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Abstract: In image clustering, it is desired that pixels assigned in the same class must be the same or
similar. In other words, the homogeneity of a cluster must be high. In gray scale image segmentation,
the specified goal is achieved by increasing the number of thresholds. However, the determination
of multiple thresholds is a typical issue. Moreover, the conventional thresholding algorithms could
not be used in color image segmentation. In this study, a new color image clustering algorithm
with multilevel thresholding has been presented and, it has been shown how to use the multilevel
thresholding techniques for color image clustering. Thus, initially, threshold selection techniques
such as the Otsu and Kapur methods were employed for each color channel separately. The objective
functions of both approaches have been integrated with the forest optimization algorithm (FOA)
and particle swarm optimization (PSO) algorithm. In the next stage, thresholds determined by
optimization algorithms were used to divide color space into small cubes or prisms. Each sub-cube
or prism created in the color space was evaluated as a cluster. As the volume of prisms affects
the homogeneity of the clusters created, multiple thresholds were employed to reduce the sizes of
the sub-cubes. The performance of the proposed method was tested with different images. It was
observed that the results obtained were more efficient than conventional methods.

Keywords: image clustering; color space; thresholding

1. Introduction

The classification of pixels in images is one of the most difficult tasks in image processing because
at the end of the procedure, it is desired that pixels assigned into a cluster must be the same or quite
similar and must be different from pixels in other clusters. Moreover, pixels assigned into the same
cluster must be similar in terms of spatial coordinates. In the literature, several methods were proposed
to solve the problem. It is claimed that some of these methods result in more accurate segmentation,
whereas some claim that they do faster segmentation than others. Fundamentally, the critical questions
to be answered are about the number of clusters for any gray scale or color image and computation
cost of the algorithm.

Common image clustering algorithms based on data classification methods are K-means [1] and
fuzzy c-means (FCM) [2]. These techniques are successful in the clustering of images that have a
certain number of clusters. Nevertheless, if the number of clusters is not known, which is typical for
the segmentation process, clustering is not possible [3]. Furthermore, these algorithms are iterative
and pixels are used with the algorithms more than once. Additionally, the centers of the clusters
are set randomly and the clustering procedure needs to be repeated more than once to reach correct
results [4]. As the number of iterations increases, the time consumed by the procedure grows [5].
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The computational complexity of the FCM algorithm is O(ncl) where n, ¢ and 1 is the number of pixels,
clusters, and iteration, respectively [6].

Apart from K-means and FCM methods, region-based segmentation techniques are based on
finding adjacent pixels with similar features [7]. Thus, the similarity judgment of pixels must be
appropriately evaluated so that consistent regions can be produced. A segmentation map starting
with small regions, known as seeds, is generated [8]. Accordingly, neighboring pixels are evaluated
to grow the seeds to obtain the regions. If any pixel is sufficiently similar to an adjacent region, the
pixel is included in the region. The seed regions are created either automatically or selected by the
user. Automatic creation of these seeds brings an additional computational cost.

For gray scale images, binarization and multilevel thresholding are well-known clustering
approaches. They are based on the processing of histogram information rather than spatial pixel
similarity computations so that the optimal thresholds are obtained. Consequently, histogram-based
approaches are faster than FCM and they yield reasonable results. Nevertheless, there have been
difficulties in the integration of multilevel thresholding techniques into color image segmentation
so far.

Entropy is one of the most famous methods in dealing with image processing problems [9]. In this
regard, Kapur’s entropy is frequently used in image segmentation. Furthermore, Otsu thresholding is
one of the well-known image segmentation schemes. However, the inefficient formulation of the time
cost of the Otsu and Kapur algorithms makes these methods impractical, especially in the selection of
multilevel thresholds. Even though extensive efforts have been made to achieve image segmentation,
autonomic techniques that work in real-time still remain a challenge [10]. To overcome this problem,
researchers used optimization algorithms to realize Otsu’s and Kapur’s criteria [11-18]. Horng
and Jiang [19] proposed a firefly optimization algorithm for the maximum entropy criterion, while
Maitra and Chatterjee [20] proposed a hybrid cooperative in-depth learning model by using a particle
swarm optimization algorithm to achieve the maximum entropy criterion. Moreover, Sathya and
Kayalvizhi [21] introduced a bacterial foraging algorithm to optimize the maximum entropy criterion
and Otsu’s minimum variance criteria. In addition to these studies, Sathya and Kayalvizhi [22]
proposed a modified bacterial foraging algorithm for the maximum entropy and minimum variance
criterions. Oliva et al. [23] proposed a multilevel image thresholding based on the harmony search
optimization algorithm for the related approaches. Lastly, Horng [24] applied the artificial bee colony
(ABC) algorithm to optimize the maximum entropy criterion.

