced. In Section 3, the fractional trapezoidal scheme is derived combined with the second-order
fractional weighted and shifted Griinwald-Letnikov formula for the approximation of the Riesz
derivative. Section 4 is devoted to the study of the stability and convergence of the proposed scheme.
Some numerical experiments are presented to verify the efficiency of our theoretical results in Section 5.
The last section concludes our work.

2. Preliminaries

Definition 1. The v (n — 1 < v < n) order left and right Riemann—Liouville fractional derivatives of the
function f on [a,b] are given by:
Left Riemann—Liouville fractional derivative:

DIF) = formy g /. =9 s,

n— ) dx"

Right Riemann—Liouville fractional derivative:

—_1\" n b
xDZf(x) = F((nl)'y);x"/x (x — S)%vflf(s)ds.

Definition 2. The Caputo fractional derivative of order 0 < a < 1 of the function f on [a, b] is defined by:

1 x d
cpHu — _g)1 2
DEF(X) = gy /(59" S s
Definition 3. The Riemann—Louville fractional integral of order « > 0 of the function f on [a, b] is defined by:
Bf ) = o [ =9 (s
- T(a) Ja '

In this paper, we will consider the following time-space fractional ADE

b1 9B2
cHr — _
Dfu(x,t) = Kﬁla|x|ﬁ1 u(x,t) +K523‘x|ﬁz”(x’t) +f(x,t), 0<x<LO0<t<T, 1)
with the initial conditions
u(x,0)=¢(x), 0<x <L, 2)
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and the Dirichlet boundary conditions
u(0,t) =u(L,t) =0, 0<t<T, 3)

where0 <a <1,0<B1 <1,1< B2 <2, Klgl >0, Kﬁz > 0 and °Df is the Caputo fractional derivative.

In addition, afiiﬁ and a\aﬁﬁﬁz are the Riesz fractional derivatives of order 81 and B, respectively, defined

on the domain [0, L] as follows [19]

o B1 B1
Wu(x, t) = —0p, [oDY'u(x,t) +x D u(x, )], 4)
oP2 B2 B2
Wu(x, £ = —0p, [oDY*u(x,t) +x D} *u(x,t)], (5)
where
_ 1 B 1
Pb 2 cos %ﬂl # Pp2 2 cos ”T’Sz '
and , 5
B1 — < _ )y h
oD u(x, 1) ) ax/o (x —T)"Plu(t, t)dT,
B1 _ —1 E/L —_ 1) h
«Djtu(x, t) (1= By ox Jx (T —x)"Plu(t, t)dr,
b2 __ 1 2 /" )i
oD’ u(x,t) = T2—Fa) 022 Jo (x — 1) " P2u(T, t)dr,
B2 _ 1 iZ /L _ \1-B2
«Dj?u(x, t) = T2—F) 92 v (T —x) "Pu(r, t)dr.

In the interval [a, b], let xj = jh, (j = 0,1,..., M) be mesh points in space, where h = bT_A“ is the
uniform spatial step size. Meerschaert and Tadjeran [18] showed that the standard Griinwald-Letnikov
difference formula was often unstable for time dependent problems and they proposed the shifted
Griinwald difference operators to approximate the left and right Riemann-Liouville fractional derivatives

Pf hry ng JC— k p) )

qu h7 Zg x+ k 4) )
that have the first order accuracy given by,
Apf(x) =—o Dif(x) + O(h),
Byf(x) =x Df(x) + O(h),

where p, g are integers, and gk = Z > . In fact, the coefficients g,(j) are the coefficients of the

power series of the function (1 — z)7

(1-2)7 = i(—l)k ( 7

k=0
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for all |z| <1, and they can be evaluated recursively by using the following relation
y+1
g’ =1, gM= (1 = k) g, k=1,2,...

Lemma 1 ([35]). Suppose that 0 < B1 < 1, then the coefficients gl({/S v satisfy
g(()ﬂl) -1, g(ﬁl — B <0, g.Bl /31(,321—1) <0,

1
g§/51) <gél31) < ggﬁl)m <0,

T2 oef =0, TM gt >0, M> 1.

Lemma 2 ([35]). Suppose that 1 < By < 2, then the coefficients g,(f 2) satisfy
-1
g((]ﬁz) -1, ggﬁz) = B <0, gl({ﬁz) _ ﬁz(ﬁzz ) S 0,

13 gl > o) > >,
Zio:ogz((ﬁ 2 =, i Og,(( P) <0, M>1.

