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Abstract: Dynamic Bayesian networks (DBN) are powerful probabilistic representations that model
stochastic processes. They consist of a prior network, representing the distribution over the initial
variables, and a set of transition networks, representing the transition distribution between variables
over time. It was shown that learning complex transition networks, considering both intra- and
inter-slice connections, is NP-hard. Therefore, the community has searched for the largest subclass
of DBNs for which there is an efficient learning algorithm. We introduce a new polynomial-time
algorithm for learning optimal DBNs consistent with a breadth-first search (BFS) order, named bcDBN.
The proposed algorithm considers the set of networks such that each transition network has a bounded
in-degree, allowing for p edges from past time slices (inter-slice connections) and k edges from the
current time slice (intra-slice connections) consistent with the BFS order induced by the optimal
tree-augmented network (tDBN). This approach increases exponentially, in the number of variables,
the search space of the state-of-the-art tDBN algorithm. Concerning worst-case time complexity,
given a Markov lag m, a set of n random variables ranging over r values, and a set of observations
of N individuals over T time steps, the bcDBN algorithm is linear in N, T and m; polynomial in n
and r; and exponential in p and k. We assess the bcDBN algorithm on simulated data against tDBN,
revealing that it performs well throughout different experiments.

Keywords: dynamic Bayesian networks; optimum branching; score-based learning; theoretical-
information scores

1. Introduction

Bayesian networks (BN) represent, in an efficient and accurate way, the joint probability of a set of
random variables [1]. Dynamic Bayesian networks (DBN) are the dynamic counterpart of BNs and
model stochastic processes [2]. DBNs consist of a prior network, representing the distribution over
the initial attributes, and a set of transition networks, representing the transition distribution between
attributes over time. They are used in a large variety of applications such as protein sequencing [3],
speech recognition [4] and clinical forecasting [5].

The problem of learning a BN given data consists in finding the network that best fits the data.
In a score-based approach, a scoring criterion is considered, which measured how well the network
fits the data [6–10]. In this case, learning a BN reduces to the problem of finding the network that
maximizes the score, given the data. Methods for learning DBNs are simple extensions of those
considered for BNs [2]. Not taking into account the acyclicity constraints, it was proved that learning
BNs does not have to be NP-hard [11]. This result can be applied to DBNs, not considering the
intra-slice connections, as the resulting unrolled graph, which contains a copy of each attribute in
each time slice, is acyclic. Profiting from this result, a polynomial-time algorithm for learning optimal
DBN was proposed using the Mutual Information Tests (MIT) [12]. However, none of these algorithms

Entropy 2018, 20, 274; doi:10.3390/e20040274 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/4/274?type=check_update&version=1
http://dx.doi.org/10.3390/e20040274


Entropy 2018, 20, 274 2 of 15

learns general mth-order Markov DBNs such that each transition network has inter- and intra-slice
connections. More recently, a polynomial-time algorithm was proposed that learns both the inter- and
intra-slice connections in a transition network [13]. The search space considered, however, is restricted
to the tree-augmented network structures, resulting in the so-called tDBN.

By looking into lower-bound complexity results for learning BNs, it is known that learning
tree-like structures is polynomial [14]. However, learning 2-polytrees is already NP-hard [15]. Learning
efficiently structures richer than branchings (a.k.a. tree-like structures) has eluded the community,
that resorted to use heuristic approaches. Carvalho et al. [16] suggested to search over graphs consistent
with the topological order of an optimal branching. The advantage of this approach is that the search
space increased exponentially with respect to branchings, while keeping the learning complexity
in polynomial time. Later, the breadth-first search (BFS) order of an optimal branching was also
considered [17], further improving the previous results in terms of search space.

In this paper, we propose a generalization of the tDBN algorithm, considering DBNs such that
each transition network is consistent with the order induced by the BFS order of the optimal branching
of the tDBN network, that we call bcDBN. Furthermore, we prove that the search space increases
exponentially, in the number of attributes, comparing with the tDBN algorithm, while running in
polynomial time.

We start by reviewing the basic concepts of Bayesian networks, dynamic Bayesian networks and
their learning algorithms. Then, we present the proposed algorithm and the experimental results.
The paper concludes with a brief discussion and directions for future work.

2. Bayesian Networks

Let X denote a discrete random variable that takes values over a finite set X . Furthermore,
let X = (X1, . . . , Xn) represent an n-dimensional random vector, where each Xi takes values in
Xi = {xi1, . . . , xiri}, and P(x) denotes the probability that X takes the value x. A Bayesian network
encodes the joint probability distribution of a set of n random variables {X1, . . . , Xn} [1].

Definition 1 (Bayesian Network). A n-dimensional Bayesian Network (BN) is a triple B = (X, G, Θ), where:

• X = (X1, . . . , Xn) and each random variable Xi takes values in the set {xi1, . . . , xiri}, where xik denotes
the k-th value Xi takes.

• G = (X, E) is a directed acyclic graph (DAG) with nodes in X and edges E representing direct dependencies
between the nodes.