In this study, a novel approach for clustering color images by using multilevel thresholding has
been proposed. The application of binarization methods for color image clustering has recently been
introduced by Demirci et al. [8], where a single threshold for each color channel was computed by
means of the Otsu and Kapur methods. Then, color space was partitioned into eight sub-cubes where
the pixels within each cube were assigned to the same cluster. Although the method was quite fast,
clustering performance was not adequate for some color images, as only eight clusters were assigned.
In order to eliminate the drawback of the algorithm and increase the number of clusters, multilevel
thresholding for each channel has been suggested. The threshold values for each color channel were
separately estimated by particle swarm optimization (PSO) and the forest optimization algorithm
(FOA) [25]. Accordingly, the volume of each sub-cube was decreased, and clustering performance in
terms of region homogeneity was improved.

2. Multilevel Thresholding and Color Space Partition

In gray scale images, the gray levels are in the range of {0,1,2,...,L — 1}. Thus, the probability
of the ith gray level could be defined as

pi = hi/(MxN) )
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where M and N are dimensions of image, /; denotes the number of pixels corresponding to gray
level i, 0 < i < (L —1). When multiple thresholds such as ty, t,, ..., t;; are used for classification,
the number of clusters created will be m + 1. Accordingly, gray level intervals of clusters formed
willbecg — [0, ...,t1 — 1], 1 = [f1, ..., o — 1] and ¢y — [ty, ..., L — 1]. The critical issue in
multilevel thresholding is the determination of thresholds. One common approach is to define a
multi-variable objective function in terms of ¢4, tp, . .. , t;;. The optimal thresholds are then obtained by
maximizing the objective function. The most frequently preferred thresholding functions are Kapur’s
entropy criterion approach [26] and Otsu’s between-class variance technique [27]. Although the initial
proposals of the Otsu and Kapur algorithms were for binary thresholding, the extension for multilevel
thresholding is also possible [21]. Consequently, Kapur’s entropy criterion is extended for multilevel
thresholding by maximizing the objective function stated as:

](tl,tz,...,tm) = Hy+H +Hy+...+ Hy (2)
where
e R t—1
Hy = —igoygln;;,wo = i)_:gpi
Bl th—1
H =-Y gInf,wo = Y pi
i=H i=1h
t3—1 ‘ t5—1
Hy = - Y Binflw = ¥ p
i=tp i=t
-1, » L-1
H, = - ) wflllnwfl/wm = Y pi

where Hj to Hy, are partial entropies of the histogram, and wy to wy, are partial probabilities of the
histogram. The threshold values: t; ... t; are the gray levels that maximize the objective function
given in Equation (2). Additionally, the multilevel thresholds for any gray scale image could also
be estimated by means of Otsu’s between-class variance algorithm. Thus, a m-dimensional objective
function is described as follows:

J(t1,t2, o tm) = oo+ 01+ 02+ ...+ 0 (3)
where )
op = wo(po — pr)
2
0 = wi(m —HT)2
o = wz(}lz—}iT)
2
Om = wm(,um_VT)
with
t1—1 t1—1 i by
wo = X pito = X o
i=0 i=0
ty—1 tr—1 i pi
wi = ¥ pii = L 4
Z—tl Z:tl
L—1 L1y,
wm = ), PirUm = Y w*ml
1=ty =ty
and
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where pg to yi;, are means of classes. Furthermore, ji7 is the mean of the image. In both cases, there are
constraints that are defined as: t; < tp < t3 < ... < t;;. As can be seen in both methods, multilevel
thresholding is a kind of multi-variable optimization problem to be solved. Although there have been
various approaches for optimization, the most common and newest algorithms have been used in
this study. The particle swarm optimization (PSO) algorithm suggested by Kenedy and Eberhart in
1990 is a widely used one [28]. It was inspired from the social behavior of birds and fish. Like other
optimization algorithms, the locations of particles in the swarm are also randomly initialized. Next, in
each iteration all particles are updated as follows:

vi(t+1) = woi(t) + RCr(plet — x;) + RaCo (g% — x;)

xi(t)—i—vl-(t—i—l) @

Ry

/-\
=
|

where x; and v; are the position and velocity of each particle, at iteration t, Ry and R; are two random
values between [0, 1], w is the inertia weight, both C; and C; are learning factors that control the
influence of personal best and global best, respectively, pf’“t responds to the best position that the ith
particle has ever found. Finally, g"** is the best position found so far in the entire population.