Tian et al. in [21] derived the following weighted shifted Griinwald difference operators based on
the multi-step method

Daf(x) = 3ot Anf () + 5= Ags x),

DY af (x) = 31— Buf () + 5By f(x),

Lemma 3 ([21]). Suppose that 1 < v < 2, let f(x) € LY(R), _oD7f(x), D) f(x) and their Fourier
transforms belong to L' (R), then the weighted and shifted Griinwald difference operators satisfy

LD} qf (x) = D¥f(x) + O(H?),
RDpqf (x) =x D] f(x) + O(K?),
uniformly for x € R, where p, q are integers and p # q.

Consider a function f(x) under the same assumptions as in Lemma 3 on the bounded interval [a, ],
if f(a) = 0or f(b) = 0, the function f(x) can be zero extended for x < a or x > b. In addition, then,
the 7 order left and right Riemann-Liouville fractional derivatives of f(x) at each point x can be
approximated with the second order accuracy as follows

)\1 [T +P (7) % +q 5
DIf(x) =75 L & flx—(k—p)h Z & flx— (k= q)h) + O(r?),
M G () bT 2
«DJ f(x) = " g fx+ (k—p)h Z flx+(k—q)h) +O(h?),
k=0 k=0

21 and Ay = 2”:7 .

where A = 2”(7707711)

Lemma 4. When (p,q) = (1,0) the discrete approximations for the Riemann—Liouville fractional derivatives

on the domain [0, L] are
A

oDf(xj) = I Zwkyf Xj—k41) + O(),
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1 M=j+1 o)
xDZf(xj) = kZ%] w,” f(xjyr1) + o(1?),

where

Y 2-7
w(()y) = Eg(()y), wl((’)/) = %g,&v) + Tg;(l)y k Z 1.

Lemma 5 ([45]). Suppose that 0 < B1 < 1, then the coefficients w]({’5 v satisfy
w(()ﬁﬂ _ % >0, wgﬁl) _ 2—13%— 1 >0, wéﬁl) _ 131(,3%';.51_4) <0,
wé’gl) < wéﬂl) < wiﬁl) <..<0,

y2 o wf) =0, ¥M 0V >0, M>1.

Lemma 6 ([21]). Suppose that 1 < By < 2, then the coefficients wfz satisfy
w(()ﬁz) _ % >0, wgﬁz) _ 2*!%*!3% <0, wéﬁz) _ ﬁz(ﬁ%ﬁﬁz*‘l)/
1> w(()ﬁz) > wéﬁz) > wiﬁz) > .. >0,
yo w0, ¥M W) <0, M>2.

Lemma 7 ([46]). Suppose u(t) € C3[0,T], for & € (tj,tj41), there exists a positive constant C > 0, such that

(i1 —Q)ult) + (& —tpultp1)

< Ct2.
- < Ct (6)

u(g) -

Lemma 8 ([47]). Let
b= (1)t =012, o

then by = (n+1)* —n",(n = 0,1,2,...) satisfy the following properties

1. by=1, by >0n=0,12,..,
2. by>by,,, n=012.,
3. there exists a positive constant C > 0, such that T < Cb3t*,n=1,2,3,....

Lemma 9 ([46]). Suppose u(t) € C3[0, T), then we have

v n—1

(ay —ab_y)u(to) + Y (disq —dpu(ty—;) + cu(tys1) | + R, (8)

Fu(tyg) — Pu(ty) = =——
I(a+1) =

forn=0,1,2,.., N — 1, where

ay = (n+1)"— | [(n+1)*" —n**Y, n=0,1,2,.., )
=~ Jlr T+ 1A %, 0 =0,1,2,.., (10)
dy =ajy_1+cy
= i T+ 1) —2p 4 (n—1)**Y, n=0,1,2,..., (11)
and Ry depends on T with
IRy| < CT*"2(a% + &) = CT*"2pe. (12)

Here, we assume a* | = 0, that is,
dg = cf. (13)
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Lemma 10 ([46]). Suppose that a%, c%, d% are defined by Lemma 9, then we can conclude that:
1. a%, (n=1,2,...) are monotonically decreasing when n increases.

2. ¢%, (n=0,1,2,...) are monotonically decreasing when n increases.

3. d% (n=1,2,..)are monotonically decreasing when n increases.

3. Finite Difference Approximation

We define t,, = nt,n =0,1,...,N and Xj = jh,j=0,1,.M,wheret =T/N,and h = L/ M are
the time and space step sizes, respectively. Considering system (1)~(3) at the point (x;, t,), we have

‘Dfu(xj, tn) = Kﬁ'la‘ T u(xj, tn) +K/323\ Nz u(xj,tn) + f(xj,tn), 1<j<M-1,1<n<N,

u(x;,0) = ¢(x;), ogng (14)
u(xo, tn) = u(xp,ty) =0, 1<n<N.

