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Abstract: We introduce distance entropy as a measure of homogeneity in the distribution of path
lengths between a given node and its neighbours in a complex network. Distance entropy defines
a new centrality measure whose properties are investigated for a variety of synthetic network
models. By coupling distance entropy information with closeness centrality, we introduce a network
cartography which allows one to reduce the degeneracy of ranking based on closeness alone. We apply
this methodology to the empirical multiplex lexical network encoding the linguistic relationships
known to English speaking toddlers. We show that the distance entropy cartography better predicts
how children learn words compared to closeness centrality. Our results highlight the importance of
distance entropy for gaining insights from distance patterns in complex networks.

Keywords: complex networks; network measures; entropy; closeness centrality; multiplex
lexical networks

1. Introduction

Network science provides a powerful framework for modelling and understanding how
individual entities give rise to complex—and often unexpected—phenomena by interacting with
each other [1–6]. Network models encapsulate the topology of interactions among entities by means
of links distributed among nodes. Defining the centrality of nodes in complex networks is an
important question for determining the role of individual agents in a variety of dynamical processes
such as information flow and influence maximisation [7–9], network growth [1], and resilience to
cascade failures [10,11].

In many of these processes, centrality can be defined by means of network distance—that is,
the minimum number of links separating any two nodes. Overwhelming evidence from real-world
network analysis has shown how distance among nodes is an important indicator of the evolution
of a given process: in general, information flows at slower rates between nodes at greater distance
in social networks [7]; the recollection of words at greater distance in semantic networks in memory
tasks is slower [12]; smaller network distance between oscillators facilitates synchronization [9] and
consensus [13]; and there is a higher turnover rate of animal and plant species among closer sites in
river networks [14].

Network distance can be used to quantify a node’s centrality in spreading processes where the
flow follows shortest paths and such centrality is called closeness [7,15]. Closeness centrality quantifies
the average distance of all the network paths leading to a given node. In undirected, unweighted
networks, closeness centrality ci of node i (i = 1, 2, . . . , N) is defined as [15]:

ci =
Ci

∑
j 6=i

dij
, (1)
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where Ci is the number of nodes in the same connected component of i and dij is the network distance
between nodes i and j. It is worth noting that Ci = N for networks with a single connected component.
It has been shown that this estimator is ill-defined in the case of disconnected networks [16]; however,
in the following we will deal only with connected networks and we can safely use the above definition
of closeness centrality.

Closeness centrality has proved to be powerful in many real-world applications [7,11,17–19].
Recently, the closeness centrality of words in multiplex lexical networks of word–word similarities
resulted as an optimal predictor of word learning [18], outperforming other single- and multi-layer
network measures such as degree, betweenness, local clustering, PageRank, eigenvector centralities,
and even word statistical features such as frequency and word length. In this work, we enrich closeness
centrality with a new measure of distance entropy, quantifying node centrality through the distribution
of path lengths. We develop our analysis within the established framework of graph distance-based
entropies [20–23], which represent information-theoretic measures for characterising structural patterns
in graphs. We test the combination of distance entropy and closeness centrality—a composition we
call distance entropy cartography—in artificial network models and then apply it to improving word
prediction based on closeness only. Distance entropy significantly improves the already optimal results
of closeness for the prediction of word learning. These improvements are not observed when closeness
is coupled with other centrality measures such as degree. Our results provide compelling evidence for
the importance of considering information measures relative to shortest paths for gaining insights into
real-world complex systems.

2. Introducing a New Distance Entropy

The definition of a graph entropy for a network G with N nodes relies on the choice for an
information functional fi to attribute to each node (e.g., degree centrality). The information functional
determines a node probability pi = fi/ ∑ fi for each node i, and the relative graph entropy is defined
as the Shannon entropy of the probabilities pi (i = 1, 2, . . . , N) [20].