• Θ = {Θijk}i∈1...n,j∈1...qi ,k∈1.....,ri
encodes the parameters of the network G, a.k.a. conditional probability

tables (CPT):
Θijk = PB(Xi = xik|ΠXi = wij), (1)

where ΠXi denotes the set of parents of Xi in the network G and wij is the j-th configuration of ΠXi , among
all possible configurations given by {wi1, . . . , wiqi}, with qi = ∏Xj∈ΠXi

rj denoting the total number of
parent configurations.

A BN B induces a unique joint probability distribution over X given by:

PB(X1, . . . , Xn) =
n

∏
i=1

PB(Xi|ΠXi ). (2)

Let Nijk be the number of instances in data set D of size N, where variable Xi takes the value xik
and the set of parents ΠXi takes the configuration wij. Denote the number of instances in D where the
set of parents ΠXi takes the configuration wij by

Nij =
ri

∑
k=1

Nijk.
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Observe that,
Xi|ΠXi ∼ Multinomial(Nij, θij1, . . . , θijri ),

for i ∈ {1, . . . , n} and j ∈ {1, . . . , qi}.
Intuitively, the graph of a BN can be viewed as a network structure that provides the skeleton

for representing the joint probability compactly in a factorized way, and making inferences in the
probabilistic graphical model provides the mechanism for gluing all these components back together
in a probabilistic coherent manner [18].

An example of a BN is depicted in Figure 1. It describes cash compensation and overnight
accommodation to air passengers in the event of long flight delays. A flight may be delayed due to
aircraft maintenance problems or severe weather (hurricane, blizzard, etc.). Whenever the delay is
not caused by an external event to the airline company, a passenger may be entitled to a monetary
compensation. Regardless of the cause, if the delay is long enough, the passenger might be offered an
overnight accommodation. As a result of the dependences encoded by the graph, the joint probability
distribution of the network can be factored as

P(M, S, F, O, C) = P(M)P(S)P(F|M, S)P(O|F)P(C|F, S),

where only the first letter of a variable name is used: M—Maintenance problems; S—Severe weather;
F—Flight delay; O—Overnight accommodation; and C—Cash compensation. In this simple example,
all variables are Bernoulli (ranging over T and F). Inside the callouts only the CPTs for variables taking
the value T are given.

Maintenance problems

P(M = T) = 0.02

Flight delay

M S P(F = T|M, S)
T T 0.95
T F 0.2
F T 0.6
F F 0.01

Severe weather

P(S = T) = 0.03

Cash compensation

F S P(C = T|F, S)
T T 0.05
T F 0.7
F T 0.01
F F 0.02

Overnight accommodation

F P(O = T|F)
T 0.3
F 0.01

Figure 1. A BN example regarding airline regulations with conditional probability tables.

3. Learning Bayesian Networks

Learning a Bayesian network is two-fold: parameter learning and structure learning. When learning
the parameters, we assume the underlying graph G is given, and our goal is to estimate the set of
parameters of the network Θ. When learning the structure, the goal is to find a structure G, given only
the training data. We assume data is complete, i.e., each instance is fully observed, there are no missing
values nor hidden variables, and the training set D = {x1, . . . , xN} is given by a set of N i.i.d. instances.
Using general results of the maximum likelihood estimate in a multinomial distribution we get the
following estimate for the parameters of a BN B:
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θ̂ijk =
Nijk

Nij
, (3)

that is denoted by observed frequency estimate (OFE).
In score-based learning, a scoring function φ : S ×X → R is required to measure how well a BN B

fits the data D (where S denotes the search space). In this case, the learning procedure can be extremely
efficient if the employed score is decomposable. A scoring function φ is said to be decomposable if the
score can be expressed as a sum of local scores that depends only on each node and its parents, that is,
in the form:

φ(B, D) =
n

∑
i=1

φi(ΠXi , D).

Well-known decomposable scores are divided in two classes: Bayesian and information-theoretical.
Herein, we focus only on two information-theoretical criteria, namely Log-Likelihood (LL) and
Minimum Description Length (MDL) [19]. Information-theoretical scores are based on the compression
achieved to describe the data, given an optimal code induced by a probability distribution encoded
by a BN.

The LL is given by:

LL(B|D) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Nijk log(θijk). (4)

This criterion favours complete network structures, and does not generalize well, leading to the
overfitting of the model to the training data. The MDL criterion, proposed by Rissanen [19], imposes
that the parameters of the model, ignored in the LL score, must also be accounted. The MDL score for
learning BNs is defined by:

MDL(B|D) = LL(B|D)− 1
2

ln(N)|B|, (5)

where |B| corresponds to the number of parameters Θ of the network, given by:

|B| =
n

∑
i=1

(ri − 1)qi. (6)

The penalty introduced by MDL creates a trade off between fitness and model complexity,
providing a model selection criterion robust to overfitting.

The structure learning reduces to an optimization problem: given a scoring function, a data set,
a search space and a search procedure, find the network that maximizes this score. Denote the set of
BNs with n random variables by Bn.

