
entropy

Article

Virtual Network Embedding Based on Graph Entropy

Jingjing Zhang 1,†, Chenggui Zhao 1,*,†, Honggang Wu 2, Minghui Lin 1 and Ren Duan 1

1 School of Information, Yunnan University of Finance and Economics, Kunming 650221, China;
zhangjj0710@gmail.com (J.Z.); lmh@ynufe.edu.cn (M.L.); duanren@ynufe.edu.cn (R.D.)

2 School of Continuing Education, Yunnan University of Finance and Economics, Kunming 650221, China;
wuhg@ynufe.edu.cn

* Correspondence: zhaochenggui@126.com; Tel.: +86-871-6511-3839
† These authors contributed equally to this work.

Received: 25 January 2018; Accepted: 21 April 2018; Published: 25 April 2018
����������
�������

Abstract: For embedding virtual networks into a large scale substrate network, a massive amount
of time is needed to search the resource space even if the scale of the virtual network is small.
The complexity of searching the candidate resource will be reduced if candidates in substrate network
can be located in a group of particularly matched areas, in which the resource distribution and
communication structure of the substrate network exhibit a maximal similarity with the objective
virtual network. This work proposes to discover the optimally suitable resource in a substrate
network corresponding to the objective virtual network through comparison of their graph entropies.
Aiming for this, the substrate network is divided into substructures referring to the importance
of nodes in it, and the entropies of these substructures are calculated. The virtual network will
be embedded preferentially into the substructure with the closest entropy if the substrate resource
satisfies the demand of the virtual network. The experimental results validate that the efficiency of
virtual network embedding can be improved through our proposal. Simultaneously, the quality of
embedding has been guaranteed without significant degradation.

Keywords: graph entropy; virtual network embedding; probability; information measure

MSC: 68M10

1. Introduction

1.1. Virtual Network Embedding

Network virtualization (NV) technology enables flexibility [1] on relatively rigid Internet
architecture to accommodate gradually abundant Internet applications. Successful paradigms have
emerged in cloud data centers for resource allocation [1], which stimulates a considerable volume of
work for efficient solutions in this field. For realizing network virtualization, Internet Service Provider
(ISP) must provide a mechanism for allocating substrate physical resources to provide user-expected
services by ISPs. The resource allocation function in NV is presented as virtual network embedding
(VNE), here “embedding” is also equivalently termed mapping, provisioning or assignment. Generally,
VNE formulates user demand as virtual networks (VNs) consisting of virtual nodes connected by
virtual links, and substrate physical resources as substrate network (SN).

Research on the VNE problem originated from finding the optimal solution in respect to some object
to configure distributed substrate resource for fulfilling the user’s request. Theoretically, this requires
mathematical optimization to formulate and solve the VNE problem accurately. Chowdhury et al. [2]
extend the substrate network to an augmented substrate graph in which virtual nodes are connected
to substrate nodes within some distance so as to merge both into a meta graph. Over the meta graph,

Entropy 2018, 20, 315; doi:10.3390/e20050315 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/5/315?type=check_update&version=2
http://dx.doi.org/10.3390/e20050315

Entropy 2018, 20, 315 2 of 16

the VNE problem is formulated by a mixed-integer program, and two approaches, deterministic D-ViNE
and randomized R-ViNE, are devised for solving. Jarray et al. [3] decompose an overall VNE problem
into a main part with constraints on the availability of substrate resource, and a pricing part with
constraints on the embedding of VN requests, where competition among VN users is concerned through
a periodical auction, and problem formulation is facilitated with column generation technology (CG).
Besides parameters such as provider revenue, acceptance ratio, and embedding cost (see, e.g., [1]),
Chen et al. [4] construct a minimization model of energy-efficient virtual node embedding and solve it
to yield the minimal product of energy.

In parallel, heuristic solutions for the VNE problem receive much attention because researchers
try to overcome the low implementation efficiency on mathematical optimization model. Yu et al. [5]
advocate maximizing resource utilization in the substrate network. Hence the virtual nodes are
greedily mapped to the substrate nodes with the maximum amount of substrate resources so as to
minimize the use of the resources. Then virtual links are mapped to the shortest paths between two
mapped substrate nodes. Lischka et al. [6] offer a VNE algorithm by detecting subgraph isomorphism
between topologies of VN and SN to discover the correspondence between both nodes and links in
the same stage. The VNE algorithm through isomorphism detection performs particularly efficiently,
compared to other two-stage approaches on large VNs with high resource demands. Cheng et al. [7]
propose a VNE strategy based on node ranking. Their approach ranks all virtual and substrate
nodes according to their relative importance measured by the bandwidths on outgoing links, and
the importance of all reachable nodes and out-neighbors. Then the higher-ranked virtual nodes have
priority to be mapped to the higher-ranked substrate nodes. Virtual link mapping is implemented by
the shortest-path algorithm or by the multi-commodity flow algorithm.

Recently, Beck et al. [8] design a distributed and parallel VNE framework called DPVNE, in which
several VNE algorithms are executed in a distributive way, so that the single point pressure in SN is
alleviated and greater efficiency is achieved. Zhang et al. [9] propose an opportunistic resource-sharing
scheme to handle time-dependent virtual network requests (VNRs), in which the variable section is
separated from required resources, and two solutions of allocating time slot are proposed such that
bandwidth of virtual links can be mapped in corresponding time slots for realizing multiple VNs
sharing substrate resources meanwhile.

Unfortunately, the VNE approaches introduced so far commonly encounter a challenge that they
will consume unacceptable time when executing combinatorial search for solutions in large objective
spaces. Naturally, we consider relying on graph entropy of the substructure for time complexity
reduction. Such motivation arises from the fact that graph entropy can capture the randomness of
the local substructure, which can confine the candidate objects of a demanded resource to a set of
subnetworks having enough available resources with a high probability, because the magnitude and
distribution of graph entropy substantially reflect the structural and geometric properties of the graph.
There have been successful applications exploiting graph entropy to estimate the weights of indexes in
system evaluation. This indicates that graph entropy is capable of capturing the random property of
local graph structure so as to be able to guide the selection of candidate resources for VNE.

1.2. Graph Entropy Measures

Graph entropy measures have been extensively applied in a variety of problem areas with
multiple forms of definition, such as discrete mathematics, computer science, information theory,
statistics, finance, computational biology, knowledge mining, structural chemistry, etc. [10]. A majority
of applications characterize networks through graph entropy measures to quantify the structural
information content of these networks for capturing their complexity. There graph entropy was applied
for measuring the network complexity in a probabilistic approach, differentiating with deterministic
methods such as Kolmogorov complexity measure using encoding and substructure approach counting
the number of the specified substructures (see [11] for details).

Entropy 2018, 20, 315 3 of 16

Generally, the Shannon entropy corresponding to Boltzmann entropy in thermodynamics has the
following form:

IS = −∑
k

pk log(pk), (1)

which is a special form of the following Rényi entropy of order q in case of q = 1:

IR =
1

1− q
log

(
∑
k

pq
k

)
. (2)

For measuring topological information, classical graph entropy measures, originally defined and
explored by Rashevsky [12], Trucco [13] and Mowshowitz [14], use intrinsic structural features of
a graph to determine a probability distribution over the graph. Usually, a set X of graph elements,
called the graph invariant that means the cardinality of X being invariant under graph isomorphisms,
along with an equivalence relation π which induces a partition of X into Xi, can define a probability
distribution by letting pi = P (v ∈ Xi) = |Xi|/|X|. Based on this, the Shannon entropy formula Is can
be applied to obtain a general definition of graph entropy as follows:

I(G) = −
k

∑
i=1

|Xi|
|X| log

(
|Xi|
|X|

)
. (3)

Particularly, Rashevsky [12] defines X as the set of vertices, namely X = V(G), and Xi as the i-th
vertex orbit of V(G), where all orbits of V(G) are generated by the vertex automorphism group of G.
Trucco [13] introduces similar entropy measures by setting X as the edge set of G, namely X = E(G),
and Xi as the i-th edge orbit under edge automorphism group. Mowshowitz [14] define X = V(G) and
Xi as i-th chromatic decomposition of the vertices.