Closeness centrality represents the inverse of the mean value of the distribution of path lengths
from a given node to the rest of the system. Hence, closeness alone offers no information about the
spread of the distribution of network distances. To account for this spread, we introduce the distance
entropy h(i), defined as the information entropy of the set d(i) ≡ (di1, . . . , dij, . . . , diN) of distances
between node i and any other node j in the system, here assumed to be of size N (1 ≤ j ≤ N). Let us
denote with Mi the maximum distance Mi = maxjdij and with mi the minimum distance mi = minjdij.

Let us denote by p(ij)k = P(dij = k) with mi ≤ k ≤ Mi, the probability that the generic entry dij is

equal to k. If node i is at distance k from nk other nodes, then p(ij)k = nk/(N − 1). In the graph entropy
literature, nk represents our chosen information functional. Chen et al. [21] considered the same
information functional, but they limited themselves to considering only nodes of a given specific
distance k from node i, at variance with our approach considering all possible distances (mi ≤ k ≤ Mi).
Other approaches used distances as information functionals, but did not consider counting paths of a
given length (for a review, we refer the interested reader to [20,23]). We exclude the distance of a node
from itself. In this analysis, we introduce the following definition of distance entropy as:

h(i) = − 1
log(Mi −mi)

Mi−mi

∑
k=1

p(i)k logp(i)k . (2)

With this definition, h(i) ranges between 0 and 1. Note that our definition can also be generalised
to strongly connected components [2] of directed networks by counting lengths in directed paths.
The extension to weighted networks is not trivial, as the definition of shortest paths in this case
is not unique [24–26]. Here we explore the case of undirected, unweighted graph models and
real-world networks.
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It is worth remarking that we can interpret the meaning of the extremal values of our distance
entropy in terms of network centrality by considering specific classes of regular graphs, as in
the following.

Distance Entropy in Regular Graphs

Let us consider a complete graph of N nodes, KN . In this graph, node i is at distance 1 from all
the other nodes, so then d(i) = (1, . . . , 1) is a set of N − 1 entries, all equal to 1. It is straightforward to
verify that, in this case, the information entropy for node i is h(i) = 0. The same analysis holds for all
the other N − 1 nodes in the complete graph. Hence, all the nodes in a complete graph have distance
entropy h = 0. More generally, distance entropy is 0 for all nodes adjacent to all other nodes in any
given network.

In star graphs, there is a central node connected to all other peripheral nodes and no other links
are present. The result for nodes in complete graphs also holds for the star centre. Consequently,
the centres of star graphs have distance entropy h = 0. Hence, we can interpret distance entropy as a
measure of the regularity of the distribution of path lengths between a given node and its neighbours,
with h = 0 representing the case of maximum homogeneity in the path length distribution. Since it
is not possible for a node to be at distance d ≥ 2 from all other nodes simultaneously in a connected
network, then h = 0 identifies nodes adjacent to all other nodes.

In a ring graph where N > 3 nodes have only two neighbours, then every node has the same set
of distances to the other N − 1 nodes and the possible distances are 1, 2, . . . , bN/2c, where b.c is the
floor function. If N is odd, then it is easy to check that pk = 2/(N − 1). Consequently, the entropy of
any node i in a ring graph with an odd number of nodes is:

h(i) = − bN/2c
log bN/2c (

2
N − 1

)log(
2

N − 1
) = − 1

log[(N − 1)/2]
log(

2
N − 1

) = 1. (3)

Hence, when N is odd, then all nodes in a ring graph have maximum distance entropy h = 1,
which corresponds to the case of minimum homogeneity of path lengths; that is, paths between
connected nodes have lengths that are distributed uniformly across all possible distances.

When N is even, then pk = 2/(N− 1) except for k = N/2, for which pN/2 = 1/(N− 1). Then the
formula for the distance entropy of a node becomes:

h(i) = − 1
log(N/2)

[
N − 2
N − 1

log(
2

N − 1
) +

1
N − 1

log(
1

N − 1
)

]
. (4)

Note that ring graphs are lattice graphs for which the coordination number z = 2 (i.e., every
node is connected only to two other nodes). While the analytical results for ring graphs can also be
extended to cases for z > 2, when z approaches N − 1 the lattice becomes a complete graph and hence
h→ 0 for every node. When z� N − 1, instead, results similar to the ring lattices hold and the lattice
nodes are expected to have values of distance entropy close to 1. Rather than considering other regular
structures, we now focus on characterising patterns of distance entropy in network models frequently
used in the relevant literature.

