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Abstract: We employ the spinor analysis method to evaluate exact expressions of spin-spin correlation
functions of the two-dimensional rectangular Ising model on a finite lattice, special process enables us to
actually carry out the calculation process. We first present some exact expressions of correlation functions
of the model with periodic-periodic boundary conditions on a finite lattice. The corresponding forms in
the thermodynamic limit are presented, which show the short-range order. Then, we present the exact
expression of the correlation function of the two farthest pair of spins in a column of the model with
periodic-free boundary conditions on a finite lattice. Again, the corresponding form in the thermodynamic
limit is discussed, from which the long-range order clearly emerges as the temperature decreases.

Keywords: two-dimensional Ising model; spin-spin correlation functions; exact solution; short-range
order; long-range order

1. Introduction

Since the exact solution of the partition function in the absence of a magnetic field of the
two-dimensional rectangular Ising model with periodic-periodic boundary conditions is obtained in the
thermodynamic limit [1] and in finite-size systems [2], many authors have contributed to the knowledge of
various aspects of this model, such as different boundary conditions, the arrangement modes of the spin
lattice, surfaces, or mathematical methods, etc. [3-7].

Besides the partition function of the model, the calculations of spin-spin correlation functions
are an important subject in the research of the two-dimensional Ising model. Some expressions of
correlation functions in the thermodynamic limit have been obtained [3-5,8,9], and the case in a finite
lattice has been studied [10-12].

The determination of exact expressions of the partition function and spin-spin correlation
functions of the model on a finite lattice is not only a theoretical subject; the results obtained can also
be used in the research of finite-size scaling, finite-size corrections, and boundary effects [7,13-16].

In this paper, we present some exact expressions of spin-spin correlation functions of the
two-dimensional rectangular Ising model on a finite lattice by employing the spinor analysis method [2].

In Section 2, for the model with L rows and N columns and periodic-periodic boundary conditions
(Onsager’s lattice), we calculate some exact expressions of the correlation function <(71 101, 1+Q> and
compare the corresponding forms in the thermodynamic limit obtained here with known results presented
in Reference [9]. The investigation in Section 2 shows the main steps, key points, and problems of the
approach used in this paper. Since the whole process are complex, here we outline the approach.

(1) Although any spin-spin correlation functions (¢ ,01 /) can be expressed by matrices,
and the matrices belong to spin representatives [8], here we only consider (0 107, 11q), i.e., the
correlation functions of pairwise spins in one column, of which exact expressions can be obtained by
the spinor analysis method.
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(2) When we employ the spinor analysis method to evaluate (0 107 11g), itis very difficult to
find the exact eigenvalues of the corresponding rotation matrix; however, the operators of the first
derivative and limit in the expressions of <(71 107, 1+Q> (see (8)) allow us to obtain exact expressions of
(1 101 ,1+0) by only finding approximate eigenvalues of the rotation matrix.

(3) We employ Rayleigh-Schrodinger Perturbation Theory (RSPT) in quantum mechanics and
change “finding eigenvalue up to Q-th order” to “finding eigenvalue through Q times first-order
approximation” (see the discussions in Section 2.5) to find approximate eigenvalues of the rotation
matrix. On the one hand, this approximate method enables us to actually carry out the calculation
process. On the other hand, since RSPT is irregular, the approximate method is in fact incapable
when Q is very larger. Hence, by this approach we can only obtain exact expressions of correlation
functions when Q is a small number, for example, that of (o1 107 ,2), (01 101 ,3), (01,100 ,4) , -,
etc., which belong to the short-range order.

What is more interesting is the long-range order, as it is closely related to properties of the phase
transformation of the system. To obtain the correlation function that can reveal the long-range order of
the model on a finite lattice, we turn to the model with L rows and N columns and periodic boundary
condition in the horizontal direction and free boundary condition in the vertical direction. For this
model, because of the free boundary condition in a column, and ¢; | y is the farthest spin of 0; ; in the
column, we forecast that the correlation functions (0; 107 n), (07,101, N—1), {01 101, N—2) , -+~ will
display the long-range order.

For the model with periodic-free boundary conditions, if we write (¢; 107 14¢o) in matrix forms
and use the method presented in Section 2, then we still can only obtain exact expressions of (¢ 107, 2),
(07,101 ,3) , - - - but cannot obtain that of (07 107 N), (07,107, N—1) , - - - . On the other hand, if we
write (07 1071 , N—n) in matrix forms directly (see Formulas (52) and (53) in this paper), then the method
presented in Section 2 is feasible to deal with the matrix forms of (7 1071, N—), and we therefore can
obtain some exact expressions of (07 107 n), (07,107, N—1), {071,101 ,N-2), - -

However, to save space, in this paper we no longer discuss (0; 107 N-1), {01 107, N—2), - - - but
only evaluate (07 107, ), for which all of the matrix forms, the corresponding rotation matrices,
and the eigenvalue equations have been given by Reference [12]. Therefore, we only need to derive the
exact expression of <(71 107, N> by employing the method presented in Section 2. (The reason why the
determination of the exact expression of <0’l 107, N> fails in Reference [12] is explained in Section 3.3).

After obtaining the exact expression of {(0; 107, \), we discuss the properties of the expression of
(0 107, Ny) in the thermodynamic limit, from which the long-range order emerges as the temperature
decreases, as shown clearly.

2. Short-Range Order in Onsager’s Lattice

2.1. The Definition of the Spin-Spin Correlation Functions and Their Basic Properties

According to the definition of the spin-spin correlation functions, (0, ,07.4p, 4+o) of pairwise
spins 0, , and 0y, p , ,+o of Onsager’s lattice read:

1
<‘71, n1+P, n+Q> =7

]/ L N ] L N
r }Ul,nal-H’,rH—Q EXP( Y X Ul’,n’UlUrl,n’) eXP( Y Ul’,n’al’,nurl) ’ (1)

{0y, p=%1 le’:l n'=1 le/:1 =1

where 0141 4 = 01,4, 01, N+1 = 07 ,1; ]'(> 0), and J(> 0) are the interaction constants for the
horizontal and vertical directions, respectively;

]/ L N ] L N
Z= Z exp (kTZ Ul,n0'1+1,n> eXP<kTZ Z Ul,no-l,n+1) (2)
1 1 I=1n=1

{‘Th ,v:il} =ln=

is the partition function in absence of a magnetic field of the model.
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According to the periodic-periodic boundary conditions of Onsager’s lattice, it is easy to prove
(011014Pnt0) = (01,1014p,1+q); in this paper, we calculate (07,01 ,+0) = (01,101,1+0), i.e., we only
calculate correlation functions of pairwise spins in one column.

Further, because of periodic-periodic boundary conditions, both 07  ; and o7 | iy are the closest
spins of 07 , 1, and we therefore have (01, 101, 2) = (07, 101, N). Generally speaking, it is easy to prove
(01,101, 1+Q) = (01,101, 14+N—@) in terms of periodic-periodic boundary conditions. Hence, 07 +IN/2)
is the farthest spin of 07 1, where [x] denotes the greatest integer not exceeding x. Thus, we only need

N
to calculate (09,109, 11g) forQ=1,2, -+, {2 )

2.2. Some Results Concerning the Partition Function Z

From (1), we see that to obtain <01, 107, 1+Q>r we need knowledge about the partition function Z
given by (2), from which we summarize some results presented in Reference [2] as follows.