Definition 2 (Learning a Bayesian Network). Given a data D = {x1, . . . , xN} and a scoring function φ, the
problem of learning a Bayesian network is to find a Bayesian network B ∈ Bn that maximizes the value φ(B, D).

The space of all Bayesian networks with n nodes has a superexponential number of structures,
2O(n

2). Learning general Bayesian networks is a NP-hard problem [20–22]. However, if we restrict
the search space S to tree-like structures [14,23] or to networks with bounded in-degree and a known
ordering over the variables [24], it is possible to obtain a global optimal solution for this problem.
Polynomial-time algorithms to learn BNs with underlying consistent k-graphs (CkG) [16] and
breadth-first search consistent k-graphs (BCkG) [17] network structures were proposed. The sets
of CkG and BCkG graphs are exponentially larger, in the number of variables, when compared with
branchings [16,17].

Definition 3 (k-graph). A k-graph is a graph where each node has in-degree at most k.
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Definition 4 (Consistent k-graph). Given a branching R over a set of nodes V, a graph G = (V, E) is said to
be a consistent k-graph (CkG) w.r.t. R if it is a k-graph and for any edge in E from Xi to Xj the node Xi is in the
path from the root of R to Xj.

Definition 5 (BFS-consistent k-graph). Given a branching R over a set of nodes V, a graph G = (V, E) is
said to be a BFS-consistent k-graph (BCkG) w.r.t. R if it is a k-graph and for any edge in E from Xi to Xj the
node Xi is visited in breadth-first search (BFS) of R before Xj.

Observe that the order induced by the optimal branching might be partial, while its BFS order is
always total (and refines it). Given a BFS-consistent k-graph, there can only exist an edge from Xi to
Xj if Xi is less than or as deep as Xj in R. We assume that if i < j and Xi and Xj are at the same level,
then the BFS over R reaches Xi before Xj. An example is given in Figure 2.

X1

X2 X3

X5X4

(a)

X1

X2 X3

X5X4

(b)

X1

X2 X3

X5X4

(c)

X1

X2 X3

X5X4

(d)

Figure 2. Given the branching R represented in (a); (b) represents a consistent 2-graph with respect
to R; (c) represents the BFS of R and (d) represents a BFS-consistent 2-graph of R (not consistent with R).

4. Dynamic Bayesian Networks

Dynamic Bayesian networks (DBN) model the stochastic evolution of a set of random variables
over time [2]. Consider the discretization of time in time slices given by the set T = {0, . . . , T}.
Let X[t] = (X1[t], . . . , Xn[t]) be a random vector that denotes the value of the set of attributes at
time t. Furthermore, let X[t1 : t2] denote the set of random variables X for the interval t1 ≤ t ≤ t2.
Consider a set of individualsH measured over T sequential instants of time. The set of observations
is represented as {xh[t]}h∈H,t∈T , where xh[t] = (xh

1 , . . . , xh
n) is a single observation of n attributes,

measured at time t and referring to individual h.
In the setting of DBNs the goal is to define a probability joint distribution over all possible

trajectories, i.e., possible values for each attribute Xi and instant t, Xi[t]. Let P(X[t1 : t2]) denote
the joint probability distribution over the trajectory of the process from X[t1] to X[t2]. The space of
possible trajectories is very large, therefore in order to define a tractable problem it is necessary to
make assumptions and simplifications.

Observations are viewed as i.i.d. samples of a sequence of probability distributions {Pθ[t]}t∈T .
For all individuals h ∈ H, and a fixed time t, the probability distribution is considered constant, i.e.,
xh[t] ∼ Pθ[t], h ∈ H. Using the chain rule the joint probability over X is given by:

P
(
X[0 : T]

)
= P

(
X[0]

) T−1

∏
t=0

P
(
X[t + 1]|X[0 : t]

)
.

Definition 6 (mth-Order Markov assumption). A stochastic process over X satisfies the mth-order Markov
assumption if, for all t ≥ 0

P
(
X[t + 1]|X[0 : t]

)
= P

(
X[t + 1]|X[t−m + 1 : t]

)
. (7)

In this case m is called the Markov lag of the process.
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If all conditional probabilities in Equation (7) are invariant to shifts in time, that is, are the same
for all t ∈ T , then the stochastic process is called a stationary mth-order Markov process.

Definition 7 (First-order Markov DBN). A non-stationary first-order Markov DBN consists of:

• A prior network B0, which specifies a distribution over the initial states X[0].
• A set of transition networks Bt+1

t over the variables X[t : t + 1], representing the state transition
probabilities, for 0 ≤ t ≤ T − 1.

We denote by Gt+1 the subgraph of Bt+1
t with nodes X[t + 1], that contains only the intra-slice

dependencies. The transition network Bt+1
t has the additional constraint that edges between slices

(inter-slice connections) must flow forward in time. Observe that in the case of a first-order DBN
a transition network encodes the inter-slice dependencies (from time transitions t → t + 1) and
intra-slice dependencies (in the time slice t + 1).