3. Distance Entropy and Network Models

We consider three main network models usually considered in the literature: Erdos–Renyi
(ER) random graphs [27], Watts–Strogatz small-world (SW) networks [28], and Barabasi–Albert (BA)
preferential attachment networks [1]. For each network model, we are interested in characterising
trends of the average distance entropy depending on the model parameters. In one case, we discover
the presence of a tipping point for distance entropy in ER random graphs and relate it numerically to
the appearance of short-cuts for increasing edge densities.
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3.1. Homogeneous Random Graphs

Figure 1a plots the mean closeness centrality and distance entropy of ER random graphs
of different size N and different link probability p. As expected, the addition of links makes
random graphs closer to complete graphs, increasing the average closeness centrality when p rises.
Instead, numerical results on the distance entropy indicate that the entropy of path lengths in ER
random graphs is not monotonic: we identify a tipping point—depending on system size—in the
average entropy that asymptotically converges to p∗ ≈ 0.1, which is well above the critical values for
the emergence of the largest connected component pc = 1/N and for connectedness pc = logN/N.
A thorough characterization of this tipping point, identifying a structural change of paths in ER random
graphs, is outside of the scope of the present work. It is interesting to note that all of the simulated
ensembles converge towards the same pattern of distance entropy and closeness for increasing values
of p > p∗, independently of their size. Before the tipping point p < p∗, short-cuts (i.e., paths with
length 1) start appearing in the networks when p approaches p∗ from the left, as also noticeable from
the trend of average shortest path length on p (see Figure 1b). Once created, short-cuts make nodes
closer to each other, path lengths of shorter length start appearing with higher frequency, and hence
the average distance entropy reduces. However, the densification due to increases in p happens at
random, and hence not all possible short-cuts are created in the network when p is slightly higher than
p∗. The random occurrence of edges will give rise to shortest paths having a homogeneous length
distribution corresponding to increases in the values of h up to values close to 1. When even more
links are added, the random graphs get closer to a complete graph, for which h = 0, and hence the
average distance entropy decreases.
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Figure 1. (a) Mean closeness centrality and distance entropy of Erdos–Renyi (ER) random graphs of
different node sizes and different link probabilities. Mean values are averaged for all nodes in a graph
and across 100 different graph realisations. Link probabilities are relative to all node sizes. All different
ensembles converge to the same pattern of distance entropy roughly above rewiring probability p = 0.6.
(b) On a log–log scale, average shortest path length of ER random graphs for different link probabilities.
The average distance decreases with increasing rewiring probability p and tipping points are evident
around p ≈ 0.1, after which the average shortest path length decreases with a slower rate.

3.2. Small-World Networks

Figure 2 reports the patterns of mean closeness centrality and distance entropy for small-world
networks of different sizes, for coordination number z = 4 and at different rewiring probabilities r.
When r = 0, a small-world network is a lattice with coordination number z. For intermediate values
0 < r < 1, a fraction r of the links for each node is rewired uniformly at random. For r = 1,
a small-world network is equivalent to a random graph with p = z/N [28].

Figure 2 shows that the rewiring probability has a monotonic effect on the mean distance entropy,
which decreases from values close to 1 (r = 0). This is expected, as the rewiring is increasingly
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destroying the order of the lattice structure, thus reducing h. Note that the minimum value of
distance entropy—reached when r = 1—is the same mean distance entropy of a random graph with
p = z/N. The numerical results in Figure 2 indicate that distance entropy does not detect the so-called
small-world regime (i.e., a region determined by intermediate values of r for which small-world
display an average short path length close to logN and values of clustering coefficient comparatively
higher than those of a random graph). In fact, no tipping points relative to this phase transition
are found in the numerical simulations, independently of the considered network size. We attribute
this finding to the fact that distance entropy can only highlight deviations from a homogeneous
distribution of path lengths, and cannot provide information about either the assortative mixing or the
clustering of nodes, which are both network features that must be measured in order to characterise
the small-world property.
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Figure 2. Mean closeness centrality and distance entropy of Watts–Strogatz small-world (SW) networks
of different node sizes and different rewiring probabilities. The rewiring probabilities plotted above are
relative only to the case with N = 256, and are provided only as a guideline. Mean values are averaged
for all nodes in a graph and across 100 different independent realizations.