LN

/ “h J—
7= (2sinn?L) 2 7 7 = L Dvea gy ToTavig ) 3)
kT 2 2
Z can thus be obtained by finding the trace of a matrix, where I'ypn41 is the matrix U defined by (15.68)

14T 1-T
in Reference [17], and the matrices %Um and %U(U

can be diagonalized at the same
time.

On the other hand, both matrices U(") and UMV are spin representatives. By w(") and w®) we
denote the corresponding rotation matrices of U(T) and UM, respectively; both w(") and w™) can be

diagonalized:

()T @t gt = A,

4
AT = diag[ Agu) Ag%) A%U } , quﬂ) _ diag[ eﬁm e_%gw }(n —1,2,-.-,N), 4)

where AT indicates a complex conjugate to a matrix A,

!
_ / _ ; ! i —2K' _ _ I .
cosh v, = cosh 2K’ cosh 2K — cos ¢,sinh2K’sinh2K , e tanhkT , K T )

1 _ @n-Dm () _2nm

O :T'% N(n:1,2,-~,N:2M).

In the above formulas, v, and ¢, are as the abbreviations for ’y,&N) and go,gi), respectively. To save
space, we use these abbreviation as far as possible in this paper.

Since properties of the partition function Z vary between even and odd numbers N, we must
calculate <(71, 109, 1+Q> separately in terms of whether N is an even or odd number. In this paper we
only consider the case that N = 2M as an even number (the case of N = 2M + 1 can be dealt with by
the same approach). From Reference [2], we have:

1 m D\ M A
Z== IT 2cosh =2 + | TI 2sinh—22
2 m=1 2 m=1 2

() W) _ 2

L L M-1

—|—<2 cosh ’)/22M> <2cosh ,Y2M> < T 2cosh Lzm ) (6)
m=1

(1) (1) _ (1) 2

L L M-1

+(Zsinhm> <Zsinhm> (n 2sinh 21 >
2 2 AL 2

When N = 2M, v, and ¢, have properties:
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2M—(m—1), for(1); 1,2, ---, M, for (1) ;
=, —2n—0., m = =
V= Ym!s fm = ST Pty {ZM—m, for()), "TY 12, M-1, for()),
7
o =2 K)o <20k K)ol = soéﬁzzm 7
0<7§T)<7§T)< <'y 0<"yzﬁ/{‘ <'y <~--<'yz(vi[)71<'y]<\ﬁ).
2.3. Writing (01,101, 1+q) in Matrix Form
SinCGU’%IU:1,WehaV60'1,10'1,1+Q:(71,1(7'1,2-0'1,20'1,3----'0’1[Q,10’1/Q-(71/Q0'1’1+Q,

ae(/’qgl , 991, 144

and, further, considering o1 ;01,114 = lim

S, 5, , according to (1), (01,101, 11q) can be

written in the form:

d
oy 10 lim Yo,
(1,101, 140) = (,,lepﬁoac;)q) 0

Yo= X exp( Y ¢q01, 401, 1+q> EXp(k]/T i g 01, n0141, n) eXp(k]T i g 07, n01 n+l) ?
{on, o=%1} I=1n I=1n
Also, by a standard method [1,17] we can further write Yg in the form:
LN
Yo = (Zsmh k¥> 2 YQ, YQ =Tr ( 1+ I;ZNH v 4 1= I;ZNH V(U). )

YQ can thus be obtained by finding the trace of a matrix. Here we are not going to write out the explicit
expressions of V(") and VIV, but only point out that:

i. The matrices

1+T 1-T
#Vm and %V(U can be diagonalized at the same time.

ii. Both V(1) and VIV are spin representatives, whose corresponding rotation matrices are
C(T)H(T) (C(T) )+ and C(UH(U (C(U )+, respectively, where ¢ are introduced by (4),

Q Q ,
H=HO + Y sinh2¢,H? + 2 sinh?g,H 7, (10)
g=1 q=1

the forms of the matrices H(O), H(q), and H (@) can be expressed in terms of 2 x 2 blocks Hl(?n)’ HI(ZB and
1(q)

H,,1 <1, m < N(=2M), given by:
Ly
(0) o e 0
Hyw = 0 eIm Otm 5 ()
L(v + Ly —
(l—m)m 0 — B w 01+ O M in 91+ O
H<q> _ efll] M H H. — leilT e Cos T —le SIHT (12)
b s B =N Ly = m) L +vm) ’
L > . 91 +9m 7# 91 + 97"
ie sin ——— —e COs —————
2 2
L(y + vm) Lim—7
(—m)m 0 — O S O Eon ) i &= Om
g7 M H, H 1772 e 2 8T e 2 T 13
m = e Im s Hpm = ﬁe L(v —vYm) L(vi+vm) ’ ( )
R B
2 2

In (12) and (13), the quantities 6, are defined by:

sinh<y,, cos 0, = cosh 2K’sinh2K — cos (pnsinhZK’ cosh 2K,

14
sinhy, sin 6, = sin ¢,sinh2K’ (n =1, 2, ---, N =2M). (14)
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When N = 2M, 0, have properties:

O = 27t — 0,0, 0 =00 = 0. (15)

In (15), the values of m’ and m are exactly the same as those in (7).

We can first evaluate the eigenvalues of the rotation matrices ZHZ ", and then obtain YQ in terms
of the spinor analysis method. Finally, we obtain <(71, 109, 1+Q> according to (8) and (9).

From (10) to (13), we see that H is a Hermitian conjugate matrix. Hence, the eigenvalues of both
matrices CHZ' and H are the same, and we therefore can only evaluate the eigenvalues of the rotation
matrix H.

2.4. Basic Properties of the Eigenvalues and Eigenvectors of the Matrix H

Any rotation matrix A has the following property: If T is an eigenvalue of A, then T~ ! is also an
eigenvalue of A [2]. Since CHC" is a rotation matrix and the eigenvalues of CHC' and H are the same,
H should have the same property. In this sub-section we prove this conclusion.

The eigen equation of H reads:

HY = tVY. (16)
T i T .
By Y = [ Py Vv, Py } Ay, = oy | where A" means the transpose of a matrix
n
A, we denote the eigenvector of H, and, introducing Ch, qu (g=1,2,---, Q)in terms of:

o, [ L 0 . 6
lpﬁ _ eii? e 2 0 CcOos > 1SIn >
1/’nV Lyn isin-2 s el
0 e2 sp €85

T cosh(Ly,) — 1+ T cos By, sinh(Lyy)
12 — 2t cosh(Lyy) +1

LT sin 6, sinh(Ly,)
12 — 2t cosh(Lyy) + 1

Q
Y e 9 Ch
g=1

x i T sinf, sinh(Lyy) T cosh(Lyy) — 1+ T cosy, sinh(Ly,) Q —iggu oV
12 — 27 cosh(Lyy,) + 1 12 — 27 cosh(Lyy,) + 1 El ¢ q
we can prove that the eigen Equation (16) is equivalent to:
ch Q[ A (g—q) -Blg—¢ ch
cothg,| T [ =y +(q q/) (9 17)/ T lg=12-,0Q); 17)
G g=1| —Bla—q) —-A-(g—4) [ Cy
where
1N a2 242 0, sinh(Ly,) —1
i T T cos b, sinh(Ly,) —
As(k) == N )
+(k) N,Ele 72 — 27 cosh(Ly,) +1
1 M kmmt 27 cos6l) sinh(Lyi)) — 1 . ‘
M ; cos - NG .0 or (1);
_ m=1 (e Ym' T — 1) (e Ym' T — 1)
- ( )
1 (fl)k eILWj)T +1 1 ejFL"YSVIT +1 M=l kmmt? £ 27 cos 9,("” Sinh(L"y,%)) -1
M( 5 O 5 o + X cos — B o )y, for (),
etloym r—1 eflroyr —1  m=1 (elvn T —1) (e~Lrn 7 —1)
1 M kmm 27 sin 6. sinh(Lyl)
2nm . _ i Y sin i ((T)%” ), for (1) ;
1N ik 27 sin @y, sinh(Lyy) m=1 72 —2tcosh(Lyy ) +1
Bk =—ig L e 7 2tcosh(Lyn) +1 . ()
n=1 T T cosh(Lyn) + 1 M=1  kmm 27 sin 6y, sinh(Ly,,”)
— Y sin—-— 0 , for(]),
M uz1 M 12 _ 2t cosh(Lyy) +1

where we have used (7) and (15). We see that all A (k) and B(k) are real functions and satisfy:

As(—k) = A+ (k), B(—k)

—B(k).
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According to the above expressions and the properties of A+ (k) and B(k), we can conclude that if
T and C,{%(T) , qu(‘[) (g=1,2, -+, Q) satisfy (17), then T’ = 7~ ! and

Ch(T') = Co(r)CY (1), €Y (7)) = GoD)Cp(D) (g =1,2, -+, Q) 18)

also satisfy (17), where Cy(7) is an arbitrary function. From this discussion we not only prove the
conclusion “If T is an eigenvalue of the matrix H, then 71 is also an eigenvalue”, but also obtain
the relation (18) between { CqA(T), C[IV(T)} and { CqA(T’l) , C;(T’l)}. The conclusion and the
relation (18) are useful to determine the forms of approximate eigenvalues and the expressions of the
normalized eigenvectors of H, as well as to calculate the determinant of the matrix consisting of the
eigenvectors in the actual calculation process.

2.5. Approximate Method for Solving the Eigen Equation (16)

It is very difficult to find the exact eigenvalues of H by solving the eigen Equation (16). On the
other hand, the operator f[l 4)111121088‘7 in (8) allows us to ignore all terms whose orders are higher than
¢% (=¢q) (9=1,2,---, Q) inall eigenvalues of H. According to this key property, we can obtain the
exact expressions of (07,107, 1+ by only finding approximate eigenvalues of H.

Q /
Concretely, as the first step, the term 2 ) sinh24>qH @

with the factors sinh2¢q in (10) can be
q=1

ignored, since sinhngq ~ 4)3 have <p§ order. Then, from (11) we see that H(%) in (10) is a diagonal matrix,
whose eigenvalues and eigenvectors are summarized in the following formulas:

HOYY, = etlry® (n=1,2, ..., N =2M);
0 T 0 0
Tn,)i:{lpno?l,i q);go,)m,j: IPSLO?N,i} /q)Ez,)m,i:|:0:|(m7én)/
19
[ (1) } , for the eigenvalue el [ 8 ] , for the eigenvalue eln, (19)
11)(0) _ 1I)(O) _
n,n, + 0 n,n, — 0
[ 0 } , for the eigenvalue e 177, [ 1 } , for the eigenvalue e L7,

which are as the zeroth order approximation of the eigen Equation (16).

Q
The term ) sinh2<qu(‘1) with the factors sinh2¢,; ~ 2¢, (9 =1, 2, -+, Q) in (10) can be regarded
g=1
as a perturbation term. Then, by using RSPT, we can obtain the approximate eigenvalues of H.

However, although what eigenvalues we need are only corrected to the cp;(: ¢;) order
(g=1,2, ---, Q), we must calculate the perturbation terms up to the Q-th order, not only for the

Q
first-order approximation, because all of the terms with the factor [] sinh2¢, appear in the Q-th order
q=1

eigenvalues and are needed, which only include the 4)% order for every ¢;.
However, if we calculate the eigenvalues up to the Q-th order by using RSPT, then not only
the actual calculation process is very complex, but there are also many unwanted terms with factors

Q
gb’,; (k > 2), for example, the term with the factor sinh®2¢; ] sinh2¢,, in the Q-th order eigenvalues.
q=4

To take out those terms with factors 4);‘ (k > 2), we change “finding the eigenvalue up to the Q-th
order” to “finding the eigenvalue through Q times first-order approximation”.

Q
Concretely, since now H = H®) 4 sinh24>qH(‘7), we first consider the matrix H®) + sinh2¢p;H),
q=1

in which the eigenvalues and eigenvectors { 7, ‘I’(O)} of H are given by (19) and sinh2¢; H() is as
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perturbation term. By only calculating first-order approximation we obtain all eigenvalues and eigenvectors
{ (), ‘I’(l)} of HO) + sinh2¢; H(; therefore, all terms in { 7, ‘I’(l)} only correct to the ¢! order.

Then, we consider the matrix H(®) 4 sinh2¢; H(!) + sinh2¢,H(?). Since now all eigenvalues and
eigenvectors { (), ‘I’(l)} of HO) 4 sinh2¢; H()) are known, we regard sinh2¢,H(?) as a perturbation
term, and, by only calculating the first-order approximation, obtain all eigenvalues and eigenvectors
{ 72, ¥(2) } of HO) + sinh2¢y HM) + sinh2¢,H?), in which all terms are only of the ¢1 and ¢} orders.
In particular, all of the terms with the factor sinh2¢;sinh2¢, ~ ¢1¢» remain.

Then, we consider the matrix H(®) 4 sinh2¢;H() + sinh2¢,H® + sinh2¢3sHG). Since now all
eigenvalues and eigenvectors { 72, ¥ } of HO) + sinh2¢ H(V 4 sinh2¢, H?) are known, we regard

sinh2¢3H®) as a perturbation term, and, by only calculating the first-order approximation, obtain all
eigenvalues and eigenvectors { 703), ¥ } of HO + sinh2¢p;HM) + sinh2¢,H?) + sinh2¢;H®),
in which all terms are only of the ¢!, ¢1 and ¢} orders. In particular, all of the terms with the factor
sinh2¢;sinh2¢,sinh2¢3 ~ ¢1¢Pr¢3 remain, and, many unwanted terms with factors sinh22<p1 sinh2¢»,
sinh2¢,sinh?2¢3, etc., do not appear in the eigenvalues of T(%).

We follow this approach up to sinhZchH(Q) and every time we only calculate thr first-order

approximation, which leads to the eigenvalues and eigenvectors { 7(Q), ¥(Q } of all terms being only

Q
of the gb; (= ¢q) order. All of the terms with Hl sinh2¢, remain, and at the same time those unwanted
q:

terms with cp’q‘ (k > 2) do not appear.
On the one hand, the above approximate method allows us to actually carry out the calculation

process to find the eigenvalues and eigenvectors of H. In particular, once we obtain { 7, ¢ },

we can obtain Y] by the spinor analysis method, as well as obtain (¢q, 107 ) in terms of (8) and (9).