Körner [15] introduces the first definition of graph entropy called Körner entropy, using an extrinsic
probability distribution (not necessarily induced by graph invariant). Graph entropy measures based on
the partition of graph elements are not computable for large networks. Recently, Dehmer [16,17] proposed
the concept of parametric graph entropy, in which information functions of capturing structural features of
a graph are designed to derive probability distribution on graph vertices, and graph entropy is measured
by Shannon formula. In particular, the following information functions have been proposed [11]:

f1(v) = α

ρ

∑
k=1

ck |sk(v,G)|
, α > 0, ck > 0, 1 ≤ k ≤ ρ(G), (4)

where ρ(G) denotes the diameter of G;

f2(v) =
ρ(G)

∑
k=1

ck|Sk(v, G)|, α > 0, ck > 0, 1 ≤ k ≤ ρ(G); (5)

f3(v) = |λv(G)|, (6)

where λv denotes the eigenvalue indexed by vertex v of the adjacency matrix A(G).
The graph entropies corresponding to these information functions can be uniformly defined by

I f (G) = −
|V|

∑
i=1

f (vi)

∑
|V|
j=1 f (vj)

log

 f (vi)

∑
|V|
j=1 f (vj)

. (7)

The research of applying information entropy to measure the structure information of networks
was initiated in 1979, when Bonchev et al. [18] provided a complete index survey aiming to measure
chemical molecules and atoms. Since then, information entropy theory has been applied to society
network research to find the potentially interesting substructure of objective social networks [19,20].

Entropy 2018, 20, 315 4 of 16

Distinctly, we would like to apply graph entropy theory to communication networks whose nodes
indicate communication end devices, and links represent communication lines (virtual or real), instead
of nodes indicating persons or organizations and links representing relations between nodes. For
our purpose, we are particularly interested in applying graph entropy for efficient virtual network
embedding. Thus it is reasonable to consider using parametric graph entropy for quantifying a network,
given that an information function is flexible enough to describe the properties of the node resources
and link bandwidth.

2. Definition and Model of VNE

In network virtualization, the user demand is presented as a virtual network (VN). In VN,
the nodes and links indicate the resource and communication demands, respectively. The virtual
network embedding (VNE) algorithm, designed by a virtual network provider (VNP), embeds VN into
SN by way of resource allocation. The VNE scheme imposes a substantial impact to the performance
of the NV system. Thus, an efficient VNE solution pays a critical role in NV technology. Theoretically,
VNE can be modeled as a generalized map from VN to SN, by which the graph H abstracting VN
is embedded into graph G representing SN. The embedding must satisfy some constrains over the
requested and provided resources, and it should optimize some parameters of interest to the user and
virtual network provider (VNP), such as maximal provider revenue and accepted ratio, and minimal
embedding cost [1]. To gain an intuition for grasping these notions, consider a two-level architectural
model for virtual network embedding depicted in Figure 1, where a series of virtual network requests
(VNR), presented as virtual networks, have been embedded into two substrate networks operated by
two infrastructures InP1 and InP2.

Entropy 2018, 20, x 4 of 16

networks [19,20]. Distinctly, we would like to apply graph entropy theory to communication
networks whose nodes indicate communication end devices, and links represent communication
lines (virtual or real), instead of nodes indicating persons or organizations and links representing
relations between nodes. For our purpose, we are particularly interested in applying graph entropy
for efficient virtual network embedding. Thus it is reasonable to consider using parametric graph
entropy for quantifying a network, given that an information function is flexible enough to describe
the properties of the node resources and link bandwidth.

2. Definition and Model of VNE

In network virtualization, the user demand is presented as a virtual network (VN). In VN, the
nodes and links indicate the resource and communication demands, respectively. The virtual
network embedding (VNE) algorithm, designed by a virtual network provider (VNP), embeds VN
into SN by way of resource allocation. The VNE scheme imposes a substantial impact to the
performance of the NV system. Thus, an efficient VNE solution pays a critical role in NV technology.
Theoretically, VNE can be modeled as a generalized map from VN to SN, by which the graph H
abstracting VN is embedded into graph G representing SN. The embedding must satisfy some
constrains over the requested and provided resources, and it should optimize some parameters of
interest to the user and virtual network provider (VNP), such as maximal provider revenue and
accepted ratio, and minimal embedding cost [1]. To gain an intuition for grasping these notions,
consider a two-level architectural model for virtual network embedding depicted in Figure 1, where
a series of virtual network requests (VNR), presented as virtual networks, have been embedded into
two substrate networks operated by two infrastructures InP1 and InP2.

Figure 1. A two-level architectural model for virtual network embedding, with the correspondence
between virtual edge and physical edge for InP2 omitted. The numbers in circles indicate the
switching capacity of the routing and switching devices, and the ones near the links represent the
transmission bandwidth, in Gbps. Virtual-to-physical edge correspondence is marked by distinct
colors. VNR: virtual network request; SN: substrate network.

Finding the optimal solution to a general graph embedding with constrains is an NP-hard
problem. Much research has dealt with designing heuristic algorithms to solve it [5–7], an area
which has received much attention in recent years with the spread of network virtualization.

Let graph G = (VG, EG) represent SN, where VG denotes the set of physical nodes and EG the set
of physical links. Likewise, let H = (VH, EH) represent a virtual network request (VNR) from user,
where VH denotes the set of virtual nodes and EH the set of virtual links. Let c(x) and d(x) be two
functions representing the available resource and demand of network entity x, respectively. Then
the problem of embedding H into G can be modeled as finding functions f which are subject to ∀x ∊

G, d(x) ≤ c(f(x)). If the objective is to minimize the cost of the embedding operation, the current
known methods to find f can be characterized as solving the following optimization problem:

arg minf {cost(f) | cost(f) = ∑e∊EH∑l∊f(e)cost(d(l)) + ∑v∊VH∑u∊f(v)cost(d(u)), (8)

where cost(x) denotes the cost of the variable x.

Figure 1. A two-level architectural model for virtual network embedding, with the correspondence
between virtual edge and physical edge for InP2 omitted. The numbers in circles indicate the switching
capacity of the routing and switching devices, and the ones near the links represent the transmission
bandwidth, in Gbps. Virtual-to-physical edge correspondence is marked by distinct colors. VNR:
virtual network request; SN: substrate network.

Finding the optimal solution to a general graph embedding with constrains is an NP-hard
problem. Much research has dealt with designing heuristic algorithms to solve it [5–7], an area which
has received much attention in recent years with the spread of network virtualization.

Let graph G = (VG, EG) represent SN, where VG denotes the set of physical nodes and EG the set of
physical links. Likewise, let H = (VH, EH) represent a virtual network request (VNR) from user, where
VH denotes the set of virtual nodes and EH the set of virtual links. Let c(x) and d(x) be two functions
representing the available resource and demand of network entity x, respectively. Then the problem of
embedding H into G can be modeled as finding functions f which are subject to ∀x ∈ G, d(x) ≤ c(f (x)).
If the objective is to minimize the cost of the embedding operation, the current known methods to find
f can be characterized as solving the following optimization problem:

arg minf {cost(f) | cost(f)} = ∑e∈EH∑l∈f(e)cost(d(l)) + ∑v∈VH∑u∈f(v)cost(d(u)), (8)

where cost(x) denotes the cost of the variable x.