3.3. Barabasi–Albert Networks

Figure 3 reports on the mean closeness centrality and distance entropy of growing BA network
models. Network growth follows a preferential attachment process where one node and m links are
added at every time step [1].
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Figure 3. Mean closeness centrality and distance entropy of growing Barabasi–Albert (BA) networks for
different values of the link growth rate m. Initial values are relative to networks with 100 nodes and
are highlighted in red. Growing networks are measured once every 100 nodes are added. Simulated
networks range from 100 up to 1500 nodes. Mean values are averaged for all nodes in a graph and
across 100 independent realizations.
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Since it is already known that the average network distance l grows as logN/log logN in growing
BA networks with N nodes, then it is expected for closeness centrality to decrease with the growing
number of nodes. When the number m of links added at each time step is smaller than 8, a monotonic
decrease in distance entropy is registered during network growth. Instead, when m = 8, smaller BA
networks display a peak of distance entropy for intermediate sizes (N ≈ 600). Entropy h decreases
at later steps when more nodes and links are added. We link this decrease in distance entropy with
the emergence of hubs due to preferential attachment in larger BA networks. Hub nodes tend to have
distance 1 from a significant fraction of nodes in the network, thus considerably lowering the average
distance entropy.

4. Cartography Based on Distance Entropy and Closeness Centrality

In the previous sections, we focused on characterising the mean distance entropy of networks
by considering different models. We now focus on the structural patterns of individual nodes that
emerge by considering closeness centrality and distance entropy together in one given network.
We consider distance entropy as an estimator of the variation of distances of a given node from all its
neighbours, thus providing additional information compared to considering closeness centrality only
(which reports only on the mean distance of a node from the other nodes).

We combine information from both the closeness and distance entropy of a node by introducing
the concept of distance entropy cartography. We draw inspiration from the concept of cartography
introduced by Guimerá and Amaral for characterising the role played by individual nodes in
community structure [29], a concept later generalised to the participation of nodes on multiplex
structures [30]. Network cartographies are useful for visualising the map of topological patterns that
nodes have in a given network structure.
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Figure 4. Distance entropy provides different centrality information on nodes, compared to closeness
centrality. Here we consider a BA network with N = 25 nodes and m = 4. (a) Nodes with low
distance entropy are highlighted in green. (b) Nodes with high closeness are highlighted in red.
(c) Cartography representing the distance entropy and closeness centrality of individual nodes in the
network. Gray lines indicate quartiles. Nodes with the lowest (highest) distance entropy (closeness)
are highlighted in green (red). The two sets of nodes do not overlap. Not considering distance entropy
would lead to a closeness distribution reported in the top subpanel, where many nodes would end up
displaying similar closeness centrality despite their different connectivity patterns, here highlighted by
their distance entropy.

In Figure 4 we show an example of distance entropy cartography for a toy model (BA network
with m = 4 and N = 25 nodes). Sub-panel (a) highlights nodes with the lowest distance entropy
(i.e., a more homogeneous distribution of network distances) while (b) highlights nodes with the
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highest closeness centrality (i.e., at shortest average distance in the network). Note that nodes with
higher closeness centrality also tend to have higher distance entropy, as they are closer to each other
but further apart from peripheral nodes. Consequently, the set of nodes with high closeness does not
overlap with the set of nodes with low distance entropy—the two metrics provide complementary
information. We define a cartography by a 2D space where each node has its distance entropy and its
closeness as coordinates (sub-panel (c)). Representing nodes in this 2D space is informative; in fact,
most of the nodes in the network have similar closeness centrality around ci = 0.55 (see also sub-panel
(c), top plot) but display evidently different values of distance entropy, ranging from h = 0.53 up to
h = 0.84. Hence, considering distance entropy can help to reduce the degeneracy observed when
considering closeness only: nodes having similar closeness centrality are found—by means of the
distance entropy—to be differently connected to the rest of the network.