Once we obtain { @), ¥(2) }, we can obtain Y, by the spinor analysis method, and, further, obtain

(09,107, 3) in terms of (8) and (9),- - - . Generally speaking, once we obtain { (@), (@) }, we can obtain

Yq, and, further, obtain (03, 107, 144)-

On the other hand, since RSPT is irregular, when Q is very large, e.g., Q = [I;] , the above

approach no longer functions. Hence, by this approach we can only obtain the exact expressions of
correlation functions when Q is a small number, for example, (o1 101, 2) , (01, 109,3) , (01,101, 4) , - -,
etc., which belong to the short-range order, but we cannot obtain the exact expressions of correlation
functions when Q is larger, for example, <c71, 107, [N/2]+1>, <c71, 107, [N/2}>, <c71, 107, [N/z],1> , o, ete,
which belong to the long-range order.

2.6. Recurrence Formulas of the Eigenvalues and Eigenvectors {T(Q), ‘I’(Q)}

According to the discussions in the above sub-section, we first regard sinh2p;H() as a

perturbation term, and, by using RSPT, evaluate eigenvalues and eigenvectors { (), ‘I’(l)} of

the matrix H®) 4 sinh2¢;H() up to the first-order approximation. However, according to (7),

+LD

) ) ) ..
all eigenvalues e are doubly-degenerate; and, except e*172m and e*L7u, all the remaining

eigenvalues eiL%(f) are also doubly-degenerate. Hence, for doubly-degenerate eigenvalues of H(?),

we must use the degenerate perturbation theory; the results obtained up to ¢] order are as follows.

(1) _ sinh2¢, cos? Q,g 2 (1) _ sinh2¢q sin? 9,(11 Y 5(1) 1) _ sinh2¢;
mo T M 2 P T Ty 2 oM =M= T

(20)
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(1) o o)
cos oM cos oM isin
(0) _ 2 2 (0) 2 (0)
Ay, = —2 5 v ¥ ,
4, 1,1 I+ )
m 72 = | hL(%(m —i) S L)
Lfm, 14 sinh———>—= sinh——————=
1 (1) (1)
0) isin 0’% | M isin 912 (0) M o8 612 )
AY -2 5 v _ ¥
S, 1, I+ LE |
m, =, 11 /2 )5 L(”rlm _%ﬂu)) = L<%(N)+75nm) 2
sinh——m———— 2~ sinh———2%
L, 1 2 2 1)
oV e
© _ M ) 0 M ) )
AY -y v _ ¥
M, £, | 1, + 1 4
P hL<%<U_7§\ﬁ)> = hL(%M”gﬁ)) ¥
Z#M sin f S1n. f
o) o)
(0) M 7 (0 M ) (0)
AY - ¥ v _ v
2M, +, | I, + I, F
=1 L(n” ) =L+ nd)
1 +£2M smhf smhf

In Table 1, (20) and (21), the values of m’ and m are exactly the same as those in (7).

Table 1. The eigenvalues and eigenvectors of H(®) + sinh2¢; H(1) corrected to the cp% (= ¢1) order.

Eigenvalue { T(l)} Eigenvector { ‘I’(1>}
() (1) 1 .0 (0) sinh2¢;  (0)
et ) E(Ym,i ~Yos) = =51 AYmaau
(1) _ g1) 1 0 0 sinh2¢, 0
ei(L')/m 7/3m,T¢) ﬁ (Y;(n,)i -+ ‘Yin/),:t) — M A‘Yf(n,):t,Tl,,H
1), ) (0) sinh2¢; (0)
et Ly +oy) Yore = s A,
(O (0) sinh2¢, (0)
e (Lram+oom) ‘YZM,i T TaM A‘IJZM,:E,J,

From Table 1, we see that all eigenvalues { T(l)} of HO®) 4 sinh2¢;H) are nondegenerate.
Hence, all degenerate eigenvalues of H(?) are relieved by sinh2¢;H!). Thus, when we calculate
the eigenvalues and eigenvectors { 72, ‘I’(Z)} of HO) + sinh2¢;HY + sinh2¢,H?), we only need
use nondegenerate perturbation theory; this is applicable up to sinh24)QH(Q). Further, since from
{ (@), ‘I’(q)} to { T(@+1), ‘I’(@H)} (g=1,2,---, Q—1), weneed only to calculate the first-order
approximation in terms of sinh2¢, 11 ~ 2¢; 1, and the corresponding recurrence formulas are:

(1) _ o) | S2P01 o)y i) g )

o M (T @)
. q (g+1)gl4
(g+1) _ (g Snh2¢,pq 4 (F7) HYTUE," o)
Y. =Y - —= ¥ Y, (22)
2M 121 Tz(q) . T,Sf)
l#m

(m=1,2,---,4M;g=1,2,---,Q-1),

In the calculation, all terms including the <p’l; (k > 2) order are ignored.
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In principle, by following the above approach we obtain the eigenvalues { 7(Q) } Furthermore,
considering that up to the first-order approximation for ¢;, we have 1 + Csinh2¢, ~ eCsinh2¢q  the
eigenvalues { 7(Q) } of H can be denoted by the forms:

:k:(L'yEnTL) +a£nQ)

(1) _5(Q) 1 sQ | Q
1) eE LB ) o+ (o)

e

where the value of m is exactly the same as that in (7).

Based on the above forms of the eigenvalues { T(Q)} and using the spinor analysis method,

we obtain:
™M, ,Q M _ Q)
~ M L +a M Lym’ — B,y
Yo = H cosh% I1 2cosh7fﬁ’T
1=1 m=1
(Q) M _ 5Q
M L M Lywm’ — B,
(H 2sinh ’Y] T) (]_[ ZSinh’Yz'[M)
1=1 m=1
23)
Q) ) 4 5Q [ RN(0) ) _ 5Q (
L 532 L 1) M-1 L +a M-1 L
+ 72M+ M 2cosh7%vl oM 1T 2cos M Ld IT 2cosh Py
2 =1 2 m=1 2
) | Q) ) (Q) () _ Q)
L sQ L k) M-1 L +a M-1 L
+ 72M+ 2M 2s 'nhi’yM +ou T1 ZSinhiyl L T1 ZSinhiym ‘Bm’i .
2 =1 2 m=1 2
Finally, according to (8) and (9), we obtain:
1% 9 .
(o1,101,140) = 5 (I T Jim =)o, (24)

where Z and Y/Q are given by (6) and (23), respectively.

2.7. The Exact Expressions of (01,101, 2) and (01,101, 3) on a Finite Lattice

Although in Section 2.5 we presented a simplified approximate method, the actual calculation
process of (01,101, 14¢) is still complex; here, we only present the expressions of (01,107, 2) and
(01,107, 3) directly.