Entropy 2018, 20, 315 5 of 16

3. VNE Algorithm Using Graph Entropy

3.1. Algorithmic Profile

For large substrate network G, the computational burden of searching resource will be relieved if
candidates in substrate network can be confined in a particularly selected resource space, in which the
distribution of resources exhibit a maximal similarity with the virtual network H. As an example, it can
be observed in Figure 2 that embedding f 1 demonstrates an apparent dominance relative to embedding
f 2 due to consideration of structural correspondence. The main idea of this work is to discover the
structural similarity between substructures of substrate network G and the virtual network H through
comparison of their graph entropies. Through graph entropy, the structure information of virtual
and substrate networks can be quantified as respective entropies, which reflects the discrepancy of
two compared structures, and narrows the space of objective solutions. More details regarding graph
entropy measure can be found in [10,11,21].

Entropy 2018, 20, x 5 of 16

3. VNE Algorithm Using Graph Entropy

3.1. Algorithmic Profile

For large substrate network G, the computational burden of searching resource will be relieved
if candidates in substrate network can be confined in a particularly selected resource space, in
which the distribution of resources exhibit a maximal similarity with the virtual network H. As an
example, it can be observed in Figure 2 that embedding f1 demonstrates an apparent dominance
relative to embedding f2 due to consideration of structural correspondence. The main idea of this
work is to discover the structural similarity between substructures of substrate network G and the
virtual network H through comparison of their graph entropies. Through graph entropy, the
structure information of virtual and substrate networks can be quantified as respective entropies,
which reflects the discrepancy of two compared structures, and narrows the space of objective
solutions. More details regarding graph entropy measure can be found in [10,11,21].

Figure 2. An example of embedding same one virtual network (VN) into two subnetworks.

The VNE algorithm based on graph entropy (GE-VNE) includes three procedures. In the first
procedure, the algorithm searches a set of SN areas as candidates for VN embedding. These areas
share common links or nodes. Then the algorithm detects one of the candidates with most resource as
the optimal embedding area. In the second procedure, the algorithm searches all objects electable to
fulfill the demands of VN in found candidates. These objects are structures simpler than those in the
first procedure. In the final procedure, the graph entropies are calculated for all objects found in the
second procedure, then the optimal candidate is found, and resource assignment will be implemented.

3.2. Selection of Candidate Areas

In the first stage of algorithm GE-VNE, for searching all SN substructures eligible to fulfill the
virtual network request, procedures (described in Procedures 1 and 2) calculate the importance of all
nodes. A natural way for completing this is to consider the quantity of node resource and the
bandwidth of links incident to this node. Usually, SN nodes, holding more available resource and
associating more available bandwidth, appear to be more important than those with less. Also, VN
nodes are relatively important if they have high demands for resources. Consequently, the resource
quantity of a node can indicate its importance (weights). Similarly, links transmitting heavy traffic
mean large bandwidth demand in VN or resource in SN so that link bandwidth can characterize its
weight. Because a virtual node can merely be embedded into a substrate node, the computation of
graph entropy only involves in link attributes, regardless of node weights.

Then algorithm GE-VNE selects areas centered at nodes with higher importance in order as
candidate Areas. In order to apply graph entropy for embedding virtual network, we define the
importance of a node in network G as the sum of resource magnitude c(v) plus the product of the
number of links and the minimal bandwidth incident to v, namely,

    | ()| min{ ()| ()}w v c v E v c l l E v    , (9)

Figure 2. An example of embedding same one virtual network (VN) into two subnetworks.

The VNE algorithm based on graph entropy (GE-VNE) includes three procedures. In the first
procedure, the algorithm searches a set of SN areas as candidates for VN embedding. These areas
share common links or nodes. Then the algorithm detects one of the candidates with most resource as
the optimal embedding area. In the second procedure, the algorithm searches all objects electable to
fulfill the demands of VN in found candidates. These objects are structures simpler than those in the
first procedure. In the final procedure, the graph entropies are calculated for all objects found in the
second procedure, then the optimal candidate is found, and resource assignment will be implemented.

3.2. Selection of Candidate Areas

In the first stage of algorithm GE-VNE, for searching all SN substructures eligible to fulfill the
virtual network request, procedures (described in Procedures 1 and 2) calculate the importance of
all nodes. A natural way for completing this is to consider the quantity of node resource and the
bandwidth of links incident to this node. Usually, SN nodes, holding more available resource and
associating more available bandwidth, appear to be more important than those with less. Also, VN
nodes are relatively important if they have high demands for resources. Consequently, the resource
quantity of a node can indicate its importance (weights). Similarly, links transmitting heavy traffic
mean large bandwidth demand in VN or resource in SN so that link bandwidth can characterize its
weight. Because a virtual node can merely be embedded into a substrate node, the computation of
graph entropy only involves in link attributes, regardless of node weights.

Then algorithm GE-VNE selects areas centered at nodes with higher importance in order as
candidate Areas. In order to apply graph entropy for embedding virtual network, we define the
importance of a node in network G as the sum of resource magnitude c(v) plus the product of the
number of links and the minimal bandwidth incident to v, namely,

w(v) = c(v) + |E(v)| ×min{c(l)|l ∈ E(v)}, (9)

Entropy 2018, 20, 315 6 of 16

where E(v) denotes the set of links incident to v, and c(v) denotes the available resource at entity v.
It seems to be reasonable that the best option area is the one with resource distribution closest to

the VN. When multiple candidate areas are available for a customized virtual network request. For
realizing this, it needs to estimate the resource distribution of all candidates in SN for objective VN.
Let Si denote the i-th candidate of a VN, its quantity a(Si) of available resource can be defined as

a(Si) = ∑
li∈E(Si)

a(li) + ∑
u∈V(Si)

a(u). (10)

By the above formula, the quantity of available resource in Si has been expressed as the sum of all
available resource in nodes and links within candidate Si. Our algorithm would select Si with greatest
value a(Si) as the candidate area. In order to confine the coverage of embedding H into G, let ρ(G)
and r(G) denote the diameter and the radius of graph G, respectively. We define the radius r(G) of
searching SN resource as follows:

r(G) = w0d0 + w1|V(H)|+ w2|E(H)|, (11)

where d0 denotes the average of all SN node pairwise distances, w0, w1, w2 assign initial distance, node
and link weights, respectively.

3.3. Computation of VN and SN Entropies

Subsequently, the algorithm proceeds to choose the best suitable one for VN embedding among
all candidates by measuring their graph entropies, as described in Procedure 3. For measuring the
parametric graph entropies I(H) and I(G) proposed by Dehmer [16,17] (see Section 1.2 for details), it is
required to define and calculate f (v) for all v ∈ V(G) firstly, where f (v) is a function quantifying the local
structural information at each node v. It is particularly essential that defining f (v) to accurately quantize
the structural information of graph G. There are a few of methods to define f (v) [10,11], depending on
concrete application scenarios. The most common way is to define f (v) in terms of structural features
around v, such as the node degree δ(v) and the number of paths across v. Apparently, a well-defined
f (v) affects substantially the computation of graph entropy. As a challenge still remained, quantifying
finely local information burdens computation overhead, and coarsely quantified one may weaken the
ability of characterizing the objective graph.