Figure 3 shows an example of a DBN, aiming to infer a driver behaviour. The model describes the
state of a car, including its velocity and distance to the following vehicle, as well as, the weather and
the type of road (highway, arterial, local road, etc.). In the beginning, the speed depends only if there
is a car nearby. After that, the velocity depends on: (i) the previous weather (the road might be icy
because it snowed last night); (ii) the current weather (it might be raining now); (iii) how close the
car was from another (if it gets too close the driver might need to break); and (iv) the current type of
road (with different velocity limits). The current distance to the following car depends on the previous
car velocity and on the previous distance to the next vehicle. Figure 4 joins the prior and transition
networks and extends the unrolled DBN to a third time slice.

Road [0]

Weather [0]

Velocity [0]

Distance to next [0]

time slice 0

Road [t]

Weather [t]

Velocity [t]

Distance to next [t]

time slice t

Road [t+1]

Weather [t+1]

Velocity [t+1]

Distance to next [t+1]

time slice t + 1

Figure 3. A simple example of a first-order Markov stationary DBN. On the left, the prior network B0,
for t = 0. On the right, a two-slice transition network Bt+1

t .

Learning DBNs, considering no hidden variables or missing values, i.e., considering a fully
observable process, reduces simply to applying the methods described for BNs for each transition of
time [25]. Several algorithms for learning DBNs are concerned with identifying inter-slice connections only,
disregarding intra-slice dependencies or assuming they are given by some prior network and kept
fixed over time [11,12,26]. Recently, a polynomial-time algorithm was proposed that learns both the
inter and intra-slice connections in a transition network [13]. However, the search space is restricted
to tree-augmented network structures (tDBN), i.e., acyclic networks such that each attribute has one
parent from the same time slice, but can have at most p parents from the previous time slices.
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Road [0]

Weather [0]

Velocity [0]

Distance to next [0]

Road [1]

Weather [1]

Velocity [1]

Distance to next [1]

Road [2]

Weather [2]

Velocity [2]

Distance to next [2]

Figure 4. The DBN example from Figure 3 is unrolled for the first three time slices.

Definition 8 (Tree-augmented DBN). A dynamic Bayesian network is called tree-augmented (tDBN) if for
each transition network {t−m + 1, . . . , t} → t + 1 each attribute Xi[t + 1] has exactly one parent in the time
slice t + 1, except the root, and at most p parents from the preceding time slices {t−m + 1, . . . , t}.

5. Learning Consistent Dynamic Bayesian Networks

We introduce a polynomial-time algorithm for learning DBNs such that: the intra-slice network
has in-degree at most k and is consistent with the BFS order of the tDBN; the inter-slice network has
in-degree of at most p. The main idea of this approach is to add dependencies that were lost due to the
tree-augmented restriction of the tDBN and, furthermore, remove irrelevant ones that might be present
because a connected graph was imposed. Moreover, we also consider the BFS order of the intra-slice
network as an heuristic for a causality order between variables. We make this concept rigorous with
the following definition.

Definition 9 (BFS-consistent k-graph DBN). A dynamic Bayesian network is called BFS-consistent k-graph
(bcDBN) if for each intra-slice network Gt+1, with t ∈ {0, . . . , T − 1}, the following holds:

• Gt+1 is a k-graph, i.e., each node has in-degree at most k;
• Given an optimal branching Rt+1 over the set of nodes X[t + 1], for every edge in Gt+1 from Xi[t + 1] to

Xj[t + 1], the node Xi[t + 1] is visited in the BFS of Rt+1 before Xj[t + 1].

Moreover, each node Xi[t + 1] has at most p parents from previous time slices.

Before we present the learning algorithm, we need to introduce some notation, namely, the concept
of ancestors of a node.

Definition 10 (Ancestors of a node). The ancestors of a node Xi in time slice t + 1, denoted by αBFS
i,t+1 , are

the set of nodes in slice t + 1 connecting the root of the BFS of an optimal branching Rt+1 and Xi[t + 1].

We will now describe briefly the proposed algorithm for learning a transition network of
a mth-order bcDBN. Let P≤p(X[t−m + 1 : t]) be the set of subsets of X[t−m + 1 : t] of cardinality
less than or equal to p. For each node Xi[t + 1] ∈ X[t + 1], the optimal set of past parents
(Xps ∈ P≤p(X[t−m + 1 : t])) and maximum score (si) is found,

si = max
Xps [t−m+1:t]∈P≤p(X[t−m+1:t])

φi(Xps[t−m + 1 : t], Dt+1
t−m+1), (8)

where φi is the local contribution of Xi[t + 1] for the overall score φ and Dt+1
t−m+1 is the subset of

observations concerning the time transition t − m + 1 → t + 1. For each possible edge in t + 1,
Xj[t + 1]→ Xi[t + 1], the optimal set of past parents and maximum score (sij) is determined,
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sij = max
Xps [t−m+1:t]∈P≤p(X[t−m+1:t])

φi(Xps[t−m + 1 : t] ∪ {Xj[t + 1]}, Dt+1
t−m+1). (9)

We note that the set Xps[t − m + 1 : t] that maximizes Equations (8) and (9) needs not to be
the same. The one in Equation (8) refers to the best set of p parents from past time slices, and the one in
Equation (9) concerns the best set of p parents from the past time slices when Xj[t + 1] is also a parent
of Xi[t + 1].