Assume that u? denotes the numerical approximation of u(x;,t,). We can discretize the Riesz

fractional derivatives al | ﬂ1 and aﬁcﬁéz in truncated bounded domain as follows:
b 1 NN e 2
O u(xj, ty) = — 2eos b\ Zwkl U g + Z w Ul | +O(h), (15)
b (62) MET 6 2
2 u(xj, tn) = _m <2 w,? W 2 w,” Wy 1) + O(h7). (16)
Let yq '3 —1=L and up Ke ZP’S 2. Noting that y; > 0 and p, < 0 since pg, = > 0 for

2 cos

ﬁ

2

0<pr <1 and 0p, = 27,% < 0for1l < By < 2. Using the approximation to the Riesz fractional
cos —5=

derivative given in (15) and (16) into (14), we obtain
Dfu(xj tn) = — ():]H wkﬁl)“] PR S wl)“ ke 1) M2 (Zg%)wk wg + g (ﬁZ)ujl-i—k—l) + f(xjta), (17)

where1 <j <M —1,1 <n < N, with initial and boundary conditions discretized as follows:

{ ui(0) =uf, 0< a8)
1

Fractional Trapezoid Formula

In this subsection and in the sequel, the symbol C denotes a generic constant, whose value may
be different from one line to another. Integrating both sides of (17) with respect to the time t from ¢, to
ty+1, and using Lemmas 4, 7 and 9, we obtain
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n+1

n
U

_u’,

j+1 (1) M—j+1 1)

— L] 1), n+1 1), n+1
= =% |m kZ;')wk Ui k1 Y wy Witk
j+1

- v¥(ay —aj, 2 wk

B Z dl+1
1=0

+ I

M—j+1

]k++2

(JC], n+1 qu(xj/ tn) + Rl)

= —Vﬂ/{ (Zwkﬁ]
n—1 8
+ ) (dfy —df) (Z:wk1 jk+1+
=0

M—j+1

M—j+1
—_— { (Zwﬁ e
(S * M ()
+ ) (dfy —df) Zwkz W+ Z we
1=0

+(F(xj tus1) = F(xj,ta)) + Ra,

L N AR A R
— M2 <k2 w U+ kz w,? u]’.’rk1> — Ry
=0 =0

—j+1

M
+i1 <Zwkﬁ1 uf” R
k=0

(B1) Ll
1t Z Wy Uil q

8 of 20

j+1 (52) M—j+1
;+k1> + 12 <Zwk YUl iq + 2 w? ]+k1> —Ry
B B it SR (B
wp 1>+7‘2<Zwk2 k1 T kEO W 1>R2}

LEEgrS MIET (e
) + (a% —at_y) (Z w,! u?fkﬂ + Y w” u?+k1)
k=0 k=0
(B1)
Z we itk 1)}
11
nl >:|
j+k—1

M—j+1
]k+1+ Z wk

]+k1>

where Ry depends on ki and by using Lemma 4, we have

Ry| < CH?,

and .
N T

= Farny i =

I“(loc) /Otn(t‘,1 — s)"‘_lf(xj,s)ds,

1 1
R3 =Ry + [cé’)‘(u}szﬂ + M?fkfl) + (an ﬂﬁ—l)(”?—kﬂ + ”?+k—1)
o (19)
+ Z Fa = ) (] + 1 )IRa.
Here R3 depends on T and / as by Lemma 7, we get
[Rs| = CT*™bjy + CT*h*b,
= CT*%(T* 4 1?).
Letting 171 = pu1v* > 0, 2 = upv* < 0, we obtain
n+1 n
M] — Mj
B N ) g7 M )
= [Cg <Zwk ' ”;ljkﬂ + ) w ”7:k1> + (ay ) <Zwk ' ? et ), W ”?+k1>
k=0 k=0 k=0 k=0
n-1 j+1 5 M—j+1 5,0
+ ) (df g —dp) (2“’1:1 i et Z we e 1)}
=0 (20)

n+1

— 1 {Cg (Z w]({ﬁz)
— j+ M—j+1
L Hld“(2w9>ﬂﬂ+ 2 ol

1=0 =
(f(xj, tpr1) — (x]-,tn))JrCT"‘bﬁ(T +h2).

(B2)  n+1
Uigr Z wk2 Ui 1>+ ay — (Zwk U gyq

)

2) .0
2 wkﬁ j+k1>
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Hence, the solution for system (1)—(3) can be approximated by the following scheme:
(6 SRS M )
N (2 we! ”Hl 1t 2 w u7++k1—1> +112€5 <2 w” ”7—+k1+1 + ) w” ”7:/(1—1)
k=0 k=0
M—j+1 n—=1 j+1
=uji—m [(’llfl — 1) (; wlgﬁl)u?fkﬂ + Z wl(cﬁl)”%kfl) + Z%‘H —dp) (kZEle(c ! ”” I 1t Z w(ﬁl) 7+kl 1>} 1)

j+1 j+
— [(af; —at ) <Zwkﬁz) o L+ Z w(ﬁz Wy 1) + Z(dlﬂ —dv) (Zw(ﬁz) e I L+ Z wk 2) /+k 1>}
k=0 k=
n+1 i
+ (f] - f/ )r

where f;ﬁ = f(xj, ty). We can write this system into the following matrix form:

(1-+ 16 (By + BY) + cia(B2 + BY) ) u*!