To define f (v), denote substrate network with graph G defined as G = (V, E, P), in which V and E
indicate the traditional sets of nodes and edges, respectively. Additionally, P is a probability function
defined over graph G. For f (v) proposed by Dehmer in [16,17], it is necessary to know Sk(v, G) in
advance, where Sk(v, G) represents a vertex subset of V(G) containing nodes in distance k from v,
is called the k-sphere of v regarding G, namely,

Sk(v, G) = {u ∈ V|d(v, u) ≤ rk, 1 ≤ k}. (12)

Defining Sk(v, G) using large increment k hardly perceives the structure discrepancy. Reversely,
a small increment k maybe leads to a high redundant computation. Generally, VN has relatively simpler
structural attributes than SN in node and link distribution. Thus, Sk(v, G) should be defined separately
in VN and SN to avoid the problem described above. Additionally, the hidden node (marked as black
solid circle) should be taken into account for graph entropy computation. As an example, Figure 3a
shows that a VN of three-node circle will be embedded into a SN of four-node circle, and VN is divided
as S1(v, H) and S2(v, H). In Figure 3b, SN is partitioned as S1(v, H) = {v5, v6} and S2 = (v3, v4). It is
worth noting that candidate substructure for VN embedding contains a hidden node v5 which should
be considered in process of computing f (v) to reflect the differences between candidates even if this
hidden node is transparent to users.

Entropy 2018, 20, 315 7 of 16

Suppose that all values of bandwidth resources lie in interval [a, b] (units: Mb/s). We firstly
divide [a, b] into i parts with same length. Then the radius rk(G) of sphere Sk(v, G) can be set up as
rk(G) = a + k(b − a)/i. The value of rk(G) can be adjusted by taking different values of the parameter i
for VN and SN. The radius of Sk(v, H) can be assigned by a same approach, instead of parameters
a and b representing demands rather than resources. For a weighted graph G, the distribution of
node weights are tightly connected to the values of |Sk(v, G)|. If a node u is incident to links with
high bandwidth in Sk(v, G), it should contribute more to the whole network communication function,
namely, the probability distribution P over G has a high value P(u) at node u. Generally, the weight
coefficients ck of Sk(v, G) are arranged as an increasing arithmetic series to express the relation between
link bandwidth incident to node u and probability distribution P.

Entropy 2018, 20, x 7 of 16

weights are tightly connected to the values of |Sk(v, G)|. If a node u is incident to links with high
bandwidth in Sk(v, G), it should contribute more to the whole network communication function,
namely, the probability distribution P over G has a high value P(u) at node u. Generally, the weight
coefficients ck of Sk(v, G) are arranged as an increasing arithmetic series to express the relation
between link bandwidth incident to node u and probability distribution P.

(a) (b)

Figure 3. Entropy expression on structure information of VN and SN. (a) Structures of VN, SN, (b)
Definitions of Sk(v, G) and Sk(v, H).

Then, the local information function f(v) on vertex set V can be defined as

1
| (,)|

()
k k

k
c s v G

f v


 


 ,
(13)

where α nd ck are arbitrary and real positive coefficients, and |Sk(v, G)| indicates the number of
nodes located in interior of sphere centered at node v with radius k. Generally, one takes constants

ck(1 ≤ k ≤ ρ) as an arithmetic sequence of positive integers. Letting 1
() max| (,)|s kk
v S v G




 


, 1
maxc kk

c



 



and 1
minc kk

r c
 


 to guarantee the graph entropy If(G) derived from Formula (5) being bounded, the

parameter α should satisfy inequality (see [17]):
1

[()]1 | | s c cv rV      .
(14)

To understand the process of graph entropy, Figure 4 instantiates a five-node network centered
at node v1, where all bandwidth resource lies in interval [10, 20]. Setting i = 2 it yields that r1(G) = 10
and r2(G) = 20 thus S1(v, G) and S2(v, G) are located at areas marked by large and small profiles of
sphere, respectively. Further Setting up ck = k, it yields S1(v1, G) = {v2, v3} and S2(v1, G) = {v4} (|S1(v1, G)|
= 2 and |S1(v1, G)| = 1). It follows from observation that ρ(G) = 3, ρs(v1) = 2, ρc = 2, rc = 1 and ρ[ρs(v1)ρc −
rc] = 9. Thus the parameter α is bounded at (1, 51/9] by Formula (14). Taking α = 51/10 ∊ (1, 51/9], it yields
f(v) = 51/10(1 × 2 + 2 × 1) = 50.4.

Figure 4. Computation of Sk(v, G) in a five-node example network.

Figure 3. Entropy expression on structure information of VN and SN. (a) Structures of VN, SN,
(b) Definitions of Sk(v, G) and Sk(v, H).

Then, the local information function f (v) on vertex set V can be defined as

f (v) = α

ρ

∑
k=1

ck |sk(v,G)|
, (13)

where α nd ck are arbitrary and real positive coefficients, and |Sk(v, G)| indicates the number of nodes
located in interior of sphere centered at node v with radius k. Generally, one takes constants ck (1≤ k≤ ρ) as
an arithmetic sequence of positive integers. Letting ρs(v) = max

1≤k≤ρ
|Sk(v, G)|, ρc = max

1≤k≤ρ
ck and rc = min

1≤k≤ρ
ck

to guarantee the graph entropy If(G) derived from Formula (5) being bounded, the parameter α should
satisfy inequality (see [17]):

1 < α ≤ |V|
1

ρ[ρs(v)ρc−rc] . (14)

To understand the process of graph entropy, Figure 4 instantiates a five-node network centered at
node v1, where all bandwidth resource lies in interval [10, 20]. Setting i = 2 it yields that r1(G) = 10 and
r2(G) = 20 thus S1(v, G) and S2(v, G) are located at areas marked by large and small profiles of sphere,
respectively. Further Setting up ck = k, it yields S1(v1, G) = {v2, v3} and S2(v1, G) = {v4} (|S1(v1, G)| = 2 and
|S1(v1, G)| = 1). It follows from observation that ρ(G) = 3, ρs(v1) = 2, ρc = 2, rc = 1 and ρ[ρs(v1)ρc− rc] = 9.
Thus the parameter α is bounded at (1, 51/9] by Formula (14). Taking α = 51/10 ∈ (1, 51/9], it yields
f (v) = 51/10(1× 2 + 2× 1) = 50.4.

Once f (v) is known, the function value pi = P(vi) on vertex vi of probability distribution P can be
computed by formula:

pi =
f (vi)

∑
vi∈V(G)

f (vi)
, (15)

Then the entropy I(G) of graph G derives from the following expression in terms of probability
distribution of G:

I(G) = − ∑
vi∈V(G)

pi log(pi), (16)

Entropy 2018, 20, 315 8 of 16

Entropy 2018, 20, x 7 of 16

weights are tightly connected to the values of |Sk(v, G)|. If a node u is incident to links with high
bandwidth in Sk(v, G), it should contribute more to the whole network communication function,
namely, the probability distribution P over G has a high value P(u) at node u. Generally, the weight
coefficients ck of Sk(v, G) are arranged as an increasing arithmetic series to express the relation
between link bandwidth incident to node u and probability distribution P.

(a) (b)

Figure 3. Entropy expression on structure information of VN and SN. (a) Structures of VN, SN, (b)
Definitions of Sk(v, G) and Sk(v, H).

Then, the local information function f(v) on vertex set V can be defined as

1
| (,)|

()
k k

k
c s v G

f v


 


 ,
(13)

where α nd ck are arbitrary and real positive coefficients, and |Sk(v, G)| indicates the number of
nodes located in interior of sphere centered at node v with radius k. Generally, one takes constants

ck(1 ≤ k ≤ ρ) as an arithmetic sequence of positive integers. Letting 1
() max| (,)|s kk
v S v G




 


, 1
maxc kk

c



 



and 1
minc kk

r c
 


 to guarantee the graph entropy If(G) derived from Formula (5) being bounded, the

parameter α should satisfy inequality (see [17]):
1

[()]1 | | s c cv rV      .
(14)

To understand the process of graph entropy, Figure 4 instantiates a five-node network centered
at node v1, where all bandwidth resource lies in interval [10, 20]. Setting i = 2 it yields that r1(G) = 10
and r2(G) = 20 thus S1(v, G) and S2(v, G) are located at areas marked by large and small profiles of
sphere, respectively. Further Setting up ck = k, it yields S1(v1, G) = {v2, v3} and S2(v1, G) = {v4} (|S1(v1, G)|
= 2 and |S1(v1, G)| = 1). It follows from observation that ρ(G) = 3, ρs(v1) = 2, ρc = 2, rc = 1 and ρ[ρs(v1)ρc −
rc] = 9. Thus the parameter α is bounded at (1, 51/9] by Formula (14). Taking α = 51/10 ∊ (1, 51/9], it yields
f(v) = 51/10(1 × 2 + 2 × 1) = 50.4.