A complete directed graph is built such that each edge Xj[t+ 1]→ Xi[t+ 1] has the following weight,

eij = sij − si, (10)

that is, the gain in the network score of adding Xj[t + 1] as a parent of Xi[t + 1]. Generally eij 6= eji,
as the edge Xi[t + 1] → Xj[t + 1] may account for the contribution from the inter-slice parents and,
in general, inter-slice parents of Xi[t+ 1] and Xj[t+ 1] are not the same. Therefore, Edmond’s algorithm
is applied to obtain a maximum branching for the intra-slice network [27]. In order to obtain a total
order, the BFS order of the output maximum branching is determined and the set of candidate ancestors
αBFS

i,t+1 is computed. For node Xi[t + 1], the optimal set of past parents Xps[t−m + 1 : t] and intra-slice
parents, denoted by Xps[t + 1], are obtained in a one-step procedure by finding

max
Xps [t−m+1:t]∈P≤p(X[t−m+1:t])

max
Xps [t+1]∈P≤k(α

BFS
i,t+1)

φi(Xps[t−m + 1 : t] ∪ Xps[t + 1], Dt+1
t−m+1), (11)

where P≤k(α
BFS
i,t+1) is the set of all subsets of αBFS

i,t+1 of cardinality less than or equal to k. Note that,
if Xi[t + 1] is the root, P≤k(α

BFS
i,t+1) = {∅}, so the set of intra-slice parents Xps[t + 1] of Xi[t + 1] is

always empty.
The pseudo-code of the proposed algorithm is given in Algorithm 1. As parameters, the algorithm

needs: a dataset D, a Markov lag m, a decomposable scoring function φ, a maximum number of
inter-slice parents p and a maximum number of intra-slice parents k.

Algorithm 1 Learning optimal mth-order Markov bcDBN

1: for each transition {t−m + 1, . . . , t} → t + 1 do

2: Build a complete directed graph in X[t + 1].
3: Weight all edges Xj[t + 1]→ Xi[t + 1] of the graph with eij as in Equation (10) (Algorithm 2).
4: Apply Edmond’s algorithm to the intra-slice network, to obtain an optimal branching.
5: Build the BFS order of the output optimal branching.
6: for all nodes Xi[t + 1] do

7: Compute the set of parents of Xi[t + 1] as in Equation (11) (Algorithm 3).
8: end for
9: end for

10: Collect the transition networks to obtain the optimal bcDBN structure.

The algorithm starts by building the complete directed graph in Step 2, after which the graph is
weighted according to Equation (10); this procedure is described in detail in Algorithm 2. The Edmonds’
algorithm is then applied to the intra-slice network, resulting from that an optimal branching (Step 4).
The BFS order of this branching is computed (Step 5) and the final transition network is redefined
to be consistent with it. This is done by computing the parents of Xi[t + 1] given by Equation (11)
(Steps 6–7), further detailed in Algorithm 3.

Theorem 1. Algorithm 1 finds an optimal mth-order Markov bcDBN, given a decomposable scoring function φ,
a set of n random variables, a maximum intra-slice network in-degree of k and a maximum inter-slice network
in-degree of p.
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Proof. Let B be the optimal bcDBN and B′ be the DBN output of Algorithm 1. Consider without loss of
generality the time transition {t−m + 1, . . . , t} → t + 1. The proof follows by contradiction, assuming
that the score of B′ is lower than B. The contradiction found is the following: the optimal branching
algorithm applied to the intra-slice graph, Step 4 of Algorithm 1, outputs an optimal branching;
moreover, all sets of parents with cardinality of at most k consistent with the BFS order of the optimal
branching and all sets of parents from the previous time slices with cardinality of at most p are checked
in the for-loop at Step 6. Therefore, the optimal set of parents is found for each node. Finally, note that
the selected graph is acyclic since: (i) in the intra-slice network the graph is consistent with a total order
(so no cycle can occur); and (ii) in the inter-slice network there are only dependencies from previous
time slices to the present one (and not on the other way).

Algorithm 2 Compute all the weights eij

1: for all nodes Xi[t + 1] do

2: Let si = −∞.
3: for Xps[t−m + 1 : t] ∈ P≤p(X[t−m + 1 : t]) do

4: if φi(Xps[t−m + 1 : t], Dt+1
t−m+1) > si then

5: Let si = φi(Xps[t−m + 1 : t], Dt+1
t−m+1).

6: end if
7: end for
8: for all nodes Xj[t + 1] 6= Xi[t + 1] do

9: Let sij = −∞.
10: for Xps[t−m + 1 : t] ∈ P≤p(X[t−m + 1 : t]) do

11: if φi(Xps[t−m + 1 : t] ∪ {Xj[t + 1]}, Dt+1
t−m+1) > sij then

12: Let sij = φi(Xps[t−m + 1 : t] ∪ {Xj[t + 1]}, Dt+1
t−m+1).