On the other hand, one of the recently introduced optimization algorithms, called the forest
optimization algorithm (FOA) and proposed by Ghaemi and Feizi-Derakhshi, is based on the surviving
processes of trees in forest. It could be observed in the forest that some trees survive for several decades
and continue to their generation while others live for a limited period. Therefore, some distinguished
trees live for centuries since they are seeded in the geographically best places. By emulating the
natural seed dispersal process, finding the distinguished trees in the forest is executed by the attempts
performed by the FOA. Trees use different strategies of seeding in order to continue their generation.
Seed dispersal methods consist of two different kinds: long-distance seed dispersal, and nature local
seed dispersal. At the beginning of the seeding process in nature, some seeds fall and germinate just
near the trees. This procedure is called ‘local seeding’. On the other hand, if seeds are transferred
far away from trees by means of water, wind or even animals, this procedure is called long-distance
seeding or ‘global seeding’. After the seeds descend on the land due to local or global seeding, the
seeds germinate and turn into saplings. Yet, the germination of every seed and the chance of a seed
becoming a tree in the forest is not possible.

FOA consists of three steps: local seeding, population limiting, and global seeding. Figure 1 shows
the flowchart of FOA [25]. Identifying a solution for the problem is represented by each tree FOA
beginning with the initial random population, in a similar way to any other evolutionary algorithm.
Each tree in the initial population has zero age and its age, except for the newly generated trees, is
increased at each iteration step. A tree is allowed to live up to a maximum age, which is defined as the
‘life time” parameter. If the age of a tree reaches to maximum age, it will be removed from the forest.

Some seeds disperse around the tree and germinate into young seedlings during the seeding
process. These seedlings take part in a competition for the use of minerals, sun light, and other
resources. Local seeding changes (also defined as “LSC”) is a stage when the number of variables’
values change during the local seeding stage. This stage is operated on zero-aged trees.
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Figure 1. Flowchart of a forest optimization algorithm (FOA).
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Figure 2 shows two consequent iterations of the local seeding stage. After the local seeding stage,
in order to avoid endless expansion of the forest, a control method on the number of trees is considered.
“Area Limit” and “Life Time” parameters are the two criteria considered to achieve this goal. Addition
of the trees into the candidate population is performed only upon trees whose age is greater than
lifetime. In addition, exceeding the area limit parameter of the trees, the additional trees are transferred

to the candidate population as well.

) Local Seeding

Figure 2. Two consequent iterations of the local seeding stage.
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~
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As stated before, some seeds are carried from trees to faraway locations with the aid of natural
events such as wind, flow of water, or animals. Subsequently, they will have more chance to survive.
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Global seeding simulates this process. “Transfer rate” is a stage in the global seeding stage that is
used to set a percentage to the candidate population. The transfer rate is predefined and some of the
trees from the candidate population are randomly selected according to transfer rate.

In the variable range, some variables of the selected trees are chosen and the values are exchanged
with other values. This procedure allows searching in the broad region of the search space. The trees
that are newly generated are set to age zero and are added to the forest. The number of the selected
variables for global seeding in each tree is defined as “Global seeding changes” or “GSC”. Figure 3
is the pseudo code of FOA. In order to simulate a problem using FOA, each potential solution is
represented as Figure 4. If a problem has Ny, dimension, each tree will have Ny,,.1 variables with the
“Age” part showing the age of the related trees.

Algorithm FOA (Life time, LSC, GSC, transfer rate, area limit)
input: Life time, LSC, GSC, transfer rate, area limit
output: near-optimal solution for objective function f{x)
1. Initial forest with random trees
1.1. Eachtreeisa (D + 1) dimensional vector x, x = (age, x1, x2,..., xp) for a D-dimensional problem
1.2, The “age” of each tree is initially zero
While stop condition is not satisfied do
2.1. Perform local seeding on trees with age 0
e Forki=1:"LSC”
- Randomly choose a variable of the selected tree
- Add a small amount dx- dx & [-Ax,Ax] to the randomly selected variable
®  Exclude the newly generated trees in the stage, incrementing the age of all trees by 1.
2.2. Population limiting
* Removal of the trees and addition into the candidate population is performed only if the ages
of the trees are greater than “life time” parameter.
¢ C(lassification of the trees according to their fitness value.
* Removal of the extra trees and addition of the trees into the candidate population is
performed when the trees exceed the “area limit” parameter.
2.3. Global seeding
e “Transfer rate” percentage selection of the candidate population
e  For each selected tree
- Choose “GSC” variables of the selected tree randomly
- Change the value of each variable with another randomly generated value in

)

the variable’s range and add a new tree with age 0 to the forest
2.4. Update the best so far tree
¢ C(lassification of the trees according to their fitness value
®  The best tree’s age is set to 0.
3. Return the best tree as the result.