=U"— (a% —a%_1)(m(B1 + B]) + 112(Bo + B ))U° — (11(B1 + B ) + 112(B2 + B} ) Z dy  —dhur! (22)

+ (B — F") + CT*p% (7> + 1),
where
u" = (uf,u, .., uly )T, F" = (f1, e )T,
with [isan (M — 1) x (M — 1) identity matrix, B; and B are (M — 1) x (M — 1) matrices that satisfy
wllgl) w(()ﬁl) 0 0

(
éﬂl) wgﬁl) ﬁz
wgﬁl) w(ﬁl) ﬁz

wg\ljl)z w}(\ﬁ1)3 wg\ljl)4 wgﬁl) (ﬁl)
wgﬁﬂl w}(\ﬁl)z wg\ﬁl)3 wgﬁl) (51)
wgﬂz) (ﬁz) 0
wéﬁz) (ﬁz) (/52)
(B2) (ﬁz) (52)
B, = Wy 0 0 ‘ (24)
(52) (52) (ﬁz) w'P?) (ﬁz)
-2 -3 -4 Y
(ﬁz) wg\ﬁz)z wg\ﬁz)?) wéﬁz) (52)
Let
Bi=Bi+B{, By =By+ B, A= B+ 1By, (25)
then we obtain the following numerical scheme based on fractional trapezoid formula
n—1
(I+ AU = U™ — Aal —apy_ U — A Y (dfy —dh)u™" + (F"1 — ), (26)
I=0

with initial and boundary conditions

{ u() = uo )

ug=ul; =0, 1<n<N.
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4. Stability and Convergence Analysis
4.1. Stability
In this section, we analyze the stability and convergence for the scheme (26)
Remark 1. Forn =0, d% = ¢ = i, d = a8 4+ & = Z222 f
2+ <3, (28)
then we obtain
dy > df.
Remark 2. Let b"‘ be as defined in Lemma 8, then cy > by, n=0,1,2,...,
where 0 < ¢ = 1+ <1,0<by; <1, n=0,1,2,... Using dy = ay_, + cy, we have
0 < ay q—ay+dy—dy
= g —dy +dy — (a1 +cp)
= B (@) =y — by = — B
Lemma 11. wgﬁZ) >0if
V17 -1
S <pa<2 (29)

Proof. Since wéﬁ 2) > 01is equivalent to

B3+ Br—4>0,

that is
V17 -1
— < ﬁz <2
2
O

Let " numerical solution of the numerical scheme (21) with a different initial value ", and

]
e =u —

i=u—uj,n=01,.,N,j=12.,M-1
According to (21), we have

gi]‘H»l + C

]+1 ]+1 ;‘3) ]+1 ;‘3)
(Zwkl Gilat B ulte ?:sl)m(mz ot 3 off 7# )}

M—j+1
2877@ 7” |: <Zwk S 1t Z wklsl) ik 1) + 12 (zwk & k1 + 2 wk & ]+k 1>:| (30)
= (61 - (61 £2) (6,
—l;)(d'lxﬂ dy) [771 (Ew Ve k1T Z w” 7+1£—1) +12 <I(Z%)wk2 i Yel ﬂ

]k+1+ E Wy ]+k1

For convenience, we suppose that

j+1 M—j+1
B g
S = k;JW( Z wk
Put £" = (¢}, €},

€ 1), 1 =0,1,2,.., N, and assume that
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16"l = max |e] = [¢l].
1<j<M-1 j

Theorem 1. Suppose (28) and (29) hold. Then, the fractional numerical scheme (26) is stable, i.e.,
1€ o < 1E|0, n=0,1,..,N—1.