13: end if
14: end for
15: end for
16: Let eij = sij − si.
17: end for

Algorithm 3 Compute the set of parents of Xi[t + 1]

1: Let max = −∞.
2: for Xps[t−m + 1 : t] ∈ P≤p(X[t−m + 1 : t]) do

3: for Xps[t + 1] ∈ P≤k(α
BFS
i,t+1) do

4: if φi(Xps[t−m + 1 : t] ∪ Xps[t + 1], Dt+1
t−m+1) > max then

5: Let max = φi(Xps[t−m + 1 : t] ∪ Xps[t + 1], Dt+1
t−m+1).

6: Let the parents of Xi[t + 1] be Xps[t−m + 1 : t] ∪ Xps[t + 1].
7: end if
8: end for
9: end for

Theorem 2. Algorithm 1 takes time

max{O(np+3(m + 1)3mprp+2N(T −m + 1)),O(np+k+2mp(m + 1)rp+k+1N(T −m + 1))},
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given a decomposable scoring function φ, a Markov lag m, a set of n random variables, a bounded in-degree of
each intra-slice transition network of k, a bounded in-degree of each inter-slice transition network of p and a set
of observations of N individuals over T time steps.

Proof. For each time transition {t − m + 1, . . . , t} → t + 1, in order to compute all weights eij
(Algorithm 2), it is necessary to iterate over all the edges, that takes time O((n(m + 1))2). The number
of subsets of parents from the preceding time slices with at most p elements is given by:

|P≤p(X[t])| =
p

∑
i=0

(
nm

i

)
<

p

∑
i=0

(nm)i ∈ O((nm)p). (12)

Calculating the score of each parent set (Step 11 of Algorithm 2), considering that the
maximum number of states a variable may take is r, and that each variable has at most p + 1
parents (p from the past and 1 in t + 1), the number of possible configurations is given by rp+2.
The score of each configuration is computed over the set of observations Dt+1

t−m+1, therefore taking
O((m + 1)rp+2nN). Applying Edmond’s optimal branching algorithm to the intra-slice network
and computing its BFS order, in Steps 4 and 5, takes O(n2) time. Hence, Steps 1–5 take time
O(np+3(m + 1)3mprp+2N). Step 6 iterates over all nodes in time slice t + 1, therefore iterates O(n)
times. In Algorithm 3, Step 7, the number of subsets with at most p elements from the past and
k elements from the present is upper bounded by O((nm)pnk). Computing the score of each
configuration takes time complexity ofO((m + 1)nrp+k+1N). Therefore Steps 6–9 take time complexity
of O(np+k+2mp(m + 1)rp+k+1N). Algorithm 1 ranges over all T−m + 1 time transitions, hence, takes
time max{O(np+3(m + 1)3mprp+2N(T−m + 1)), O((np+k+2mp(m + 1)rp+k+1N(T −m + 1))}.

Theorem 3. There are at least 2(nk− k2
2 −

k
2−1)(T−m+1) non-tDBN transition networks in the set of bcDBN

structures, where n is the number of variables, T is the number of time steps considered, m is the Markov lag
and k is the maximum intra-slice in-degree considered.

Proof. Consider without loss of generality the time transition {t − m + 1, . . . , t} → t + 1 and the
optimal branching in t + 1, Rt+1. Let (V,⊆BFS) be the total order induced by the BFS over Rt+1.
For any two nodes Xi[t + 1] and Xj[t + 1], with i 6= j, we say that node Xi[t + 1] is lower than Xj[t + 1]
if Xi[t + 1] ⊆BFS Xj[t + 1]. The i-th node of Rt+1 has precisely i− 1 lower nodes. When i > k, there are
at least 2k subsets of V with at most k lower nodes. When i ≤ k, only 2i−1 subsets of V with at most k
lower nodes exist. Therefore, there are at least(

n

∏
i=k+1

2k

)
×
(

k

∏
i=1

2i−1

)
= 2nk− k2

2 −
k
2

BFS-consistent k-graphs.
Let XR be the root of Rt+1 and Xj its child node. Let ∅ denote the empty set. XR and ∅ are the only

possible ancestors of Xj. If ∅ is the optimal one, then the resultant graph will not be a tree-augmented
network. Therefore there are at least

2nk− k2
2 −

k
2−1

non-tree-augmented graphs in the set of BFS-consistent k-graphs.

There are T −m + 1 transition networks, hence, there are at least 2(nk− k2
2 −

k
2−1)(T−m+1) non-tDBN

network structures in the set of bcDBN network structures.

6. Experimental Results

We assess the merits of the proposed algorithm comparing it with one state-of-the-art DBN learning
algorithm, tDBN [13]. Our algorithm was implemented in Java using an object-oriented paradigm
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and was released under a free software license (https://margaridanarsousa.github.io/learn_cDBN/).
The experiments were run on an Intel R© CoreTM i5-3320M CPU @ 2.60GHz×4 machine.

We analyze the performance of the proposed algorithm for synthetic data generated from
stationary first-order Markov bcDBNs. Five bcDBN structures were determined, parameters were
generated arbitrarily, and observations were sampled from the networks, for a given number of
observations N. The parameters p and k were taken to be the maximum in-degree of the inter and
intra-slice network, respectively, of the transition network considered.