Figure 3. Pseudo code of FOA.

XNvar+1
N
o) —
Age 2| X2 . X Nvar

Figure 4. A solution representation of FOA.

The multilevel thresholding in image processing is a multivariable optimization problem in which
objective functions were defined in Equations (2) and (3). By considering Figure 4, the objective function
based on Otsu’s approach and on Kapur’s entropy criterion, each solution with the Otsu and Kapur
procedure was represented with a tree J(Hy, H, Hy - - - , ) and J(0p, 01,02 - - - , 0 ), respectively.
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The stated optimization algorithms are employed to find the optimal threshold values on image
histogram segmentation. The process of the proposed scheme is as follows:

Step 1. Specify the lower and upper boundaries of the optimization algorithm to limit the minimum
and maximum threshold value.

Step 2. Initialize the m-dimension positions of each individual in the population. Dimension values
correspond to the number of the threshold, such that t; <t; <tz <... <ty,.

Step 3. Evaluation of each individual objective function among the population using Equations (2)
and (3).

Step 4. Updating the positions of threshold values for each individual.

Step 5. If termination conditions are met, then stop. Otherwise go back to step 3.

Step 6. Return the optimal threshold values corresponding to the global best individual.

Once multilevel thresholds have been obtained with the related optimization algorithms, they are
integrated into the color space partition techniques proposed by Demirci et al. [8]. The color space
partition algorithm was initially developed for a single threshold. However, in this study, it was extended
by using a multilevel threshold. Therefore, it is appropriate to clarify the initial strategy. The binarization
or multilevel clustering of gray scale images is performed by means of the threshold values obtained
with the Otsu and Kapur methods. Nevertheless, color images consist of three channels and each color
channel requires its own thresholds. Even if the thresholds for each channel are obtained, it is a critical
issue to establish meaningful clusters with information coming from each color channel. In this study,
the threshold values computed for each channel are used to create subsets of color space, as shown in
Figure 5. In other words, the color cube is divided into sub-cubes or prisms. Then, each pixel in any of
the sub-cubes or prisms is included in the same cluster. At the start, it may seem that unrelated clusters
may be created with this approach. However, quite reasonable results in images have been obtained
in experiments. When looking closely at Figure 5, it can be seen that the volume of each sub-cube or
prism depends on the thresholds of each channel, and are not the same. Therefore, shapes of sub-cubes or
prisms are related to the distributions of pixel intensity in the image. Consequently, a unique color space
partition scheme for every particular image will be created. It is clear that the homogeneity of clusters
with larger volumes will be low compared with that of clusters with small volumes. Nevertheless, it is
not an unsolvable problem. If the volume of each cube could be reduced by increasing the number of
thresholds (multilevel thresholding), the homogeneity will grow. Thus, the maximum number of clusters
that could be created for a color image will be as follows:

Cm = (m+1)3 ®)

255

¥4
4 A b1
—_ - 7 /
~ 7
rSr/l
i i i ey :
0 L -
7
s 1|y
___I_’.
l: Tg’1
255 Tr1

(a) (b)

Figure 5. (a) 3D color space and assigned clusters, m = 1 (b) 3D color space and assigned clusters, m = 2.
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When a single threshold for each channel, m = 1, is used, eight sub-clusters are established. If
m =2, ¢, will be 27; if m = 3, ¢;; = 64, and so on. Despite Figure 5a showing a color space partition with
a single threshold, it could be extended for multilevel thresholds. Cluster labels and codes for labels
with binary numbers are given in Table 1. Furthermore, color space partition rules are described in
Table 1. Figure 5b shows the sub-cubes or prisms obtained with two thresholds for the Lena image:
Tr,lr Tg,ll Tb,l (140, 80, 95) and Tr,2/ Tg/z, Tb,Z (198, 145, 138)

Table 1. Color space partition with single threshold.