Figure 4. Computation of Sk(v, G) in a five-node example network. Figure 4. Computation of Sk(v, G) in a five-node example network.

3.4. Presentation of Algorithmic Pseudocodes

Based on definitions and formulas presented above, we commence to describe the details of
our algorithm. The relevant procedures may be further described as algorithmic pseudocodes, with
corresponding step-by-step comments, listed as follows.

Algorithm 1. GE-VNE (Procedure 1): Embedding Areas Search

Input: SN, VN
Output: {Si}
1. for each node ui(1 ≤ i ≤ n) in SN
2. calculate w(ui);
3. end for
4. sort {ui|1 ≤ i ≤ n} as {µi|1 ≤ i ≤ n} by w(ui) in descending order;
5. select p top important nodes {µi|1 ≤ i ≤ p};
6. for each µi ∈ {µi|1 ≤ i ≤ p}
7. Si←Sk(µi, G, rk(G));
8. end for
9. Sc←S1;
10. for each Si in {Si|1 ≤ i ≤ p}
11. calculate a(Si);
12. if a(Si) > a(Sc)
13. Sc←Si;
14. end if
15. end for
16. output Sc as the candidate area for VN embedding.

In Procedure 1 (Algorithm 1):
Lines 1–3: calculate the importance of each node in SN by Formula (9);
Lines 4–5: select p top nodes {µi|1 ≤ i ≤ p} according their importance;
Lines 6–8: for each of nodes {µi|1 ≤ i ≤ p}, calculate a network area centered in µi with radius r,

as candidate areas for VN embedding, where r can be computed by Formula (11). Consequently,
the embedding candidates for VN should have p areas: S1–Sp.

Line 9–15: calculate the quantity a(Si) for each network area Si, and select the largest one Sc.
Line12: output the selected embedding area Sc;

Entropy 2018, 20, 315 9 of 16

Algorithm 2. GE-VNE (Procedure 2): Embedding Candidates Searching

1. sort all virtual nodes by their importance as V(H) = {v1, v2, . . . , vn};
2. sort all substrate nodes by their importance as S = {u1, u2, . . . , un};
3. initialize the candidate of VN as S11 = null
4. for each node vi in V(H)
5. search top s nodes of SN which fulfill the demand of node vi:

Ti = {ui|1 ≤ i ≤ s, ui ∈ V(G), c(ui) ≥ d(vi)}
6. for each node uj in Ti

Sij = S(i−1)j∪uj
7. end for
8. end for;
9. output Sij

In Procedure 2 (Algorithm 2), as the central part of algorithm GE-VNE, search all SN substructures
eligible to fulfill the virtual network request. Here introduce this procedure firstly, then an example is
provided to facilitate understanding the implementation of GE-VNE.

In Figure 5, the VN node with largest importance is v1, and all candidates for v1 are {u1, u2, u3}.
If setting s = 2, it is readily observed that T1 = {u1, u2}, T2 = T3 = {u1, u2, u3}, and S1 = {u1}, S2 = {u2};
S11 = {u1, u1}, S12 = {u2, u1}, S21 = {u1, u2}, S22 = {u2, u2}, S13 = {u1, u3}, S23 = {u2, u3}; S111 = {u1, u1, u1},
S211 = {u2, u1, u1}, S121 = {u1, u2, u1}, S221 = {u2, u2, u1}, S131 = {u1, u3, u1}, S231 = {u2, u3, u1}; notably,
the elements in sets here are assumed to be in order for corresponding to the ordered set {v1, v2, . . . , vn}
of virtual nodes, which makes {u3, u1} and {u1, u3} be different sets. Once procedure proceeds to its
end, it will yield all expected candidates for objective VN.

Entropy 2018, 20, x 9 of 16

Algorithm 2. GE-VNE (Procedure 2): Embedding Candidates Searching
1. sort all virtual nodes by their importance as V(H) = {v1, v2, …, vn};
2. sort all substrate nodes by their importance as S = {u1, u2, …, un};
3. initialize the candidate of VN as S11 = null
4. for each node vi in V(H)
5. search top s nodes of SN which fulfill the demand of node vi:
 Ti = {ui|1 ≤ i ≤ s, ui ∊ V(G), c(ui) ≥ d(vi)}
6. for each node uj in Ti

 Sij = S(i−1)j∪uj
7. end for
8. end for;
9. output Sij

In Procedure 2 (Algorithm 2), as the central part of algorithm GE-VNE, search all SN
substructures eligible to fulfill the virtual network request. Here introduce this procedure firstly,
then an example is provided to facilitate understanding the implementation of GE-VNE.

In Figure 5, the VN node with largest importance is v1, and all candidates for v1 are {u1, u2, u3}. If
setting s = 2, it is readily observed that T1 = {u1, u2}, T2 = T3 = {u1, u2, u3}, and S1 = {u1}, S2 = {u2}; S11 = {u1,
u1}, S12 = {u2, u1}, S21 = {u1, u2}, S22 = {u2, u2}, S13 = {u1, u3}, S23 = {u2, u3}; S111 = {u1, u1, u1}, S211 = {u2, u1, u1}, S121
= {u1, u2, u1}, S221 = {u2, u2, u1}, S131 = {u1, u3, u1}, S231 = {u2, u3, u1}; notably, the elements in sets here are
assumed to be in order for corresponding to the ordered set {v1, v2, …, vn} of virtual nodes, which
makes {u3, u1} and {u1, u3} be different sets. Once procedure proceeds to its end, it will yield all
expected candidates for objective VN.

(a) (b)

Figure 5. An example of finding a candidate of VN in SN, (a) VN (left) and SN (right), (b) searching
candidates in SN.

Algorithm 3. GE-VNE (Procedure 3): VNE based on graph entropy
Input: {Sc1, Sc1, …, Scr}, H
Output: f: H→G
1. calculate entropy I(H) of H
2. for each Sci in {Sc1, Sc2, …, Scr}
3. calculate entropy I(Sci);
4. d(I(Sci))←|I(Sci) − I(H)|
5. end for
6. sort {Sc1, Sc2, …, Scr} as {Tc1, Tc2, …, Tcr} by d(I(Sci)) as ascending order
7. for each Tci in {Tc1, Tc2, …, Tcr}
8. if (Tci fulfills VN)
9. break;
10. end if;
11. end for

Figure 5. An example of finding a candidate of VN in SN, (a) VN (left) and SN (right), (b) searching
candidates in SN.

Algorithm 3. GE-VNE (Procedure 3): VNE based on graph entropy

Input: {Sc1, Sc1, . . . , Scr}, H
Output: f : H→G
1. calculate entropy I(H) of H
2. for each Sci in {Sc1, Sc2, . . . , Scr}
3. calculate entropy I(Sci);
4. d(I(Sci))←|I(Sci) − I(H)|
5. end for
6. sort {Sc1, Sc2, . . . , Scr} as {Tc1, Tc2, . . . , Tcr} by d(I(Sci)) as ascending order
7. for each Tci in {Tc1, Tc2, . . . , Tcr}
8. if (Tci fulfills VN)
9. break;
10. end if;
11. end for

Entropy 2018, 20, 315 10 of 16

In Procedure 3 (Algorithm 3), algorithm GE-VNE chooses the best suitable one for VN among all
candidates by measuring their graph entropies, as described in details listed as follows.