In detail, the five first-order Markov stationary transition networks considered were:

• one intra-slice complete bcDBN network with k = 2 and at most p = 2 parents from the previous
time slice (Figure 5a);

• one incomplete bcDBN network, such that each node in t + 1 has a random number of inter-slice
(p = 2) and intra-slice (k = 2) parents between 0 and p + k ≤ 4 (Figure 5b);

• two incomplete intra-slice bcDBN network (k = 3) such that each node has at most p = 2 parents
from the previous time slice (Figure 5c,e);

• one tDBN (k = 1), such that each node has at most p = 2 parents from the previous time slice
(Figure 5d).

The tDBN and bcDBN algorithms were applied to the resultant data sets, and the ability to learn
and recover the original network structure was measured. We compared the original and recovered
networks using the precision, recall and F1 metrics:

precision =
TP

TP + FP
, recall =

TP
TP + FN

and F1 = 2× precision× recall
precision + recall

,

where TP are the true positive edges, FP are the false positive edges and FN are the false negative edges.
The results are depicted in Table 1 and the presented values are annotated with a 95% confidence

interval, over five trials. The tDBN+LL and tDBN+MDL denote, respectively, the tDBN learning
algorithm with LL and MDL criteria. Similarly, the bcDBN+LL and bcDBN+MDL denote, respectively,
the bcDBN learning algorithm with LL and MDL scoring functions.

Considering Network 1, the tDBN recovers a significantly lower number of edges, giving raise to
lower recalls and similar precisions, when comparing with bcDBN for LL and MDL. The bcDBN+LL
and bcDBN+MDL have similar performances. For N = 2000, bcDBN+LL and bcDBN+MDL are able
to recover in average 99% of the total number of edges.

For Networks 2 and 5, considering incomplete networks, the tDBN has again lower recalls
and similar precisions than bcDBN. However, in this case, the bcDBN+MDL clearly outperforms
bcDBN+LL for all number of instances N considered.

Moreover, in Network 5, taking a maximum intra-slice in-degree k = 3, bcDBN only recovers
84% of the total number of edges, for N = 2000. These results suggest that a considerable number of
observations are necessary to fully reconstruct the complex BFS-consistent k-structures.

Curiously, the bcDBN+MDL algorithm has better results considering a complete tree-augmented
initial structure (Network 4), with higher precision scores and similar recall, comparing with tDBN+MDL.

For both algorithms, in general, the LL gives raise to better results, when considering a complete
network structure and a lower number of instances, whereas taking an incomplete network structure
and a higher number of instances, the MDL outperforms LL. The complexity penalization term of MDL
prevents the algorithms of choosing false positive edges and gives raise to higher precision scores.
The LL selects more complex structures, such that each node has exactly p + k parents.

We stress that in all settings considered both algorithms improve their performance when
increasing the number of observations N. In order to understand the number of instances N needed
to fully recover the initial transition network, we designed two new experiments where five samples
where generated from the first-order Markov transition networks depicted in Figure 6.

https://margaridanarsousa.github.io/learn_cDBN/
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(a) Network 1 (bcDBN with p = k = 2).
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(b) Network 2 (bcDBN with p = k = 2).

X1[0] X2[0] X3[0]

X4[0]

X8[1]

X5[0]

X1[1]

X6[0]

X7[0]

X5[1]

X8[0]

X9[0]

X6[1]

X10[0]

X3[1]

X2[1]

X4[1]

X7[1]

X9[1]

X10[1]

(c) Network 3 (bcDBN with p = 2 and k = 3).

X1[0] X2[0] X3[0]

X4[0]

X8[1]

X5[0]

X1[1]

X10[1]

X6[0]

X9[1]

X7[0]

X5[1]

X8[0]

X9[0]

X6[1]

X10[0]

X3[1]

X2[1]

X4[1]

X7[1]

(d) Network 4 (tDBN with p = 2).
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(e) Network 5 (bcDBN with p = 2 and k = 3).

Figure 5. First-order Markov stationary transition networks considered in the experiments.
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Table 1. Comparative structure recovery results for tDBN and bcDBN on simulated data. For each
network, n is the number of network attributes, p is the maximum inter-slice in-degree, k is the
maximum intra-slice in-degree, and r is the number of states of all attributes. On the left, N is the
number of observations. Precision (Pre.), recall (Rec.) and F1-measure (F1) values are presented as
percentages, running time is in seconds.