Class Label Partition Rules Binary Code
So if R<=T; &G<=Tg1 &B<=Ty,) 000
S, if R<=T;1 &G <=Tg1 &B>=T) 001
S, if R<=Ty1 &G>=Tg1 &B<=Ty) 010
Ss if R<=Ty & G>=Tg1 &B>=Ty1) 011
S, if R>=Ty; &G <=Tg1 &B<=Ty ) 100
Ss if R>=Ty; & G<=Tg1 &B>=Ty1) 101
Se if R>=T,1 &G >=Ty1 &B<=Ty) 110
S, if R>=Ty; & G>=Tg1 &B>=Ty1) 111

3. Experimental Results and Discussion

Although the classification of images with larger sizes take a long time with iterative methods such
as K-means or fuzzy c-means (FCM) compared with that of images with small sizes, the computational
cost of a developed algorithm is independent of image size, since clustering is performed by means
of the single-dimensional histogram data of each channel, rather than pixel-wise calculations. As a
result, pixels in images are employed only once to obtain histograms. The main computational effort
is required to estimate the thresholds in terms of Kapur’s criteria and Otsu’s objective functions by
using FOA and PSO. Therefore, performance comparisons were done with an FCM algorithm, which
is a commonly used approach in image segmentation. Furthermore, in order to make a quantitative
assessment of the achieved results, the image segmentation evolution function proposed by Liu and
Yang [29,30] has been employed. This segmentation evolution function is defined as follows:

P L ory 9
T 1000(Mx N) ¥ = VA

(6)

where M x N represents the size of the image, R is the number of obtained regions. A; is the number of
pixels in the ith region, e; is the average of color error in the ith region, which is defined as the sum of
the Euclidean distances between pixels of the ith region in the original color image and the attributed
pixel values of the ith region in the segmented image. The term /R is used to prevent the F-value
from shrinking excessively. As the number of regions increases, the value of F decreases. A small value
for F is desired.

The recommended technique works with both gray scale and color images. For example, when
a gray scale image is considered with a single threshold, either Sy or S; in Table 1 and the color
space are triggered. That means only two clusters will be activated: binarization. Consequently,
only diagonal sub-cubes in the color space will be employed with a gray scale image for a multilevel
threshold. The cameraman image shown in Figure 6 was initially tested in experiments where a 64-bit
personal computer, 2.20 GHz was employed. As the binarization result of the cameraman image was
already known, multilevel thresholds were estimated as shown in Table 2. During the experiments,
the true values of the thresholds were primarily found by means of a linear search algorithm, which
is the slowest one available. The thresholds were then estimated with the FOA and PSO algorithms
to compare the speed and accuracy. According to Equation (5), the maximum number of clusters
depends on the number of thresholds. Therefore, the cameraman image was also clustered with
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the FCM algorithm where the cluster number was set as compatible with Table 2. Thus, the speed
of the proposed algorithm was also compared with the well-known clustering algorithm in image
segmentation applications. The segmented images obtained with the Otsu, Kapur, and FCM algorithms
are as shown in Figure 7a—c, respectively. On the other hand, when the threshold number, m, was
selected as 3, the results obtained with the Otsu, Kapur, and FCM algorithms are shown in Figure 8a—c,
respectively. As can be seen, the proposed multilevel thresholding algorithm produced reasonable
results faster than conventional FCM algorithms.

Table 2. Threshold for cameraman image with different methods.

Otsu Kapur
Time (s) 51 %) Time (s) 51 tr
Linear 0.600 71 145 0.836 124 192
FOA 0.125 70 144 0.114 125 191
PSO 0.360 71 145 0.517 124 192
Cluster: ¢ 3 3
t1 ) t3 t1 [2) t3
Linear 164.713 46 102 150 243.758 45 103 192
FOA 0.472 48 104 150 0.321 45 103 192
PSO 0.777 46 102 150 0.628 45 103 192
Cluster: ¢ 4 4

(b)

Figure 7. m =2 and ¢ = 3 (a) Otsu, T =0.125 s. (b) Kapur, T =0.114 s. (c) FCM, T = 0.891 s.
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®)

Figure 8. m =3 and ¢ = 4 (a) Otsu, T = 0.472 s. (b) Kapur, T = 0.321 5. (¢) FCM, T =4.310 s.

Although the developed algorithm has worked for gray scale image, the main contribution of
this study has been on color images. Thus, the Lena, House, and Pepper images shown in Figure 9a,
Figure 10a, and Figure 11a, respectively, were tested with the suggested algorithm. Color distribution
of the test images in the color space are given in Figure 9b, Figure 10b, and Figure 11b, respectively.
Additionally, thresholds obtained with the proposed algorithm are shown in Tables 3-5, respectively.