Proof. We prove by mathematical induction. For n = 0, (30) can be written as

1 o
8]' +C0

M—j+1 (/3) j+1 ) M—j+1 ( )
(Zwk € k1t Z wkl k- 1> +12 (Zwk & k1t Z wkz +k— 1)]
AT (52) g (52)
= g —af { (Z wk ]7k+1 + kZO w! E?+k1> +172 (I(Zowk ? £?7k+1 + ) w”t S?+k1>:| ,

(31)

that is
j+1 M—j+1 j+1 M—j+1
e}—i—cg‘ 1 (Z w]((ﬁl)e},kﬂ—i- Z w(m }Jrk 1) + 12 <Z w](fZ)e]l-,kH—i- Z wkﬁ2> }+k 1)}
k=0 - k=0 =
j+1 f]+1 j+1 f]+l (32)
+ay 1<Zwl(c € k1t D wk )?+k1>+’72 (Zwl(cﬁ € k1T Z Wy e ?+k 1)}
k=0 k=0 k=0
_ 0
-_— S]c

Using |v1| — |v2| < |v1 — v2| and (32), we have

1€ |eo = |€A|
R T S I T TS T
< |€}¢| +c§ |m <E w \s}| + E w!! e%) +1 <2 w,? |8}A‘ + Y w? |€]¢|>:|
— - =0 k=0
o (8) N0 N6
+af <E w, v \so| + 2 w,? 80> +1 <2 w,? ‘E%‘ + 2 w? |£‘%>}
k=0 k= k=0 =
M—j+1 M—jt+1
T (51, L o (b2) ST
< |€7|+co m Zwk k+1|+ Y w \ef+k71| +12 Zwk k+1\+ Y w |e]¢+k71\
k=0 k=0
j+1 M—j+1
+af /Ewﬁ'l\s | + Z+wﬁ1\s |+ Zwﬁzk |+ 2 wﬁ2|s \
0 [ ko1& k1 2 ko1& ke k15
= (ebl+2(chlel + uSIEQI)(n1W§ﬁ1) + mwyf?)
r i1 M—j+1 M—j+
+cb y \+ wa ! + i |+ Z wﬁ2)|€ |
0| , k1 k +k W)+ ] k1 ko 15k
L k:a,k;ﬂ
r 2R M—j+1 j+1 M—j+
+ag |m w”! ‘SJ k+1|+ D wk ‘SA + 12 Z l€f- k+1‘+ Y, w Pl et
L \k=0k#1 k=0k#1 oy k=0k#1
< e 2(clet] + afled) e + )
r M—j+1 j+1 M—j+1
(,5 )¢l (B2) 1 (ﬁ )l
+co ( 2 wk J ] k1 T D ' ik 1> 172 < r w” &t D ’ &k 1)}
| \k=0kA1 k=0k#1 k=0k£1 k=0k#1

B M—j+1 LR Mg
+ag Y, wite o Sealt X wk1 +k 1>+'72< D wk2|£] k+1‘+ Z wk2|€]+k 1)”
k=0k#1 k=0k#1 k=0k#1
) g N B 52) M Wl
— 1 1 2 2
= |+ <Ewk & i1 };) wy S]AH( >+772 (Zwk &t kZB g 1)}

U wfe gy M w0
<Ewkl Gk T k;) ' )""72 <Zwk2 &t k;] Ve 1)}

9.
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Hence, we obtain
1€ o < 11€°]lco-

Now suppose that
1€ o0 < 1|0, k =0,1,2, ..,

Using |v1| — |v2| < |v1 — v1] and (30), we have

12 of 20

j+1 1) M—j+1 1) j+1 (6) M—j+1 )
<1+CS m (Zwkﬁl + 2 wkﬁl>+112 <Zwkﬁz + ) wkm)})s’””
k=0 =i = k=0
; j+1 ® ] 1) ; j+1 ; M—j+1 .
< ‘SJr | +¢5 1<k20wk1 ;,Jrk+1|Jr Z wkl /n:k1|>+)72 (Z n+k+1‘+ Z wkz ;Tkl):l
= (2 pa™ + ol >>\s;z“|>
AR (B1) 1 < 1 1 (B2) 1
" 1 H+ 1 n+ 2 n+ 2 n+
+co |1 <k§# W lg k1! + 2 wk Bk > T (k %7“ wk 1 vl + Z 1wk ]+k1>]
= = e e Mﬁj (B1) 1 N B | NS (B et
= & +6 Ewk e T Y W ko1 +i | Wy Sa) + ) Gk
=0 k=0 k=0 k=0
MET 6.0 B ) ME ()
= | (e [ (2% Ve k;) w." Ef+ 1> T2 (Zwk ’ g%kﬂ + 1;0 w,? s(/%rkl):l
(= 1) M 6 b ME )
E(d7+1 dr) {m Zw ' & k+17L Z wklsf +1m Zwkz ?k+1+ )3 wkzg?;k—l
= k=0 k= k=0
e M Wl (B2) M ()
< \s;l —(a% —a%_y) [}71 (Z w! |g%k+1‘ 4 ,;) Vel ke 1) +1m (Z w,? |g‘]{k+1\ + k;) w,” |£%+k1>]
n—1
T | (ol L ) e (Bl 8 o )]
= )&% — (% — a { <2wﬁl 1€°]] + 2 w,f‘l |s°||> +1 (zw,fz 1€ + 2 w,fZ |5°|)}
k=0 k=0 k=0 k=0
B M ) S M ()
—(dy —dp) {771 (Zwkl 1€+ Y, w |5°||> +12 (Zwk NE+ Y w2 |5OII>}
k=0 k=0 k=0 k=0
j+1 M—j+1 j+1 M—j+1
_ <1 — (% —a® , +d%—d%) |:171 (Zw£ﬁ1> + Z w£ﬁ1>> 1 <Zwl(</52) + Z w(ﬂz)):|> HSOH
k=0 k=0 k=0 k=0
j+1 M—j+1 j+1 M—j+1
= <1+(cg—b‘,’§) [7;1 (Zw,((ﬂ”)—i- Z wff”) + 12 (Zw£ﬁ2)+ ): wffZ))]) €01,
k=0 k=0 k=0 k=0
hence
e, < LHE@—in(s®) 5P 4 (s + 87
o — — [}
1+ & (S#) + S(ﬁl)) +172(SP2) + S(ﬁ”)}
< 1€ oo
O