N
tDBN+LL tDBN+MDL bcDBN+LL bcDBN+MDL

Pre. Rec. F1 Time Pre. Rec. F1 Time Pre. Rec. F1 Time Pre. Rec. F1 Time

Network 1 (n = 5, p = 2, k = 2, r = 2)

100 74± 12 69± 11 72± 12 0 91± 7 56± 8 69± 7 0 74± 16 84± 18 79± 16 0 97± 5 43± 9 58± 9 0
500 83± 3 77± 3 80± 3 0 98± 3 73± 5 84± 4 0 84± 5 95± 6 89± 5 0 98± 3 91± 8 94± 6 0
1000 81± 5 76± 5 79± 5 0 98± 3 79± 2 87± 3 0 85± 4 96± 5 90± 4 0 97± 5 96± 7 97± 6 0
2000 83± 5 77± 5 80± 5 0 95± 8 77± 5 85± 6 0 87± 2 99± 2 93± 2 0 98± 4 99± 2 98± 3 0

Network 2 (n = 10, p = 2, k = 2, r = 2)

100 16± 5 29± 8 20± 6 0 31± 9 24± 5 27± 7 0 18± 4 41± 9 25± 5 0 36± 12 13± 5 18± 7 0
500 28± 4 51± 7 36± 5 0 58± 5 45± 4 51± 4 0 28± 6 65± 13 39± 8 2 81± 9 49± 8 61± 9 2
1000 33± 3 60± 6 43± 4 0 61± 5 46± 4 52± 5 0 32± 4 75± 8 45± 5 4 66± 7 55± 9 60± 8 4
2000 38± 2 69± 3 49± 2 0 72± 4 60± 3 65± 3 0 32± 3 75± 6 45± 4 9 77± 12 73± 7 74± 9 9

Network 3 (n = 10, p = 2, k = 3, r = 2)

100 26± 1 26± 2 26± 2 0 54± 13 24± 5 33± 7 0 25± 7 40± 11 31± 9 1 59± 16 24± 7 34± 10 1
500 43± 6 45± 6 44± 6 0 71± 11 39± 7 50± 8 0 48± 6 75± 9 58± 7 8 75± 15 55± 14 63± 14 8
1000 43± 6 44± 6 44± 6 0 68± 7 41± 6 51± 6 0 47± 6 74± 9 58± 7 18 75± 10 61± 7 67± 8 18
2000 44± 5 46± 5 45± 5 0 77± 3 49± 1 60± 1 0 46± 8 72± 13 56± 10 37 82± 3 77± 3 80± 3 35

Network 4 (n = 10, p = 2, k = 1, r = 2)

100 45± 10 65± 14 53± 11 0 57± 7 49± 8 52± 8 0 45± 10 65± 14 53± 11 0 85± 9 47± 10 60± 9 0
500 58± 4 84± 5 69± 4 0 85± 3 86± 4 86± 3 0 58± 4 84± 5 69± 4 0 100± 0 84± 3 91± 2 0
1000 63± 1 92± 2 75± 2 0 88± 2 91± 3 90± 3 0 63± 1 92± 2 75± 2 0 100± 0 88± 2 94± 1 0
2000 61± 4 88± 6 72± 5 0 87± 3 92± 2 89± 2 0 61± 4 88± 6 72± 5 1 100± 0 90± 0 95± 0 1

Network 5 (n = 10, p = 2, k = 3, r = 2)
100 32± 9 43± 12 37± 10 0 55± 14 31± 7 39± 9 0 22± 6 45± 12 30± 8 1 69± 13 19± 8 29± 11 1
500 49± 4 65± 6 56± 5 0 80± 4 57± 4 67± 4 0 36± 4 72± 8 48± 5 8 92± 5 56± 2 70± 2 9
1000 50± 6 66± 7 57± 6 0 83± 6 64± 5 72± 5 0 40± 4 79± 9 53± 6 16 90± 8 71± 9 79± 8 17
2000 54± 6 71± 7 61± 6 0 86± 5 70± 5 77± 5 0 40± 3 81± 7 54± 5 33 91± 6 84± 5 87± 5 34

(a) Network 6 (bcDBN with p = 1 and k = 2). (b) Network 7 (bcDBN with p = 1 and k = 4).

Figure 6. Two additional transition networks to test structure recovery in terms of number of observations N.
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The number of observations needed for the bcDBN+MDL to recover the aforementioned networks
are 1120.0 ± 478.18 (Figure 6a) and 2900.0 ± 1134.77 (Figure 6b), with a 95% confidence interval,
where the five trials were done for each network. When increasing k, the number of necessary
observations to totally recover the initial structure increases significantly.

When considering more complex BFS-consistent k-structures, the bcDBN algorithm achieved
consistently significantly higher F1 measures than tDBN. As expected, bcDBN+LL obtained better
results for complete structures, whereas bcDBN+MDL achieved better results for incomplete structures.

7. Conclusions

The bcDBN learning algorithm has polynomial-time complexity with respect to the number
of attributes and can be applied to stationary and non-stationary Markov processes. The proposed
algorithm increases the search space exponentially, in the number of attributes, comparing with the
state-of-the-art tDBN algorithm. When considering more complex structures, the bcDBN is a good
alternative to the tDBN. Although a higher number of observations are necessary to fully recover the
transition network structure, bcDBN is able to recover a significantly larger number of dependencies
and surpasses, in all experiments, the tDBN algorithm in terms of F1-measure.

A possible line of future research is to consider hidden variables and incorporate a structural
Expectation-Maximization procedure in order to generalize hidden Markov models. Another possible
path to follow is to consider mixtures of bcDBNs, both for classification and clustering.
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