250

(b)

Figure 9. Lena (a) Original (b) Color distribution.

0 o

(b)

Figure 10. House (a) Original (b) Color distribution.
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(b)

Figure 11. Pepper (a) Original (b) Color distribution.

Table 3. Thresholds for Lena image with different methods.

Otsu Kapur
Linear FOA PSO Linear FOA PSO
t t1 t 151 t1 51
R 162 160 160 167 168 168
G 102 103 103 141 140 140
B 112 110 110 131 131 131
Time (s) 0.008 0.244 0.244 0.029 0.294 0.333
Cluster: ¢ 8 6
t1 iy t1 11 ity t1 ta t1 ta t1 ty
R 139 197 135 192 138 196 134 191 135 192 134 191
G 79 146 83 152 79 146 82 151 83 150 82 151
B 96 140 99 145 96 140 98 144 100 145 98 144
Time (s) 5.572 1.141 1.567 6.628 1.022 2.310
Cluster: ¢ 19 18
t1 ty t3  # ty t3 t1  t t3 t1 b t3 t1 b t3 t1 b t3
R 129 178 213 132 180 213132 180 213 116 159 203 117 160 203 116 161 203
G 58 107 160 61 109 16161 109 161 61 110 161 60 110 160 61 110 161
B 84 111 147 84 110 14584 110 145 93 132 170 92 132 169 93 132 170
Time (s) 512.833 1.163 1.818 676.992 1.133 2.630
Cluster: ¢ 34 29

Although Equation (5) gives the maximum number of clusters that could be filled in the color
space, it is not guaranteed that all sub-cubes or prisms created in the color space will be filled with
pixels. It depends on the distribution of pixels in the color space and the volume of the prisms.
If the threshold numbers increase, the volume of the sub-prisms will decrease. On the other hand, if
the volumes of the prisms are large, the probability occupied by the prism will increase. However,
homogeneities of regions are reduced. During experiments, test images were filtered with a median
filter in order to eliminate the creation of regions with a single or few pixels.

Figure 12 shows the results obtained with Lena and m = 1. The total number of clusters filled with
the Otsu algorithm was eight, as shown in Figure 12a, and the computation time (T) was 0.244 s. On
the other hand, six prisms were occupied with the Kapur technique, as shown in Figure 12b, and the
computation time (T) was 0.294 s. The performance of the FCM algorithm when the cluster number,
¢, was set to 8, is shown in Figure 12¢ and the computation time (T) was 3.410 s. As can be seen, the
proposed method is faster than FCM.

The clustering performance of the algorithm with Lena and m = 2 is shown in Figure 13. Although
the maximum number of clusters to be created was 27, only 19 of them were occupied with Otsu as
shown in Figure 13a. Also, when the Kapur method was used, 18 clusters were completed as shown in
Figure 13b. Moreover, the FCM algorithm produced results in 7.141 s for 19 clusters as in Figure 13c.
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The final experiment with Lena was done with m = 3. Figure 14a shows the results obtained with Otsu,
while the performance of the Kapur principle is given in Figure 14b. Furthermore, the FCM algorithm
produced the results shown in Figure 14c in 11.506 s, while the proposed algorithm completed the
segmentation process within 1.163 s.

T=7141s.