4.2. Convergence

Let the error at the grid points (x;, t,) be defined by

e;l:u(xj,tn)— ],n—Ol ,N,j=12,.,.M—1,
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and we denote E" = (e’f, ey, ..., EHM,QT' According to (22), the error satisfies

j+1 j+1 —j+1
E?H +¢ (Zwk Vel T 2 wkﬁl ;Tk11> +m2 <k20w,5ﬁz O+ Z wk ? ]n++k11>:|
ne1 j+1 M—j+1 j+1 M—j+1 (33)
_ B (B1) jn—1
*37—12(“%1 dr) { <2wk] ]k+l+ kX;,) we" 7+k 1)"”72(];)%2 ]k+ + Z wkz ke 1)}
+ TEC(TE + K.

Put E" = (ef, €5, ..., e”Mfl), n=20,1,2,..., N, and assume that

E"|ee = max e" = e
[

1<j<M—1

Theorem 2. Suppose (28) and (29) hold. Then, the fractional numerical scheme (26) is convergent with
accuracy O(T2 + hz), that is, there exists a positive constant C such that

|E" ) < C(x2+H?), n=0,1,..,N—1.

Proof. We prove by mathematical induction. For n = 0, (33) can be written as

) j+1 5y M—j+1 B 1 j+1 (2 M—j+1 (B2) 1

ej +cy |m (Z Wy ] k1T Z wk j+k1> +12 (Z Wy ] 1T Z Wy j+k1)} o
k=0 k= k=0 (34)

= TD3C(T2 4 H?).

Using |v1| — |v2| < |v1 — v2| and (34), we have

IE oo = |3]1|
j+1 M—j+1 j+1 M—j+1
< lefl et |m (2w,i“”|e}|+ 3 w25”|e}|> +1 (Zw,‘f”e} + L w,iﬁ2>|e}ﬂ
= k=0 k=0 k=0
j+1 M—j+1 jt1
1 (B1),1 !31) (B2) (ﬁz)
= Ief|+c6‘ n (Zwk |e,lk+1|+ k;) |e]+k 1 > T2 (};ka ‘EA el T E Wy 1+k 1|>}
= (2 0ma + ™))l
j+1 M—j+1 jt1 M—j+1
b | ( Y wMledl+ ) w,iﬁ”e}) +772< Y wfledl+ ) wffzne}ﬂ
k=0k#1 k=0k#1 k=041 k=041
< e}l + ZCSe]l(mwgﬁ]) + nzwg’BZ))
= 1) M (B1) 1 (P2),, M w2 1
+CO Z wk —k+1+ E Wy ef+k_1 +2 Z Wy —k+1 + Z Wy ]+k 1
k=0k#1 k=0k#1 k= Okaél k=041
1 a 1) M7j+1 (B1) 1 (B2) 1 M (B2) ,1
= |et+cf E wk ,_ et W e ) +m E w e+ Y, w e
! k=0 J k=0 J k=0 J

= TBAC(7? +h2)
< TC(TE+ KA.

Hence, we get

|EYeo < TC(7% + H?).