5. Applying Distance Entropy Cartography to Multiplex Lexical Networks

We apply the cartographic analysis previously introduced to multiplex lexical networks [6,31],
successfully applied for modelling trends of progressive language impairments such as aphasia [19],
but also patterns of language development such as modelling and predicting strategies of word
learning in toddlers [18]. When considering multiplex lexical networks and learning, we wonder if
distance entropy can provide any improvement for detecting word learning strategies in toddlers.

Here, we use the same empirical networks used in [18] (i.e., multi-layer edge-coloured networks
where nodes represent words). There are no explicit inter-layer links, and layers represent semantic
relationships (e.g., “dog” and “cat” share the feature of being an animal) and phonological similarities
(e.g., “bad” and “bed” differ by one phoneme only) among words. For ranking words in the order they
are learned by most English toddlers between 18 and 30 months of age, we use longitudinal data from
the CHILDES dataset accessed through TalkBank [32]. The longitudinal data allows the reconstruction
of the fraction of children producing a certain word in a given month (i.e., production probability).
Within each month, words are ranked in descending order of production probability. This ranking
represents a proxy for the normative learning of most toddlers [18,33,34].

Recently, different network approaches have been successfully used for predicting the acquisition
of words based on their network features (e.g., word degree, closeness centrality, network
gaps) [18,33,35,36]. Here, we rank words according to the introduced cartography and then compare
against the ranking of the estimated age of acquisition, in which words acquired earlier (e.g., “mommy”)
are ranked higher than words learned later (e.g., “picture”). The extent to which an artificial ranking ra

predicts the words learned according to the normative learning ranking rl is measured through the
word gain:

g(ra, t) =
O(ra, rl , t)− R(rl , t)

t
, (5)

representing at position t the fraction of words predicted as correctly learned in rl by the network ranking
ra (O(ra, rl , t)), with respect to random guessing (R(rl , t)). A word gain of 20% when t = 200 words
have been learned means that ra predicts as correctly learned 40 words more than random ranking.

Multiplex closeness centrality provides a word gain higher than other measures (e.g., betweenness,
degree, and local clustering coefficient) on both single and multiplex network topologies [18]. Hence,
here we focus on the ranking rclo of descending closeness centrality and use it as a reference level
to test whether enriching it with information from distance entropy can achieve higher word gains.
Distance entropy is computed on the multiplex shortest paths, namely the shortest paths where links
from different layers can be combined together [3]. The resulting cartography is shown in Figure 5.

The distance entropy cartography indicates that many nodes with similar closeness centrality
differ highly in their distance entropy. We quantify this notion of closeness similarity by considering
nodes having closeness around c∗ within an interval [c∗ − w, c∗ + w[. Here w represents an interval
width, a tolerance parameter determining which nodes have closeness similar to c∗ up to a value
w. If w = 0, then our definition of similarity would reduce to identifying ties (i.e., considering as
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similar nodes having the same value of closeness c∗). Provided its interpretation in terms of similarity,
we consider values w� 1.
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Figure 5. Distance entropy cartography for the N = 529 words in the multiplex lexical network of
young toddlers. Within a window of width w, nodes with similar closeness centrality can have quite
different distance entropies.

We use the cartography and closeness similarity for building artificial rankings of words based
on both closeness centrality and distance entropy. Starting from the maximum value of closeness
cmax in the network, we build bins bi = [cmax − (i + 1) · w, cmax − i · w[. A ranking re(w) is produced
by ranking all nodes in bin bi in increasing order of distance entropy. Within each bin bi we rank
nodes from lower to higher distance entropy because the lower hj, the more a node j is connected to
all other nodes in the network. Hence, nodes with lower distance entropy are expected to be more
central in the network. Note that distance entropy provides different information compared to other
multiplex centrality measures such as multidegree [3] or PageRank versatility [37], since the induced
node rankings overlap with distance entropy only for 30% (Kendall Tau τ = 0.30%) and 21% (Kendall
Tau τ = 0.21) respectively.