Line 1: calculate the entropy I(H) of graph H;
Line 2–5: calculate the entropies I(Sci) of graph series Sci, and the entropy distances |I(Sci)− I(H)|

between graphs Sci and H;
Line 6: sort Sci by entropy distance in ascending order;
Line 7–9: travel Sci in order until finding one which fulfills the demand of H.

3.5. Limitations of This Work

The major limitation of algorithm GE-VNE is that entropy measures capture the structural attributes of
different graphs efficiently, for example, the degree distribution. However, values from entropy measures
are evidently inadequate in reflecting the topological discrepancy between graphs, particularly in cases of
characterizing topological similarities on small graphs. The reason behind this can be understood readily
from the definition of f (v) in Formula (13), where two arbitrary nodes u and v yield identical functional
value f (·) as long as Sk(u, G) = Sk(v, G). This coincidence will happen in a high probability when the scales
of objective networks are small. For example, Figure 6 exposes that two different graphs, (a) the Binary
Tree BT4 and (b) 2× 2 Mesh M(2, 2), might have the same entropy value though they are distinguished
topologically, based on an observation that it holds Sj(vi, BT4) = Sj(u, M(2, 2)) (1 ≤ j ≤ k, 1 ≤ i ≤ 4))
for all nodes by setting same parameters α, ck, r1(G) = 10, r2(G) = 20 and k = 2 on both graphs. Given
that two adjacent virtual nodes may be mapped to two separate substrate nodes connected by a path,
the optimization for the VNE problem sometimes advocates of charactering graphs through structural
attributes rather than contrasting their topological similarity.

Entropy 2018, 20, x 10 of 16

In Procedure 3 (Algorithm 3), algorithm GE-VNE chooses the best suitable one for VN among
all candidates by measuring their graph entropies, as described in details listed as follows.

Line 1: calculate the entropy I(H) of graph H;
Line 2–5: calculate the entropies I(Sci) of graph series Sci, and the entropy distances |I(Sci) − I(H)|

between graphs Sci and H;
Line 6: sort Sci by entropy distance in ascending order;
Line 7–9: travel Sci in order until finding one which fulfills the demand of H.

3.5. Limitations of This Work

The major limitation of algorithm GE-VNE is that entropy measures capture the structural
attributes of different graphs efficiently, for example, the degree distribution. However, values from
entropy measures are evidently inadequate in reflecting the topological discrepancy between
graphs, particularly in cases of characterizing topological similarities on small graphs. The reason
behind this can be understood readily from the definition of f(v) in Formula (13), where two
arbitrary nodes u and v yield identical functional value f(•) as long as Sk(u, G) = Sk(v, G). This
coincidence will happen in a high probability when the scales of objective networks are small. For
example, Figure 6 exposes that two different graphs, (a) the Binary Tree BT4 and (b) 2 × 2 Mesh M(2,
2), might have the same entropy value though they are distinguished topologically, based on an
observation that it holds Sj(vi, BT4) = Sj(u, M(2, 2)) (1 ≤ j ≤ k, 1 ≤ i ≤ 4)) for all nodes by setting same
parameters α, ck, r1(G) = 10, r2(G) = 20 and k = 2 on both graphs. Given that two adjacent virtual
nodes may be mapped to two separate substrate nodes connected by a path, the optimization for
the VNE problem sometimes advocates of charactering graphs through structural attributes rather
than contrasting their topological similarity.

Figure 6. An example of exhibiting probability of equal entropies existing in two different
topologies: (a) Binary Tree BT4 and (b) 2 × 2 Mesh M(2, 2).

4. Experiments

4.1. Experimental Configuration

In this section, we report on the results in a number of simulations conducted to experimentally
validate performance and quality of algorithm GE-VNE. The experimental platform is facilitated
with software IDE Eclipse (Neon, Eclipse Foundation, Ottawa, ON, Canada) under the 32-bit
Windows 7 operating system (Microsoft Corporation, Redmond, WA, USA), and hardware CPU
Intel(R) Core(TM) i7 5600-U @2.6 GHz with 8.0 GB RAM. All simulations generate the results with
Alevin 2.1, developed by Beck et al. [22], that has successfully functioned as a simulation framework
for examining virtual network embedding algorithms.

We encode the algorithm with programming language Java to generate subclass extending the
class GenericMappingAlgorithm that has been realized as an algorithmic framework of generic VNE
algorithms, and implemented all simulations under various scenarios. The experimental process

Figure 6. An example of exhibiting probability of equal entropies existing in two different topologies:
(a) Binary Tree BT4 and (b) 2 × 2 Mesh M(2, 2).

4. Experiments

4.1. Experimental Configuration

In this section, we report on the results in a number of simulations conducted to experimentally
validate performance and quality of algorithm GE-VNE. The experimental platform is facilitated with
software IDE Eclipse (Neon, Eclipse Foundation, Ottawa, ON, Canada) under the 32-bit Windows 7
operating system (Microsoft Corporation, Redmond, WA, USA), and hardware CPU Intel(R) Core(TM)
i7 5600-U @2.6 GHz with 8.0 GB RAM. All simulations generate the results with Alevin 2.1, developed
by Beck et al. [22], that has successfully functioned as a simulation framework for examining virtual
network embedding algorithms.

We encode the algorithm with programming language Java to generate subclass extending the
class GenericMappingAlgorithm that has been realized as an algorithmic framework of generic VNE
algorithms, and implemented all simulations under various scenarios. The experimental process

Entropy 2018, 20, 315 11 of 16

consists of network generation, algorithm configuration and execution, and algorithm evaluation, with
various experimental configurations.

The experimental steps and corresponding configurations are further detailed in Tables 1 and 2.
Also, a comparison with a couple of representative VNE algorithms, that have been cited as the focus
of considerable VNE research, has been conducted in terms of runtime, VNR acceptance ratio, cost
revenue ratio (cost/revenue), and node utilization ratio, such factors that have been recognized as
effective factors of assessing VNE algorithms. Eventually, the results of comparison have been figured
to perceive the performance and quality of algorithms in comparison.

Table 1. Parameters values used in GE-VNE.

Parameters Values Description

rk(H) 0 Radius of Sk(v, G) for VN
rk(G) 20 Radius of Sk(v, G) for SN

rj − rj−1 10 The increment of radius for Sk(v, G)
α 3 Constant in Formula (13)

ci (1 ≤ i ≤ 7) 1–7 Weights in Formula (13)
p 6 Number of candidate areas
s 1/3 Number of candidate nodes

wi (1 ≤ i ≤ 3) 1 Initial distance factor in Formula (9)

Table 2. Algorithmic parameters.

Parameters Description Values

dist Distance for candidates 20
wCPU CPU weight 1
wBw Bandwidth weight 1

nodeoverload Node overload concerned false
type Type of routing 0

k Number of k-shortest path 5

• Scenario Generation

The theoretical analysis in the previous section focuses on using graph attributes for charactering
graphs rather than topological association. This reminds us to conduct simulations paying less
attention to the variety of network topologies. Thus two network topologies, the Binary Tree with
100 nodes (BT100), and the 7 × 7 Mesh M(2, 2), are selected as the SN models. Both networks have
been recognized as practical topologies modeling datacenters in clouding computing environment
and the Internet, also emerged as representative architectures for high performance computing, and
appears to be cumulatively essential in era of undergoing multicore computer [23]. The step of network
generation goes through establishing a network topology, adding resources to SN, as well as adding
demands to VN. Additionally, VN topologies are randomly generated as 20 networks with sizes from
1 to 4. All SN node and bandwidth resources are randomly generated in interval [50, 100], and VN
node and bandwidth demands are randomly generated in intervals [1, 20] and [1, 50], respectively
(Units: Mb/s).