Now suppose that
1B < t*n*C(x? + 12), k = 0,1,2, ..,
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Using |v1| — |v2| < |v1 — v and (33), it yields

<1+cg

et +cf
j

j+1 M—j+1 j+1 M—j+1
W1<Zw£ﬁ1)+ 5 w£ﬁ1)>+nz<zw£ﬁz)+ » w}({ﬁz)>:|>|ejz+1
k=0 k=0 = —

—j+ M—j+1
B1)| n+1 /31 n+1 2) | o+l (B2) | n+1
(Zwk \e k+1 kg%) lef! e > +12 <Zwk \e k+1‘+ 1;] Wy ef+k1>:|

= (142 (Ulwéﬁ‘) + r]zwgﬁzmejﬁ“\)

j+1 j+1
1 (B1) 1 (B2) 1 (B2) 1
r;l( Y el z et 1|>+'72 (kz it 2 wl e |)}

k=0k#1 —0,k#1

IN

+c§

M*J' M—j+1

j+1
1) n+1 (B1) gn+1 (B2) n+1 (B2) n+1
<Z Wk e] k+1 k;g Wk ]+k 1) 2 <Z Wk ef—k+1 + kgé) Wi ef-*—k—l)} '

IA

ety ch
]

n—1 M—j+1

j+1 M—j+1
— =T [ (Sl 8 e e (Sl 8 o)

+T“bﬁC(T2 +h2)\
M—j+1

n—1 j+1
( B (B2)| ,n—1
'67“12(% dr) [ (}{Eowkl “" k+1|+ 2 wk1 ‘]Jrk 1|> 2 <Zwk2 ‘e k+1‘+ k;O wy e}l+k1>:|

+TB8C (T2 + h?)

IN

—j+1

M-j+1 M-
= Tn*C(t? 4+ h?) — (d% —d¥) [ (Zwﬁl + Z w’31> (Zwﬁz + Z w’32>}r”‘n"‘C(T2+h2)

+TB8C (T2 + h?)
M—j+1 M—j+1

= T*C(T? 4+ h?) + (d% —d%) [r]1<2wﬁl)+ Y w(ﬁ1)>+172 (ZwﬁZ + Y w(ﬁzﬂr"‘n"‘C(TZJrhz)
k=0 k=0

+7%((n4+1)* — n*)C(7? +h2)
M—j+1

j+l M-
(d% — d%) {,71 (Zwl(fﬁn) + Z (131)> 1 (Zw P2) | y w]((ﬁz))] (1 + 1)*C(2% + h?)
k=0

IN

k=0 k=0
“(n+1)%C(T* + 1?)

+7(
j+1 M—j+1 j+l M—j+1

<l + (d§ —d%) {;71 <Z w,(fl) + Y zu,iﬁl)) +1 <Z w,(fZ) + Y w,(f”)}) ™*(n+1)*C(12 4+ 1?)
k=0

k=0 k=0 k=0

j+1 M—j+1 M—j+1
_a {,71 <2w£ﬁ1>+ Y (ﬂ1>> i (Zwm Y w£ﬂz>>D TC( 1),
k=0 k=0 k=0

k=0

IN

Hence

1+ (c§ — d8)[pa (8P +5PV) 4 (5P + 5,
1+ c§[mi(S (51)+§(51))+,72(5(ﬁ2)+§(/32))]
< TC(T® + K.

IN

||En+l||oo T“C(r2+h2)

Therefore, there exists a positive constant C* such that
[E e < C (2412,
O

5. Numerical Experiments

In this section, some numerical experiments are given to demonstrate the effectiveness
and accuracy of the proposed numerical scheme. Consider the following time-space fractional
advection—diffusion equation (0 <a <1,0< 1 <1,1 < B <2).
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Example

ob1 b2 ) ) 25
—Wu(x,t)+mu(x,t)+f(x,t), 0<x<1l,0<t<], (35)

u(x,0)=0,0<x<1,

‘Dfu(x,t)

and the Dirichlet boundary conditions
u(0,t) =u(1,t) =0, 0 <t <1,

where

2t2—tX

f(x, t) = (F(oc +2)t+ 1“(3—04)) x*(1 —x)?
t+ 2
cos(“BL)T(5 — B1)
+(B—B1)(d — )X P+ (1—x)> )
t+ 2
cos(“52)T(5 — B2)
+(8—B2)(4— o)X P2+ (1—x)* F)).

X (12[x4_51 +(1- x)4_51] —6(4— ﬁl)[x3_ﬁl +(1- x)3_51]

X (12[9{4_52 +(1- x)4_52] —6(4— ﬁz)[x3_ﬁ2 +(1- x)3_52]

The exact solution is u(x,t) = (t + t2)x*(1 — x)2.

We solve this fractional advection—dispersion equation with the proposed numerical scheme with
Kg, = Kg, =1, T =1, L = 1. The comparison of the numerical solution with the exact solution for
h=71=001,a =07 =03,y =15atT = 1is given in Figure 1. To compare the numerical
and the exact solutions, error plot is given in Figure 2. For fixed « = 0.7, B; = 0.3, B> = 1.5 the exact
solution and the approximate solution with temporal and spatial steps T = 0.01, i = 0.005 are shown
in Figure 3.