Figure 14. Lena, m = 3 (a) Otsu, c =32, T = 1.163 s. (b) Kapur, c =30, T =1.133 5. (c) FCM, ¢ = 32,
T =11.506 s.
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Table 4. Thresholds for House with different methods.
Otsu Kapur
Linear FOA PSO Linear FOA PSO
t1 151 151 t1 t1 t1
R 135 135 135 178 178 178
G 144 144 144 88 89 88
B 155 155 155 89 89 88
Time (s) 0.007 0.205 0.194 0.029 0.294 0.333
Cluster: ¢ 8 6
t t t t t ts t ts t ts t t
R 133 187 134 188 134 188 96 178 97 179 97 179
G 80 151 81 152 81 152 88 202 89 203 89 203
B 127 192 128 192 128 193 117 184 118 185 118 185
Time (s) 5.371 1.321 1.242 5.113 1.531 1.821
Cluster: ¢ 19 15
o t ts # ts 4 ts ts #H B ts t th t3 Bt ts
R 104 142 188 104 142 188 104 142 188 89 153 180 89 153 180 89 153 180
G 81 131 178 80 130 178 80 130 178 55 97 205 55 97 20555 97 205
B 87 133 194 87 133 194 87 133 194 117 164 212 118 165 213 118 165 213
Time (s) 492.257 1.293 1.291 552.715 1.237 2.011
Cluster: ¢ 36 26
Table 5. Thresholds for Pepper with different methods.
Otsu Kapur
Linear FOA PSO Linear FOA PSO
51 t 51 t t 51
R 146 146 146 101 101 101
G 111 111 111 129 129 129
B 72 72 72 114 114 114
Time (s) 0.007 0.324 0.313 0.031 0.397 0.322
Cluster: ¢ 8 8
t1 ty t1 ta t1 123 t1 ta t1 tr t1 123
R 99 161 99 161 99 161 93 158 93 158 93 158
G 80 159 80 159 80 159 68 151 68 151 68 151
B 59 128 59 128 59 128 107 166 107 166 107 166
Time (s) 5.534 1413 1.435 5.783 1.743 1.629
Cluster: ¢ 26 22
t1 ty t3 t1 ta t3 t1 ty t3 t1 ta t3 t1 ta t3 11 123 t3
R 89 137 177 89 137 177 89 137 177 61 105 163 61 105 163 61 105 163
G 36 99 168 36 99 168 36 99 168 65 120 172 65 120 172 65 120 172
B 29 68 131 29 68 131 29 68 131 62 115 169 62 115 169 62 115 169
Time (s) 478.563 1.582 1.512 529.054 2.477 2.392
Cluster: ¢ 52 48

Figure 15 shows the results obtained with House and m = 1. The total number of clusters filled
with the Otsu algorithm was eight as shown in Figure 15a and the computation time (T) was 0.205 s.
On the other hand, six prisms were occupied with the Kapur technique as shown in Figure 15b and
the computation time (T) was 0.294 s. The performance of the FCM algorithm with which the cluster
number, ¢, was set to 8, is shown in Figure 15¢ and the computation time (T) was 4.121 s. As can be
seen, the proposed method is faster than FCM.

The clustering performance of the algorithm with House and m = 2 is shown in Figure 16.

Although the maximum number of clusters to be created was 27, only 19 of them were occupied with
Otsu, as shown in Figure 16a. Also, when the Kapur method was used, 15 clusters were completed, as
shown in Figure 16b. Furthermore, the FCM algorithm produced results for 19 clusters in 11.260 s, as
in Figure 16c. The final experiment with House was done with m = 3. Figure 17a shows the results
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obtained with Otsu while the performance of the Kapur principle is given in Figure 17b. Furthermore,
the FCM algorithm produced the result shown in Figure 17c in 20.289 s, while the proposed algorithm
completed the segmentation process within 1.293 s.

Figure 18 shows the results obtained with Pepper and m = 1. The total number of clusters filled
with the Otsu algorithm was eight, as shown in Figure 18a, and the computation time (T) was 0.324 s.
On the other hand, eight prisms were occupied with the Kapur technique, as shown in Figure 18b,
and the computation time (T) was 0.397 s. The performance of the FCM algorithm when the cluster
number, ¢, was set to 8, is shown in Figure 18c and the computation time (T) was 5.184 s. As can be
seen, the suggested method is faster than FCM.

The clustering performance of the algorithm with Pepper and m = 2 is shown in Figure 19.
Although the maximum number of clusters to be created was 27, only 26 of them were occupied with
Otsu, as shown in Figure 19a. Also, when the Kapur method was used, 22 clusters were completed,
as shown in Figure 19b. Moreover, the FCM algorithm created results in 13.152 s for 26 clusters as in
Figure 19c. The final experiment with Pepper was done with m = 3. Figure 20a shows the outputs
with Otsu while the performance of the Kapur approach is given in Figure 20b. Furthermore, the FCM
algorithm created the result shown in Figure 20c in 22.178 s, while the proposed algorithm completed
the segmentation process within 1.582 s.

(a) (b)

Figure 15. House, m =1 (a) Otsu, c =8, T = 0.205s. (b) Kapurc =6, T = 0.294s. (c) FCM, c =8,
T=4.121s.

(b)

Figure 16. House, m =2 (a) Otsu, c =19, T = 1.321 s. (b) Kapur ¢ =15, T =1.531 s. (c) FCM, c =19,
T=11.260s.
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Figure 17. House, m = 3 (a) Otsu, ¢ = 36, T = 1.293 5. (b) Kapur, ¢ = 26, T = 1.237 s. (c) FCM, c = 36,
T =20.289 s.

T=5184s.