Note also that when i increases the average closeness of the considered nodes decreases, so re(w)

is a rank in which: (i) highest closeness nodes are on average ranked higher; (ii) nodes with closeness
similar up to a tolerance w are ranked according to their distance entropy. Hence, in re(w), words in
the left-lower part of the entropic cartography are ranked higher (i.e., words with high closeness and
low distance entropy).

This ranking is a function of the window w: when w = 0, then distance entropy has no effect
and re(0) is equivalent to ranking nodes in descending order of closeness (rclo); when w = 1, then all
the nodes are ranked according to their distance entropy and closeness plays no role in affecting the
ordering. We investigate the influence of w in providing ranks mixing distance entropy and closeness
centrality for improving prediction performances (i.e., increasing the average word gain). We focus
on the early stages of cognitive development between months 20 and 23, which are called the Early
Learning Stage in which multiplex closeness centrality provided the highest word gains.

We measure increases or decreases in prediction power of which words are learned early by
toddlers by considering a relative word gain improvement:

∆g(re(w), t) =
g(re(w), t)− g(rclo, t)

g(rclo, t)
. (6)

A relative word gain improvement ∆g(re(w), 150) = 0.1 means that when 150 have been learned,
the ranking considering together closeness and distance entropy predicts as correctly learned 10% more
words than considering closeness only. Provided that improvements depend on the value of w, a scan
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of different values is essential. For each value of w, we compare the observed improvement against a
distribution of random improvements obtained by fixing the same w and the same bins but ranking
words at random rather than according to their distance entropy. These randomised ranks represent
our null models and allow one to quantify the statistical significance of word gain improvements
observed when using the cartography.

Table 1 reports the word gain improvements averaged between months 20 and 23 (the Early
Learning Stage) for different values of w. When 0 < w ≤ 0.05, positive improvements in word
gain are registered, while for w > 0.05 only negative improvements are retrieved. The registered
positive improvements are statistically significant at a 0.01 significance level when 0.015 ≤ w ≤ 0.025,
indicating the presence of a window where learning high closeness words with low distance entropy
leads to marked improvements in predicting which words are learned by toddlers. In such cases,
the average word gain achieved with the entropic cartography is +13.3%.

Table 1. Improvements in word gains (relative to the reference closeness case) for different values of
binning width w. p-values are relative to the observed improvement relative to a reference distribution.
Reference distributions are obtained by ranking nodes at random (rather than through distance entropy).
When w > 0.05, no improvements are obtained.

Width w Improvement (%) p-Value

0 0 1
0.005 +3.9% 0.3
0.010 +7.9% 0.05
0.015 +13.1% 0.001
0.020 +13.3% 0.001
0.025 +13.6% 0.001
0.030 +7.9% 0.01
0.035 +8.0% 0.01
0.040 +4.0% 0.03
0.045 +5.1% 0.01
0.050 +0.1% 0.01

How do the results of the distance entropy cartography compare against other centrality measures?
In order to test the importance of distance entropy, we binned nodes in terms of decreasing closeness
centrality but ordered them in decreasing order of multidegree centrality within bins of the same
width 0.015 ≤ w ≤ 0.025 from the distance entropy cartography. Using degree rather than distance
entropy remarkably worsened prediction performances, as it produced on average only negative
improvements of word gain (≈ −15%).

These results indicate that considering distance entropy on top of the multiplex closeness centrality
is beneficial for achieving better predictions of the way most English toddlers learn words. All in all,
this application to real-world networks indicates that the topological information encapsulated in the
distance entropy can provide additional insights in discovering and interpreting patterns of real-world
complex systems.