The spatial errors and convergence orders of the proposed scheme for solving (35) are shown
in Tables 1 and 2 for different values of 81 and B, respectively. Fixing T = 0.01, « = 0.9, 2 = 1.6.
The Ly—norm is used to compute the error of the numerical solution at the last time step by

M-1
— . _yNj|2
E(t,h) = $h Z lu(xj, tn) u; |2.
j=1
Next, we fix the spatial step size h = 0.01 and vary the time step. Table 3 presents the errors and
convergence order for various values of « at time T = 1. The numerical convergence order in the
spatial and temporal direction is O (72 + h?), as in Theorem 2.
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Figure 1. Comparison between numerical solution and exact solution for T = 0.01, # = 0.01, « = 0.7,
B1=03,B,=15T=1.

Error

Figure 2. Error plot for T = 0.01, h = 0.01, « = 0.7, 1 = 0.3, B =

15 T=1.

Table 1. The errors and convergence order when 7 = 0.01, &« = 0.9, g =16, T = 1.

B1 =01 B1 =103 B1 =05 B1 =07

h E(t,h) order E(t, h) order E(t,h) order E(t, h) order
1/10 2.3743 x 1073 - 2.4068 x 1073 - 24513 x 1073 - 2.5127 x 1073 -

1/20 57815 x 10~% 2.0380 5.8594 x 10~% 2.0382 59700 x 10~% 2.0377 6.1222 x 10~* 2.0371

1/40 14044 x 107% 2.0414 1.4235x107* 2.0413 14512 x 107% 2.0404 1.4893 x 10~% 2.0393

1/80 3.3971 x 1075  2.0475 3.4438 x 107> 2.0473 3.5130 x 107> 2.0464 3.6083 x 107> 2.0452

1/160 7.9725 x 1076 2.0912 8.0845 x 107® 2.0907 82539 x 107¢ 2.0895 8.4892 x 10~° 2.0876
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U(t,x) Approximate Solution

U(t,x) Exact

Figure 3. Approximate solution (Upper) and exact solution (Lower) for T = 0.01, i = 0.005.

«=07B,=03p,=1.5

@=07p,=03p,=1.5

Table 2. The errors and convergence order when T = 0.01,« = 0.7, 81 =03, T = 1.

17 of 20

B =14 B2 =16 B =18 By =2
h E(t,h) order E(t, h) order E(t,h) order E(t, h) order
1/10  2.1509 x 1073 - 24462 x 1073 - 2.7484 x 1073 - 2.9426 x 1073 -
1/20 5.4062 x 10~%  1.9923 59481 x 10~% 2.0400 6.6725 x 10~% 2.0422 7.3624 x 10~*  1.9988
1/40  1.3605 x 107%  1.9904 1.4434 x 107% 2.0429 1.6095 x 10~* 2.0516 1.8368 x 10™*  2.0029
1/80 3.4175 x 107>  1.9931 3.4894 x 107> 2.0484 3.8429 x 107> 2.0663 4.5457 x 107° 2.0146
1/160 83926 x 1076 2.0257 81970 x 10~® 2.0898 8.8282 x 10°® 2.1220 1.0893 x 107>  2.0609
Table 3. The errors and convergence order when & = 0.001, 81 = 0.5, B =14, T = 1.
x =02 x =04 « = 0.6 x = 0.8
t E(T,h) order E(t, h) order E(t, h) order E(t,h) order
1/5 14377 x 1074 - 2.0772 x 1074 - 23616 x 1074 - 25162 x 1075 -
1/10 3.8544 x 107° 1.8992 5.3402 x 107> 19596 5.9403 x 107> 1.9911 6.2750 x 105  2.0035
1/20 1.0120 x 1075 1.9293 1.3551 x 1075 19784 1.4831 x 1075 2.0018 1.5587 x 10~°  2.0092
1/40 25497 x 107® 19888 3.3379 x 107® 2.0214 3.6155 x 107® 2.0363 3.7925 x 107¢ 2.0391
1/80 5.7769 x 1077 21419 7.5305 x 1077 21481 8.1450 x 1077 21502 8.5804 x 1077 2.1440
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6. Conclusions

In this article, we have proposed a finite difference method for solving a class of time-space
fractional advection-dispersion equation. We combined the trapezoidal formula, which is well
known for the numerical integration of Riemann—-Liouville integral, with the Griinwald-Letnikov
discretization of the Riesz fractional derivative in space to obtain a numerical scheme. We proved that
our proposed scheme is stable and convergent with the accuracy of O (72 + h?) under the sufficient

conditions 2**1 < 3 and @ < B2 < 2. However, our numerical experiments given in Tables 2 and 3

depict that when 2**! > 3 and B, < @ the presented numerical method is still stable and

convergent for various temporal and spatial time steps. Finally, some numerical experiments for the
fractional finite difference method are given that agree very well with our theoretical results.
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