(b)
Figure 19. Pepper, m =2 (a) Otsu, ¢ =26, T = 1.413 s. (b) Kapur, ¢ =22, T =1.743 s. (c) FCM, c = 26,
T=13.152s.

Figure 20. Pepper, m = 3 (a) Otsu, ¢ =52, T = 1.582 s. (b) Kapur, c =48, T =2.477 s. (c) FCM, c = 52,
T=22178s.
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The performance of the segmentation algorithms was tested with the evolution function defined
in Equation (7). Threshold numbers, F-values, and the time parameters of Lena, House, and Pepper
are given in Tables 6-8, respectively. As can be seen, the difference between F-values, FCM and
the proposed algorithm is insignificant. On the other hand, the developed algorithm is faster than
conventional FCM. The increase in computation time with the number of clusters or thresholds in
FCM is higher than that of the proposed method. For example, in Table 8, when the cluster number is
8, the computation time for the proposed method is 0.397 s, whereas the computation time for FCM is
5.184 s. Thus, the proposed algorithm is 13 times faster than FCM.

Table 6. Quantitative evaluation of Lena.

Number of Threshold/Cluster Method F Time, T (s)
m=1/c=38 Otsu 0.00000251 0.244
m=1/c=6 Kapur 0.00000375 0.294

c=8 FCM 0.00000237 3.410
m=2/c=19 Otsu 0.00001364 1.141
m=2/c=18 Kapur 0.00001348 1.022

c=19 FCM 0.00000654 7.141
m=3/c=32 Otsu 0.00002830 1.163
m=3/c=30 Kapur 0.00002332 1.133

c=32 FCM 0.00000609 11.506

Table 7. Quantitative evaluation of House.

Number of Threshold/Cluster Method F Time, T (s)
m=1/c=38 Otsu 0.00000819 0.205
m=1/c=6 Kapur 0.00000620 0.294

c=8 FCM 0.00000046 4121
m=2/c=19 Otsu 0.00001489 1.321
m=2/c=15 Kapur 0.00001248 1.531

c=19 FCM 0.00000278 11.260
m=3/c=36 Otsu 0.00004402 1.293
m=3/c=26 Kapur 0.00005342 1.237

c=36 FCM 0.00000749 20.289

Table 8. Quantitative evaluation of Pepper.

Number of Threshold/Cluster Method F Time, T (s)
m=1/c=38 Otsu 0.00000386 0.324
m=1/c=38 Kapur 0.00000508 0.397

c=8 FCM 0.00000014 5.184
m=2/c=26 Otsu 0.00003469 1.413
m=2/c=22 Kapur 0.00000592 1.743

c=26 FCM 0.00000097 13.152
m=3/c=52 Otsu 0.00003018 1.582
m=3/c=48 Kapur 0.00002154 2477
c=52 FCM 0.00000188 22.178

The experimental results show that the color images are clustered faster than with the FCM
algorithm. Only the threshold values for each channel were used in the developed algorithm.
The parameter m in Equation (5) determines the maximum number of sub-prisms. Nevertheless, it is
apparent from Figures 9-11 that there are empty areas in the color space that are not occupied. Although
the specific clusters are created for such areas, they will not be used. Consequently, the distribution
of pixels in the color space has a critical importance. Furthermore, the volume of the sub-prisms
determines the homogeneity of the clusters created. The less volume is formed, the more homogeneous
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the created cluster. Therefore, a larger value of m produces smaller cubes. Nevertheless, it is observed
that when m is 3, the maximum number of clusters will be 64, which could generally be sufficient
for image segmentation applications. Moreover, the suggested method uses the one-dimensional
histogram of the image rather than the two-dimensional image space. Thus, the developed algorithm
is independent of the image size.

4. Conclusions

A new segmentation algorithm for color images that is fast and fully automatic was developed.
The devised algorithm requires only a single parameter and is free of iteration, unlike FCM. The
integration of multilevel thresholding techniques with color space is possible to obtain sub-prisms
and significant clusters in color images. In other words, it was shown that multilevel thresholding
techniques could be used for color images. If the number of thresholds increases, the homogeneity of
the clusters increases in the color image. Accordingly, the fundamental criteria of image clustering
processes could be controlled with the number of thresholds. Additionally, as the individual histograms
of color components are used in the proposed procedure, the time required for clustering is not
dependent on the size of the image to be segmented. This contribution is also important for large scale
images and real-time processing. Also it was shown that color image thresholding is possible by means
of a color space partition. In this study, the number of thresholds used in each channel was the same.
However, a different number of thresholds for each channel could be tested in future investigation.
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