6. Discussion

In this paper, we introduce a new type of distance entropy, characterising the distribution of path
lengths from a given node in a network. Compared to previous important results in the field [20–23],
our main novelty is in considering the entropy of paths of all lengths at local and global levels.
We provide analytical results for the distance entropy of individual nodes in regular graphs and show
that it is minimum when a node is adjacent to all other nodes in the network. From the analysis of
the mean distance entropy in well-known network models such as ER random graphs, BA scale-free
networks, and small-world networks, we observe that the creation of links either uniformly at random
or through preferential attachment generally decreases the heterogeneity of path lengths, decreasing
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distance entropy. There is a noticeable exception in ER random graphs, where we observe a tipping
point for distance entropy in increasingly denser ER random graphs. We attribute this change to the
sudden emergence of short-cuts in the system. No tipping points have been detected in small-world
and BA scale-free networks.

Note that our definition of distance entropy considers only shortest paths, in contrast to other
information-theoretic network measures based on network distance such as the centrality information
introduced in [38] or the resistance centrality from [39]. Both these quantities strongly correlate with
closeness centrality, since they are mainly variations of this measure, at variance with the distance
entropy measure proposed in this work.

In fact, we provide evidence that distance entropy carries different topological information
compared to other measures based on distance, such as closeness centrality. Note that closeness is
combined with distance entropy because they are both relative to shortest path lengths: closeness
is the mean of the distribution of path lengths, while distance entropy is related to its variance
(i.e., maximum entropy indicates paths of all possible path lengths, minimum entropy indicates null
variance). Consequently, because of this strong tie, we focused mainly on closeness and distance
entropy for defining the distance entropy cartography to better characterise nodes’ centrality in
complex networks. The additional information carried by distance entropy allows one to further
distinguish nodes with equal (or very similar) closeness centralities, thanks to the fact that such nodes
can be more or less heterogeneously distant from the rest of the system.

In the current study, the concept of closeness similarity has been parametrised by means of a
parameter w representing the tolerance up to which two nodes are considered having similar closeness
centralities. We did not fix w in the current analysis in order to prevent overfitting, however its
interpretation as a tolerance indicates that w � 1. Additional criteria from statistics such as using
percentiles or data clustering techniques could be pursued in future work.

We use the information combined by the cartography to rank words in multiplex lexical
networks [6,18,19] and to predict the order with which toddlers learn words during cognitive
development. We show that resolving the degeneracy of nodes with similar closeness centrality
but (very) different distance entropy provides consistently positive improvements in predicting word
learning strategies by at least 13%. Although these improvements might seem small, two additional
elements must be considered. Firstly, multiplex closeness centrality is already an optimal measure
of word prediction, in the sense that it vastly outperformed single- and multi-layer versions of
degree, betweenness, local clustering, PageRank, and eigenvector centralities in early word prediction,
so that improvements to its prediction performances are remarkable. Secondly, distance entropy
provides positive improvements that are not captured by other network statistics such as degree, which
conversely provides negative word gain (≈−15%) for the same values of w. This result underlines the
importance of considering distance entropy.

Our results provide evidence that English-speaking toddlers mainly tend to acquire words with
high closeness centrality and low distance entropy early on during language acquisition. These words
display less heterogeneous distributions of path lengths, with smaller central moments, on the whole
multiplex lexical structure, and are thus easier to reach from other words in the mental lexicon. From
the perspective of the cognitive sciences, the improvement in the prediction of word learning indicates
a cognitive advantage in learning words more central for the spread of information within the mental
lexicon of word-similarities. This finding is in agreement with other independent studies indicating
that closer words in linguistic networks are more easily identified in healthy subjects [17] and produced
in subjects with aphasia [19]. Note that a drawback of our modelling approach is that it does not
account for individual differences in word learning, but rather refers to the average trend at the
population level of healthy English-speaking toddlers. Quantifying the powerfulness of distance
entropy cartography for predicting the word learning of individuals requires additional data, and it
poses an interesting direction for future research.



Entropy 2018, 20, 268 11 of 12

From a network perspective, distance entropy provides different topological information
compared to closeness centrality, but the two measures share the same computational cost.
Hence, the proposed cartography can also be used for investigating large-scale networks, providing an
important tool for the investigation of structural patterns in real-world networks where the distances
among nodes matter.
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