When Q = 1, substituting zx(l)

moAL ,BE;), "y 51(\/11), and 55}& given by (20) into (23), we obtain 171, and,

further, we have:

v M (1) M\ /M OGS
lim m _ Y €S b tanh LYm I1 2 cosh "
LM 2 2

$1—00¢1 =1
Y 2

M cos 6,(11) 'y,(ﬂﬁ M ’y,(

+ X th T1 2sinh
(m—l M 2 I=1
() () _ () )

1 Tom 1 Lypy | M1 cos Oy Lyn

—I—<2Mtanh 5 +2Mtanh > +m§l i tanh 5

5 (25)

@) ) (@)
L L M-1 L
(251nh 722M> (25 inh ,YM ) (H 2sinh i )
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Substituting Z given by (6) and the above expression into (24), we obtain the expressions of
(01,107, 2) of the model on a finite lattice:

1 Y;
01,10 = = lim —. 26
(01,101, 2) 7 im 5 (26)
Then, using { M, ‘I’(l)} presented in Table 1, (20) and (21), and according to (22), we obtain

{ 7(2) }, which can be denoted by the forms:

NI )

. ) LB ) ) Tl
where
inh2 inh2 0 inh2
1002 cog? Ok in0. sinf, si .
sinh2;sinh2¢, zﬁd €Os” -~ Cos™ - Cos Pm COS @ — SIN Uy, SIN G SIN @y SIN P
4M? —1 eLlvm—m) —1
k#£m,k#m
A 20m . o bk 0. sind. si .
sinh2¢sinh2¢, 2M 4€0S” = SIN" =~ COS @i COS Py + 5In Oy I By SIN o SIN P
4M2 k=1 eL('Ym"F')’k) —1 ’
2 sinh2¢; + sinh2¢, . , 6 sinh2¢, .
- - oM — 4sin? 2 sin? O COS @y COS @ + sin By, sin 6y sin @y, sin @y
, sinh2¢1sinh2¢, 5 2 2
AM2 i 1 — e LOym—")
k#m, k#m'
L R . . . .
sinh2¢; sinh2¢, 2M —4sin - COS” - COS @y COS @i — sin Brm sin O sin @y, sin @y
=+ 4M2 kgl 1— e*L('Ym""q/k) ’
(2) _ sinh2¢; 4 sinh2¢,  sinh2¢;sinh2¢,  2M 1 2 919) )
M = 2M Y a0y, O T
k=1 eL('YM_’Yk )_1
k# M
. . i
__ sinh2¢;sinh2¢, 2M 1 sin2 Q cos (PM
2m? k=1 LW +1) _q 2 ¢
. . . . {
5@ _ sinh2¢; + sinh2¢» n sinh2¢;sinh2¢, 2M -1 1 cos? £ cos go(@
M 2M 2M? =1 oLOs—n) _q 2 ¢
sinh2¢; sinh2¢, 2M 1 o 9;&“ )

sin® ——cos @,
2m? k=1 L1 _q 2 k

In the above expressions, the values of m’ and m are exactly the same as those in (7). We see that
all terms with the factor sinh2¢sinh2¢, remain in the above expressions.

Substituting the above expressions of zxfnz), Ny ﬁg), Ny (5](\31), and 55\2[ into (23), we obtain 172, and,
further, we have:
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N ) 2
lim — lim —=
$2—00¢ ¢p1—0 ¢y
2
I W,S,T) hL%(nT) 1 M 12coszq),<,j)—sin29£,f) M 1 o) hL%(nT)
B mgl M T2 T M Lyl Z_Jlﬂcos ' tanh——=
B - 2 LYm m=
cosh® ——
) 2
(1)
M L
x| TT 2cosh U
=1 2
2
mow) Lyt 1M 12coey) —sintey) (M1 oy Loy
* mX—;1 M cot 2 2M, 5 M L) EIMCOS i’ cot -
- B s 125 m m=
sinh —

2

)

M L

x| TT 2sinh—1
=1 2

() ) (€3] () ) ()
W, L. W, Ly M=1 W, Ly
2M 2M M M m m
+ << M tanh 2 + M tanh 2 + m§:1 M tanh 2 >

1|1 1 1 1 M=1 1 2cos? ) — sin? 6}

+ o "M Tt Ly - 27)
2 Lrom 2 Lym m=1

cosh — cosh 5 cos

R 2 VR TS ¥ G R VIR Y AN
+| =—tanh—2M | _—_tanh—M | 'y —cos@,(n)tanhTm

2

2M 2 ' 2M 2 e M

(1) ) _ )

L L M—1 L

X (2 cosh ’YZM) (2 cos M ) < TT 2cosh i )
2 2 p 2

() ) (€3] () ) ()
W. L W L M-1
+<<2Mcoth Tam + M coth T + Y W LothL,yzm >

2

2M 2 2M 2 ETM

1|1 1 1 1 M-1 1 2co8? glf) — sin? 63

_ 1L : 3 I
2M | 2Mm 2L'Y21(\4) M sinth’YzS")

4 2M
sinh? % sinh

1 L LB g W Ly 2
+ mcoth 22M + ——coth—M 4+ Y — cosfy; cothTm

2M 2 =M
2

@) ) )

L L M-1 L

X (251nhm> (25inhm> ( IT 2sinh R > ,
2 2 =1 2

where W,Ef“ is introduced by:

0 0
1 oM 4 Coszim cos? Ek COS @y, COS P — sin B, sin B sin @y, sin @y
Win = 57 D
k=1

k#m, k#m

eL(’Ym*’Yk) -1

26

Om . . . . .
om 4 cosZTm sin ?k COS Py COS P + sin B, sin b sin @y, sin @y

+ X

k=1 eL('YmJF'Yk) —1 (28)

2 Ok . . . )
— COS @ COS ¢ — sin O, Sin Oy sin @y, sin @y

oM 4sin20—msin

+ r 2
k=1

k#m, k#m

1—eLlym—m)

0 6
oM 4sin? 7’" cos? 5" COS @y, COS P + sin By, sin Oy sin @y, sin @y
+k§1 1 — e Llymt+m)

where the value of m’ is exactly the same as that in (7).
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Substituting z given by (6) and (27) into (24), we obtain the expressions of (o7 107 3) of the model
on a finite lattice:
d oY,

lim 29
Z¢ﬁ0 oy 471%0 Er) 29)

(01,101,3) =

2.8. The Expressions of (01,107, 2) and (01, 101, 3) in the Thermodynamic Limit

We now consider the thermodynamic limit. First, if L is very large, then according to (7) we have:

(14) L (14) PPN N (Y )

L
2 cosh ,YZ ~ 2sinh—2— ~ exp ,YZ stanh 7;1 ~ coth 731 ~1(m=1,2---M);

)

However, when the system crosses its critical temperature, 7,;; = 2(K — K’) changes sign,
following which we therefore have:

) L0 LW L LW L) (1)
2 cosh —=% VZM ~ exp ’22 ‘ , 2sinh ,Y r —2M exp );M‘,tanh 'YZZM ~ coth '72M ~ _T2M

’%M‘ ")/ZM‘

Hence, for Z and (th g:g given by (6) and (25), respectively, when L is very large, we obtain:
1—00¢1

oM N\ (M LW (1)
YA IT exp —2 + [ IT ex
2 m=1 2 m=1 2

() 2 ) 2
+exp Mexp Tm ( I exp L ) + ‘7%‘/)1‘ exp ’ 22 ‘ exp Asz ( IT exp Dyé") (30)
- Tam

=1 2 m=1

) L) 4 JABASY L _ )
1 1 Tom 1 M=1cos 0, Yom ”YZM Ly M-1 L'y’
+ (21\/1‘7 ] M TR Dy v b BE] &P &P e —
2M 2M
2
(M cosG,S) M L’ym 1,K<K;
= (nzl M TLep—==] X9 5 ko k.