• Algorithm Configuration

Algorithms chosen for experimental evaluation involve five representative VNE algorithms,
which have been proposed in [1,4,6] described in Table 3. These algorithms along with GE-VNE are
executed under identical scenarios and parameter configurations. Evaluations are run 40–50 times
in order to observe the performance of all algorithms. In the stage of mapping nodes, the weights of
CPU nodes are set to 1, and the candidates of a VN node are limited within a distance of 20 hops away
from it. The situation of node overload has not yet been considered. In the stage of mapping links,

Entropy 2018, 20, 315 12 of 16

the parameter k of mapping a VN link to a length-k shortest path is set to k = 2. The other parameters
pertaining to our algorithm are listed in Table 2.

Table 3. Representative VNE approaches chosen for evaluation, the citation times updated on 8 July 2017.

Algorithm Reference Brief Description

DViNE-SP
DViNE-PS Chowdhury et al. [2]

VNE with coordinated strategy in two stages where node mapping is
implemented by mixed integer programming (MIP) and link mapping
with k-shortest paths. Google Scholar [24] citations: 415

GAR-SP Yu et al. [5] VNE preferentially using available resources for node mapping and
k-shortest paths for link mapping. Google Scholar [24] citations: 998

RW-MM-SP
RW-MM-PS Cheng et al. [7] VNE ranking nodes with topology properties for node mapping and

k-shortest paths for link mapping. Google Scholar [24] citations: 346

4.2. Experimental Results

In order to evaluate performance of the algorithm GE-VNE, six metrics with respect to
performance are considered in our experiment: average links stress (ALS); VNR acceptance ratio (AR);
cost/revenue ratio (CRR); cost; link utilization (LU); and link cost per VNR (LCPV). The acceptance
ratio reflects the fraction of VNRs successfully embedded as virtual networks. The revenue sums
the revenue of the VNRs that were successfully mapped and the revenue of those that were not
mapped. The cost measures the quantity of substrate resources allocated for VNR. The link utilization
reflects the proportion of bandwidth being utilized to meet the currently accepted VNRs. The concrete
implications of these VNE evaluation metrics have been interpreted in Table 4. Three conclusions can
be observed from simulations.

Table 4. Descriptions of VNE evaluation metrics.

Metrics Interpretations

ALS The average of the proportion of occupied bandwidth on each link
AR The ratio between the number of accepted VNRs and the total number of VNRs

CRR The ratio of embedding cost and revenue
cost The sum of the substrate resources allocated to the VNR
LU The proportion of occupied bandwidth

LCPV The link cost for embedding each VN

In respect to the VNR acceptance ratio, Figure 7a displays that GE-VNE behaves comparatively
better to other algorithms; also observed in Table 5, the VNR acceptance ratio caused by GE-VNE
increases 41.25% and 59% to DViNE-SP and DViNE-PS, respectively. In Figure 8a, GE-VNE leads to
a moderate VNR acceptance ratio as executing it on substrate network BT100.

Regarding three cost-related metrics: cost, cost/revenue, and average link cost, Figures 7 and 8b–d
indicate that algorithm GE-VNE yields relative low values to other algorithms as implementing them on
M(7, 7) and BT100 for 20 times, also seen in Table 5. An extra should be observed in mentioned figures
that GE-VNE holds a higher value than RW-MM-PS and DViNE-PS in average link cost, but latter two
algorithms lead to a pretty low acceptance ratio 15% and 40.75%, respectively. Only algorithm DViNE-PS
approaches GE-VNE in VNR acceptance ratio, but the former spends link cost 154.61, considerably
higher than 84.83 by GE-VNE. Therefore, GE-VNE reduces the link cost in the situation of increasing
VNR acceptance ratio. A promotion in whole embedding cost emerging in Figure 7b, is attributed to
higher cost for node embedding for higher VNR acceptance ratio.

Figures 7 and 8e,f illustrate improvements in link utilization and the average stress for 20 times VN
embedding on experimental scenarios of embedding a random VN into 7 × 7 Mesh M(7, 7) in Figure 7
and BT100 in Figure 8. By definition, high link cost or VNR acceptance causes link stress increasing,
which emerges in Figure 7f because of appearing a high VNR acceptance in GE-VNE, also seen in Table 5.

Entropy 2018, 20, 315 13 of 16

As depicted in both Figures 7 and 8, GE-VNE earns a better trade-off in VNR acceptance and link stress
than DViNE-SP, and overall, reduces the average stress of each embedded VN to the whole substrate
network on both M(7, 7) and BT100.

Entropy 2018, 20, x 13 of 16

(a) VNR acceptance ratio (b) Cost

(c) Cost/Revenue ratio (d) Link cost per VNR

(e) Link utilization (f) Average links stress

Figure 7. The comparisons of GE-VNE with other representative VNE approaches in terms of six
VNE metrics, (a) AR; (b) Cost; (c) CRR; (d) LCPV; (e) LU; and (f) ALS, from executing algorithms 20
times on 7 × 7 Mesh M(7, 7).

Table 5. Comparison of average results from executing algorithms 20 times on 7 × 7 Mesh.

Algorithms AR Cost CRR LCPV LU ALS
RW-MM-SP 84% 10.50 2.70 163.80 10.5 0.37
RW-MM-PS 41% 750.7 1.58 44.80 26.8 0.04
DViNE-SP 89% 116.0 2.07 122.75 14.2 0.29
DViNE-PS 66% 642.7 1.24 34.84 27.5 0.063
GE-VNE 86% 203.8 1.55 68.70 28.7 0.18
GAR-SP 74% 402.8 1.82 91.71 24.9 0.16

Figure 7. The comparisons of GE-VNE with other representative VNE approaches in terms of six VNE
metrics, (a) AR; (b) Cost; (c) CRR; (d) LCPV; (e) LU; and (f) ALS, from executing algorithms 20 times
on 7 × 7 Mesh M(7, 7).

Table 5. Comparison of average results from executing algorithms 20 times on 7 × 7 Mesh.

Algorithms AR Cost CRR LCPV LU ALS

RW-MM-SP 84% 10.50 2.70 163.80 10.5 0.37
RW-MM-PS 41% 750.7 1.58 44.80 26.8 0.04
DViNE-SP 89% 116.0 2.07 122.75 14.2 0.29
DViNE-PS 66% 642.7 1.24 34.84 27.5 0.063
GE-VNE 86% 203.8 1.55 68.70 28.7 0.18
GAR-SP 74% 402.8 1.82 91.71 24.9 0.16

Entropy 2018, 20, 315 14 of 16Entropy 2018, 20, x 14 of 16

(a) VNR acceptance ratio (b) Cost

(c) Cost/Revenue ratio (d) Link cost per VNR

(e) Link utilization (f) Average links stress

Figure 8. The comparisons of GE-VNE with other representative VNE approaches in terms of six
VNE metrics, (a) AR; (b) Cost; (c) CRR; (d) LCPV; (e) LU; and (f) ALS, from executing algorithms 20
times on BT100.

5. Conclusions

The particularly essential part for virtual network embedding is to choose an optimal
subnetwork as candidate of the virtual network to be embedded. Previous VNE algorithms mainly
concern the optimization of node and link embedding relative to some anticipated parameters,
neglecting the impact of substrate network structure on VNE.

Figure 8. The comparisons of GE-VNE with other representative VNE approaches in terms of six VNE
metrics, (a) AR; (b) Cost; (c) CRR; (d) LCPV; (e) LU; and (f) ALS, from executing algorithms 20 times
on BT100.

5. Conclusions

The particularly essential part for virtual network embedding is to choose an optimal subnetwork
as candidate of the virtual network to be embedded. Previous VNE algorithms mainly concern the
optimization of node and link embedding relative to some anticipated parameters, neglecting the
impact of substrate network structure on VNE.

We propose a VNE algorithm based on graph entropy called GE-VNE to extract and quantify
the structure information for both VN and SN. GE-VNE divides SN into substructures, and considers
multiple available candidate structures for embedding objective VN, then searches all resources on SN

Entropy 2018, 20, 315 15 of 16

to find the richest one as embedding area of VN rather than using traditional graph partition. Then
the algorithm extracts available substructures within some distance constraint as candidates. Finally,
the optimal candidate is found by comparison of graph entropies of all candidates.

Experimental results on the Alevin Platform have shown that our algorithm exhibits some
merits regarding a group of principal VNE evaluation metrics. It was also observed that there is no
dominance of our algorithm on some of these metrics. Future research has been scheduled to explore
improvements to this problem.

Author Contributions: J.Z. performed initially the theoretical derivation, experiments, and wrote the draft of
this paper in Chinese; C.Z. proposed the original idea, checked the initial derivation, revised radically the paper,
and rewrote the paper in English; H.W. made a major contribution to the revision of this paper as for the review
comments received. M.L. analyzed the experimental data. R.D. conceived and designed the experiments.

Funding: This research was funded by [National Science Foundation of China] grant number [61562089].

Acknowledgments: This research is supported by National Science Foundation of China, Grant No. 61562089.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

InP Infrastructure Provider
ISP Internet Service Provider
SN Substrate Network
VN Virtual Network
VNE Virtual Network Embedding
VNP Virtual Network Provider
VNR Virtual Network Request

References

1. Fischer, A.; Botero, J.F.; Beck, M.T.; de Meer, H.; Hesselbach, X. Virtual Network Embedding: A Survey.
IEEE Commun. Surv. Tutor. 2013, 15, 1888–1906. [CrossRef]

2. Chowdhury, N.; Rahman, M.R.; Boutaba, R. Virtual network embedding with coordinated node and link
mapping. In Proceedings of the IEEE INFOCOM, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 19–25.

3. Jarray, A.; Karmouch, A. Decomposition approaches for virtual network embedding with one-shot node and
link mapping. IEEE/ACM Trans. Netw. 2015, 23, 1012–1025. [CrossRef]

4. Chen, X.; Li, C.; Jiang, Y. Optimization model and algorithm for energy efficient virtual node embedding.
IEEE Commun. Lett. 2015, 19, 327–1330. [CrossRef]

5. Yu, M.; Yi, Y.; Rexford, J.; Chiang, M. Rethinking virtual network embedding: Substrate support for path
splitting and migration. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 17–29. [CrossRef]

6. Lischka, J.; Karl, H. A virtual network mapping algorithm based on subgraph isomorphism detection.
In Proceedings of the 1st ACM workshop on Virtualized Infrastructure Systems and Architectures (VISA ’09),
Barcelona, Spain, 17 August 2009; pp. 81–88.

7. Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F. Virtual network embedding through topology-aware node
ranking. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 38–47. [CrossRef]

8. Beck, M.T.; Fischer, A.; Demeer, H. Distributed and scalable embedding of virtual networks. J. Netw.
Comput. Appl. 2015, 56, 124–136. [CrossRef]

9. Zhang, S.; Qian, Z.; Wu, J.; Lu, S.; Epstein, L. Virtual Network Embedding with Opportunistic Resource
Sharing. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 816–827. [CrossRef]

10. Dehmer, M.; Mowshowitz, A. A history of graph entropy measures. Inf. Sci. 2011, 181, 57–78. [CrossRef]
11. Mowshowitz, A.; Dehmer, M. Entropy and the complexity of graphs revisited. Entropy 2012, 14, 559–570.

[CrossRef]
12. Rashevsky, N. Life information theory and topology. Bull. Math. Biophys. 1955, 17, 229–235. [CrossRef]
13. Trucco, E. A note on the information content of graphs. Bull. Math. Biol. 1956, 18, 129–135. [CrossRef]

http://dx.doi.org/10.1109/SURV.2013.013013.00155
http://dx.doi.org/10.1109/TNET.2014.2312928
http://dx.doi.org/10.1109/LCOMM.2015.2442575
http://dx.doi.org/10.1145/1355734.1355737
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1016/j.jnca.2015.06.012
http://dx.doi.org/10.1109/TPDS.2013.64
http://dx.doi.org/10.1016/j.ins.2010.08.041
http://dx.doi.org/10.3390/e14030559
http://dx.doi.org/10.1007/BF02477860
http://dx.doi.org/10.1007/BF02477836

Entropy 2018, 20, 315 16 of 16

14. Mowshowitz, A. Entropy and the complexity of graphs IV: Entropy measures and graphical structure.
Bull. Math. Biophys. 1968, 30, 533–546. [CrossRef]

15. Körner, J. Coding of an information source having ambiguous alphabet and the entropy of graphs. In Proceedings
of the 6th Prague Conference on Information Theory, Prague, Czech Republic, 19–25 September 1971; pp. 411–425.

16. Dehmer, M. Information processing in complex networks: Graph entropy and information functionals.
Appl. Math. Comput. 2008, 201, 82–94. [CrossRef]

17. Dehmer, M. A novel method for measuring the structural information content of networks. Cybern. Syst.
2008, 39, 825–842. [CrossRef]

18. Bonchev, D.; Balaban, D.; Mekenyan, A.T. Generalization of the graph center concept, and derived topological
centric indexes. J. Chem. Inf. Comput. Sci. 1980, 20, 106–113. [CrossRef]

19. Emmert-Streib, F. The chronic fatigue syndrome: A comparative pathway analysis. J. Comput. Biol. A J. Comput.
Mol. Cell Biol. 2007, 14, 961–972. [CrossRef] [PubMed]

20. Emmert-Streib, F.; Dehmer, M. Gobal information processing in gene networks: Fault tolerance. In Proceedings
of the 2nd Bio-Inspired Models of Network, Information and Computing Systems (Bionetics 2007), Budapest,
Hungary, 10–12 December 2007; pp. 3009–3028.

21. Dehmer, M.; Chen, Z.; Li, X.; Shi, Y. Mathematical Foundations and Applications of Graph Entropy; Wiley-Blackwell:
Oxford, UK, 2016; pp. 101–112.

22. Beck, M.T.; Linnhoff-Popien, C.; Fischer, A. A simulation framework for Virtual Network Embedding
algorithms. In Proceedings of the 2014 16th International Telecommunications Network Strategy and
Planning Symposium, Funchal, Portugal, 17–19 September 2014; pp. 1–6.

23. Leiserson, C.E. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Trans. Comput.
2012, C-34, 892–901. [CrossRef]

24. On-Line Data. Available online: https://scholar.google.com (accessed on 1 April 2017).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF02476673
http://dx.doi.org/10.1016/j.amc.2007.12.010
http://dx.doi.org/10.1080/01969720802435925
http://dx.doi.org/10.1021/ci60022a011
http://dx.doi.org/10.1089/cmb.2007.0041
http://www.ncbi.nlm.nih.gov/pubmed/17803373
http://dx.doi.org/10.1109/TC.1985.6312192
https://scholar.google.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Virtual Network Embedding
	Graph Entropy Measures

	Definition and Model of VNE
	VNE Algorithm Using Graph Entropy
	Algorithmic Profile
	Selection of Candidate Areas
	Computation of VN and SN Entropies
	Presentation of Algorithmic Pseudocodes
	Limitations of This Work

	Experiments
	Experimental Configuration
	Experimental Results

	Conclusions
	References