Substituting the above two expressions into (26), we obtain:

) ) (1)
cos 0, 1 M coséb 1 2M  cosé
i =1 = i - m - m
L 1—I;noo <Ul 1 2> Mlgn”mzl M Mlgloo <2mZ=:1 M + 2m=M+1 M >
N — o (31)
N cos 9,(1“ 1
= lim ). = [, dxcosf(mx),

N—o0,;—1
where the function 6(7x) in terms of (14) is defined by:

cosh 2K’sinh2K — cos(7tx)sinh2K’ cosh 2K

cos 0(mx) =

\/(cosh 2K’ cosh 2K — cos(7x)sinh2K’sinh2K)* — 1

sin(7tx)sinh2K’ (32)

sinf(mx) = .
\/ (cosh 2K’ cosh 2K — cos(mx)sinh2K’sinh2K)? — 1
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The result (31) is in accordance with that in Reference [8].
According to the similar discussions, for (o7 107 3) we first have:

M (M M 1) 2
Wi, cos 6
lim  (07,109,3) & lim E —— 4+ ( lim E ). (33)
L — oo L 500 ma M Moo = M

N — o M — o0

(+)

We discuss the first term in (28) as an example to show how to calculate Llim Wi,
—00

. First, using (7)
and (15), the first term in (28) can be written in the form:

NO RO

1 2% 4 cos? r; cos? k2 cos gog,j) cos qo( ) _sin 9,(2) sin GIET) sin qo,(nT) sin q),(f)
2M o — oL ="y
k#m,k#m
(1) oM
1 M 4cos26% cos? kT cos (p,(nT) cos q),g) —sin 9,(,?) sin 91& ) sin q),(nT) sin (p,(( )
-— ¥
M T oL =) 4
k#m
g1 g1
1 m—1 4 cos? ’; cos? k2 cos (pg) cos q)( ) sinOfnT) sin9,£ )51nq0,(nT) sin cp](( )
Y= " oL =) _ ¢
) ot
. 1 % 4(:0529% cos? kT cos (p,(nT) cos gol(c ) _sin 9,51) sin 9,5 ) sin q)gj) sin q)( )
M1 oLl =) _ 4

(T)
According to (7), when k < m, 7IET) 'y( 1) 11m eL(W n) = 00, and, thus, the first term in the

. . (M _ .M .
above expression vanishes; when k > m, ’y,({ ) > 'y( ) hm el =) = 0, we therefore obtain:

) p(M
1 M 4 00529% cos? kT cos q),(,p cos (p,(f) —sin 9,(,1) sin 9]9) sin (pg) sin q)l(j)

lim — Yy

L—0o2M k=1 eL('y,(,,T)f'y,g)) -1

k#+m,k#m
(M oM
1 M 4 Cosze% cos? kT cos (p,(nT) cos go,(c D _sin Gm sin GIET) sin (pg) sin (p,(f)
B Mk:%—&-l -1

Using this method to deal with the remaining terms in W,g), we finally obtain:

M M
lim W,(,,T> = 3 < Yy sin 9,(1?) sin GIET) sin q),(ﬂT) sin go,iT> — Y cos 9,(,1T> cos BIET) cos (p,(ﬂﬁ cos go,(j)

L—eo M\ k=11 k=m+1

2
m+1 2 ) anT) anﬁ
+ Z cos q)gn) cos go](( >> i (2 sin? - cos? - cos? q)gnT) — cos gofnT> cos (p,(nql .
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As M — oo, the second term in the above expression vanishes, and, according to the definition of
the Riemann integral, we have:

lim w,EP = 2fx1 dy(sin 6(7x) sin 6(7ty) sin(7tx) sin(7y) — cos 6(7x) cos O(7ty) cos(mx) cos(my))
L — o
M —

+2 [, dy cos(mx) cos(my) ,

1
where the function 6(7x) is introduced by (32), x = % Further,
: M WmT) 1 1 . . . .
lim Y M = 2 [, dx [, dysin 6(mx) sin 6 (my) sin(7x) sin(7ty)
L — oo m=1 (34)
M — o0

—2f01 dxfx1 dy cos 0(mx) cos 0(my) cos(7x) cos(my) + Zfol dx [ dy cos(mx) cos(my) .

Generally speaking, for the function f(u, v) and the domain D of the integration shown in Figure 1,
we have:

ffdudvf(u, v) = /ab du/au dof(u, v) = /ﬂbdv/vb duf(u, v). (35)
D
VA
b
(a.a) b ?

Figure 1. The domain of the integration in (35).

Using (35), for the first term in (34) we obtain:

Zfol clex1 dy sin 6(mx) sin 6(7ty) sin(7tx) sin(ny) = 2]01 dx sin 0(7x) sin(mc)fx1 dy sin6(my) sin(mty)
= fol dx sin 0(mx) sin(mc)fx1 dy sin6(my) sin(my) + fol dy sin 6(my) sin(mty) [ dx sin 6(rrx) sin(7x)
= fol dx sin6(mx) sin(mc)fo1 dy sin6(mty) sin(my) .

Likewise, the second term in (34) becomes:
—Zfo dxf dy cos (mx) cos 0(my) cos(mx) cos(my) = —fo dx cos (mx) cos(mx fo dy cos8(my) cos(my) .

Further, the third term in (34) vanishes due to:

/ dx/ dy cos(mx) cos(my) = / dx cos(7x) sin(7tx) = 0
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Therefore, (34) becomes:

M wh . .
lim Y Wm = [y dx sinf(mx) sin(mx) [ dy sin 6(7y) sin(7ty)
L — oo m=1
M — oo (36)

—f01 dx cos6(mx) c:os(mc)fo1 dy cos 6(my) cos(mty)
= —fol dx cos(6(mx) — 7'[x)f01 dy cos(0(my) + my) .

Substituting (31) and (36) into (33), we obtain the form of (o 107, 3) in the thermodynamic limit:

2
lim (09,109, 3) / dx cos(6(mx) mc/ dy cos(8(my) +my) + (/ dxcos()(mc)) . (37)
L — o0
N — o0

On the other hand, the expressions of <(71, 107, 1+Q> in the thermodynamic limit have been
obtained [3,5,9]. Thus, we here cite the formulas (B6) and (B7) in Reference [9] for comparison.
According to those two formulas:

1
lim (oy,101,2) =4ap, lLm ({01,101, 3) = allo Zl =a%—ma_y;a, = ffon dwcos(f(w) —rw). (38)
L— o0 L — o0 -1 %0 m
N — oo N — oo

where 6(w) is the function ¢ * (w) in Reference [9]. We see that (31) and (37) obtained here are exactly
the same as (38).

3. Long Range-Order in the Model with Periodic-Free Boundary Conditions

For the model with L rows and N columns and periodic boundary condition in the horizontal
direction and free boundary condition in the vertical direction, we consider <0’l 001 >, i.e., correlation
functions of pairwise spins in one column, periodic boundary condition in the horizontal direction
leads to:

1

() =) =70 E

H MP‘
i M=z
T t’]r-'

Z: l,mo'l,erl) ’ (39)

01,101, eXP(LT 10’ ,mUI+1, m) eXP(%

where

! L N-1
Zo= ), eXP(,c]TZ Y 01, w014, m> eXP<k]TZ Y o wmor, m+1> (40)

{on, o=%1} 1m=1 =1
is the partition function of the system in absence of a magnetic field, where 0711 = 01, 1, J'(> 0)

and J(> 0) are the interaction constants for the horizontal and vertical directions, respectively.

3.1. Some Results Concerning the Partition Function Zg

We summarize some results concerning Zy given by (40), some of which are obtained in
Reference [12]. However, the approximate values of some quantities presented here show improvement
over those given by Reference [12].

By using the spinor analysis method, Zj is obtained in Reference [12]:

LN
_ 2]/ N L’)/nfl
Zy = (ZSmh kT) H (2 cosh — ) 41)

n=1
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where v, 1 (n =1, 2, ---, N) are determined by:

!
cosh y,_1 = cosh 2K’ cosh 2K — x,,_sinh2K’sinh2K,e 2K = tanh— , K I

kKT’ kT’ (42)

where (n=2,3,---, N)(n=1,2,---, N) are N roots of the N-th order algebraic equation in x:

gn (%) — 2¢n_1(x)coth2K'tanhK + gn_2(x)tanh?K = 0, (43)
where /2]
n/2
_ (n+1)! n—2k;.2 4y k
gn(x) = ,;0 Gk —2t @D 44
d+d!

is an n-th degree polynomial in x. If by x =

we introduce the quantity d, then g, (x) can be

written in the form:
gntl — g—(n+1)

gn(x) = ————=— (45)

The expression in (45) is not only simple but also convenient for investigating the properties of

i 1
w. Substituting these forms of g, (x)
sin ¢

into (43), for the N — 1 roots of the N-th order algebraic Equation (43) we obtain:

<n(x), especially if we assume x = cos ¢, then g, (x) =

(Tl — 1)7'[ + Qn_l

N ,0<0, 1<n(n=2,3,---, N), (46)

Xpn—1 = COSPy—1,Pn-1 =
Further, 6,,_; can be determined by solving a transcendental equation about 6; if N is finite, then the
evaluation of 6,,_; is complex because of the so-called “finite size effect”; for the limit case (0} 107 n ), we can
(k)

© 6

n—1
assume 0, 1 = ; N

and obtain 6,,_1 by the iterative method. Further, we obtainy;, v2, -+, Yn-1

1
in terms of (42). Concretely, correcting to N order, we have:

X;_1 = COS —(n —Dnt 07(1[?1 Tn-1 7~ ’)’(O) + 2sin (n=Ur+ 951021 sin 9’(21 sinh2K’sinh2K
" N rme n—1 N 2N Sinh,y’(g1 " (47)

(n=2,3 -, N)

where 7(0) and Gno_)l (n=2,3,---, N) are introduced by:

n—1

cosh 7;(1()21 = cosh 2K’ cosh 2K — cos WSinhZK’ sinh2K , 71(1()21 > 0;

-1
cosh 2K’sinh2K — cos (nTMsinhZK’ cosh 2K = sinh'y’(ﬁ1 cos 97(21 , (48)
-1

sin %{sinhﬂ(’ = sinh')/gl sin GIEO) ,0< 91(1()21 <.

More important are the values of xy and 7y; to present xg and 7y, we first introduce a temperature
T, in terms of:
2]
J

tanhK'. —e KTe, K, = = (49)
C

B sinh2K’..
= sinh2(Ke — K'¢)
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tanh2K
When T > T, 0 < xg < 1; however, when T < T, K’ < Kand 1 < xg < oK For the limit case

N — 0o, we can obtain the approximate values of xg and yg, whose low-order approximations are:

cos T>T, K >K;

N/
i
v~ {8y
1 ( tanhK  tanhK’ ) B <tanhK’ )2N (cosh 2K — cosh 2K’)?

tanhK’ * tanhK tanhK sinh2K’sinh®2K

T>T, K =K; (50)

7 T<TC/

.o 7 sinh2K’sinh2K

I e o el o e > ! .
20K = K) 4280 g e — &y | 2 T K> K

Yo~ { 2sin msthK T>T, K =K; (51)
tanhK’ \ N cosh 2K — cosh 2K’ T<T
tanhK sinh2K ’ €

We can thus make a comparison between Onsager’s lattice and the model with periodic-free
boundary conditions. For Onsager’s lattice, when the system crosses its critical temperature,
75\,7) = 'yg/} = 2(K — K’) given by (7) changes sign; however, from (51) we see that, for the model with
periodic-free boundary conditions, when T > T, v ~ 2(K’ — K). Once the system crosses its critical
temperature T, g becomes exponentially smaller and then vanishes rapidly as N — co. This property

of 7o plays a key role for the correlation function (o}, 107, N)-

3.2. The Matrix Forms of <¢71/ 1071, N_Q> and Some Results Concerning (o1, 101, n) Obtained in Reference [12]

If we write (39) in forms similar to (8), then by employing the method presented in Section 2,
the exact expressions we can obtain are still (¢q, 107, 2) , (01,1071, 3) , - - -, which belong to the short-range
order. We still cannot obtain the exact expressions of (0} 107 ), (07 107, N—1) ,

To obtain the exact expressions of (07 107 n), (07,107, N—1) , - - -, We consider the forms:

1 J L N J L N-1
(01,100, N-n) = —— L 01,101, N—n€Xp Y Y 0, m0is1,m ) exp L X 0, w0, m (52)
20 (g, s=t1} kT 2z kT (2 iz
ae"w—l,lo'l,m
Taking advantage of (712 =land oy 01, = 111’1(1) o we have:
’ a—

01,101, N—n = 01,101, NU1, NO1, N-1 """ 01, N—(n-2)Y1, N—(n—1)Y1, N—(n—1)91, N-n

— (ﬁ lim a) lim J <e/3NU’1 , 1071, Nnﬁl eﬁk+101 , N-k01, N(k+l)>
k=1Bc—00Bk ) Bn—00BN k=0

Further, (52) can be written in the form:

LN
1 2! I I U
(01,101, N—n) = Z <2 hkT) (H g;gowc)ﬁ%rgo%ﬂ(w)' (53)

where the matrix W belongs to the spin representative, and, by employing the method presented in
Section 2, we can obtain the exact expressions of (07 107 n), (07,101, N—1), {01,101 N—2) ,

However, to save space, here we no longer discuss (07 107 y—1), (07,101, N—2) , - -, but only
consider <0‘l, 107, N>, for which a closed formula was given by Reference [12]:

LN
!
i]T > lim 2¥ (54)

<¢71, 101, N> 4Hoa4>

Zl <2 inh
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(+) (+) (+) (+)
[(N+1)/2] Xoor (N/2] _ [(N+1)/2] o N/2] _
y— 1( 1 2cosh 22 1)) ( 1T 2cosh sz 1) +1< T 2sinh 22 1)) ( [T 2sinh Xom— 1)
2 2 2 2 2
(55)

1=1 m=1 1=1 m=1
1 (104172 Xl \ (/2 ) 1fivea ol (v e
+= IT 2cosh H 2 cosh —~2"—= 2"1 L) I 2sinh TI 2sinh——2"— 2'" 1,
2 1=1 2 2 1=1 2 m=1
where )(é?i)_l) and xgill are determined by:

(+) N+1 (+) N
X1 + . +
e'2(-1) = TZ((I) 0 (l =1,2, -, |:2:| ), eXom-1 = TZ(mll (m =1,2,---, |:2:|) , (56)

T,Si) n=1,2,---, N)are N roots of the N-th order algebraic equation F+(7) = 0, where
g q

[((N+1)/2] [N/2]
Fi('r) = ( 11:11 (T e Lr2p-) _ 1)) < I:[l (T elvam—1 — 1)>
[((N+1)/2] [N/2]
Ftanh¢ ( I (r e Lrap-) _ 1)> ( II (T elvam—1 — 1)
=1 m=1
[((N+1)/2] [(N+1)/2] [N/2]
F4tanh¢ ):1 (2%("_1) 11 (T e g1 1) < Hl (T elvam—1 _ 1)) (57)
"= =1 m=

=1

(N/2) [(N+1)/2] . N/2)
Ftanhp ¥ 2 (Te_ 72(1—1)4) T (tel—1) ||,

m=1
m#n
where
. / 1- xn 1
0,,_1 = sinh2K’ cosh K (n=1,2,---, N) (58)
Nsinh? Yn—1 + cosh y,_1 cosh 2K’ — cosh 2K

are the normalization constants of the eigenvectors of a rotation matrix [12], as N — co. Thus,
according to (47)~(51), we obtain:

1 . (n—1)msinh2K’ coshK
lim O ~ =23 ... N
Nlinoo n-l \/NSHl N Sil"lh’)/nfl (7’[ T ! )/
1 inh?2K’ cosh? K
sin? SIS OS2 r s T KOS K
s 2o ! 2
lim (3 1 sinh"2K’ cosh” K T>ST K —K-:
N=veo N sinh2K 7 < ’
h2K — cosh 2K
€os CZOS T<Te.
4sinh“K

3.3. An Exact Expression of (01,101, N) on a Finite Lattice

In Reference [12], all roots of the equation F. (T) = 0 are obtained by correcting to the e =20 order
of magnitude (Cy is a positive constant). These approximate roots can lead to the exact expression of

<0’l, 107, N> in the thermodynamic limit, since lim e LC = 0, but cannot lead to the exact expression of
—» 00

(07,107, N) on a finite lattice. Hence, the expression of (07 107 ) presented in Reference [12] is only an
approximate result.

On the other hand, similar to the analysis in Section 2.5, the operator lim — 9 ;

—00¢
all terms whose order is higher than ¢!(= ¢) in all roots of the equatlon F+(t) = 0. Hence, to obtain

in (54) allows us to ignore
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the exact expression of })in}) g;:, we need only to find all roots of the equation F+ (7) = 0 corrected to the
%

¢'(= ¢) order, The corresponding calculations are in fact simpler than those required of find the roots
corrected to the e~ order of magnitude in Reference [12]; concretely, we obtain:

+
Xg(l)fl) ~ Lyy- 1)i4Q 2(1-1)tanhe, sz | ~ =Ly £403, _tanh¢.

Substituting the above results into (55), we obtain Y correcting to tanh¢(~ ¢!) order:

[(N+1)/2] Lyo(_1) + 402, . tanh [N/2] Lo 1 — 402  tanh
Y ~ 1 ITI 2cosh 2071 2(0=1) 9 TT 2cosh V2m-1 2m-1tanhg
2 I=1 2 m=1 2
[(N+1)/2] Lyy_qy + 402, , tanhg\ /[N/2] Ly 1 —402 tanh
1 [T 2sinh 20-1) 2(-1) [T 2sinh Tom—1 2m—1tanhe
2\ 4 2 m=1 2
[(N+1)/2] Lys— — 402, tanh¢ [N/2] Lyo 1 4+402  tanh
—i—l( IT 2cosh 2071 2(021) IT 2cosh Yom—1 + 402y, tanhg
2\ 5 2 2
[(N+1)/2] Lyo(_1) — 402, . tanh [N/2] Lo 1 402 tanh
—é( 1 2sinh—2— 22“ Dl I (PN T s L anhg ).
1=1 m=1

Substituting the above result and (41) into (54), we obtain the exact expression of (7, 107, N) of
the model on a finite lattice:

[(N+1)/2] L,y [N/2] L - N Ly,
(01,101 ) :2< Z Qz(l He coth Z sz iC 722 1) <Htanh 72 1) (60)

Although the whole calculation process is complex, the final result (60) is simple.

3.4. The Expression of (01, 101, ) in the Thermodynamic Limit

To derive the expression of (07 107, y) in the thermodynamic limit, we first discuss some
properties of v,_1 (n =1, 2, ---, N).
For y,_1 (n =2, 3, ---, N) given by (47), we have:

lim Ly, _1 = oo, hm tanhL = lim coth Lraa _ 1(n=2,3---,N). (61)
L—o0 2 2

—00 L—o0

As for g, when T > T, from (51) we see that (61) still holds for 7y; however, when T < T,
from the last expression in (51) we see that maybe Llim L7y = oo does not hold. For example, if L = N¥,
—» 00

where a is a positive integer, then:

lim L hm N*. tanhk' ¥ csch2K(cosh 2K — cosh2K’) = 0
L0 = tanhK -
tanhK’
since now 0 < a <1,for0 < b <1, lim NN = 0. Hence, for Yo we have:
tanhK N—soo

1 Lyy = ¢ 1 tanh—— L=N* 62
L~>ool,n’llf~>oo 10 { 0, T<T,, L~>ool,nl‘\l]~>oo an { 0, T <T., ( ) ( )
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According to the above discussions, to obtain the expression of (07 107, 5) in the thermodynamic
limit, we first write (60) in the form:

L [(N+1)/2] Lyy— [N/2] | N Loy,
+2tanh’m( > Qg(lincoth ryzél v _ > .(2 1Coth% (H tanh%) ,
1=2 n=2

m=1

as L — oo, according to (61), the above expression becomes:

L’YO [((N+1)/2] [N/2]
LILHJOWL 101 N) ~ 203 + ZtanhT ( Z Qz(l n Z 03, 1) (63)
When T > T, according to (59) and (62), Equation (63) becomes:
[(N+1)/2] [N/2]
Jlim (03,101, ) ~2< Z 5y Z o/ 1)
Further,as N — oo,
/2 [N/2]
Z Q-1 Z 03,1 = Z 0; 4, (64)

hence, for this case . lim  (oy 109 n) =0.
—00 , N—o0
When T < T, according to (62) and (64), the second term in (63) vanishes, and (63) thus becomes
Llim (01,101, N) & 2(2%, where Q% is given by the last expression in (59) as N — oco.
—r 00

Summarizing the above results, in the thermodynamic limit, if L = N?, then (60) becomes:

0, T>T;
li oy 10 = — /
Lﬁool/ng[%oo( 1,101, N) cosh 2K (;oshZK T<T..
2sinh“K

The above result was obtained in Reference [12] in terms of an approximate result of (07 107, N)-
Some further discussions about the above result can be found in Reference [12].

From the above discussions, it is revealed how the changes of the values of v,_1 (n =1, 2, ---, N),
especially the change of the value of 7, lead to the change of L%mh',ngHoo (01,107, N) when the system crosses

its critical temperature T, as well as how the long-range order emerges as the temperature decreases.
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