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Abstract: The aim of the paper was to analyze the given nonlinear problem by different methods
of computation of the Lyapunov exponents (Wolf method, Rosenstein method, Kantz method,
the method based on the modification of a neural network, and the synchronization method) for
the classical problems governed by difference and differential equations (Hénon map, hyperchaotic
Hénon map, logistic map, Rössler attractor, Lorenz attractor) and with the use of both Fourier spectra
and Gauss wavelets. It has been shown that a modification of the neural network method makes it
possible to compute a spectrum of Lyapunov exponents, and then to detect a transition of the system
regular dynamics into chaos, hyperchaos, and others. The aim of the comparison was to evaluate
the considered algorithms, study their convergence, and also identify the most suitable algorithms
for specific system types and objectives. Moreover, an algorithm of calculation of the spectrum of
Lyapunov exponents based on a trained neural network has been proposed. It has been proven that
the developed method yields good results for different types of systems and does not require a priori
knowledge of the system equations.

Keywords: Lyapunov exponents; Wolf method; Rosenstein method; Kantz method; neural network
method; method of synchronization; Benettin method; Fourier spectrum; Gauss wavelets

1. Introduction

The first part of the present work is focused on the numerical investigation of classical dynamical
systems to estimate velocity of divergence of the neighborhood trajectories with the help of a measure
coupled with the Kolmogorov entropy [1] (or metrics). In reference [1], based on the mathematical
results of Oseledec [2] and Pesin [3], it has been shown that the numerically imposed relations can
be treated as exact/true values. The method proposed by Wolf [1] is most widely used to verify and
study chaotic dynamics. However, also the Rosenstein [4] and Kantz [5] methods are often employed
to estimate the largest Lyapunov exponents. The state-of-the-art of papers devoted to the theoretical
background of the Lyapunov exponents and methods of their computations has been carried out
by Awrejcewicz et al. [6]. In particular, the method of the choice of an embedding dimension has
been described. The method of the correlating dimension, the false nearest neighbor method and the
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method of gamma-test have been presented based on the Hénon and Lorenz attractors. In particular,
the occurrence of high computational difficulties has been observed in the case of the Wolf method
and its marginally successful employment to small values of the studied data.

To avoid the abovementioned drawbacks, a novel neural network-based algorithm to estimate the
largest Lyapunov exponents by considering only one coordinate has been proposed. In reference [6]
have reported the neural network algorithm for computation of a full spectrum of Lyapunov exponents.
A comparison of the results obtained by Golovko with the exact values of the Lyapunov exponents of
the Lorenz and Hénon systems have exhibited small errors.

In References [7,8], the method of largest Lyapunov exponent computation using the synchronization
phenomena of identical systems has been proposed. A few types of coupling have been studied,
depending on the type of the considered system. It has been pointed out that large computation time is
required to achieve full synchronization.

The method proposed in References [9,10] is particularly suitable to study chaotic dynamics of
continuous mechanical systems. It should be emphasized that, owing to the results published by
the authors of the present paper, the analysis of nonlinear dynamics based on the estimation of the
Lyapunov exponents yields a conclusion that the mentioned problems have not been satisfactorily
solved yet [1,4,5,9,10].

More recently, Vallejo and Sanjuan [11,12] have studied the predictability of orbits in coupled
systems by means of finite-time Lyapunov exponents. This approach has allowed them to estimate
how close the computed chaotic orbits are to the real/true orbits, being characterized by the systems
shadowing properties.

In the present paper, classical systems (Hénon map [13], hyperchaotic Hénon map [14], logistic
map [15], Rössler attractor [16], and Lorenz attractor [17]) were analyzed with Gauss wavelets [18],
Fourier spectra and Poincaré maps of a chaotic attractor [19–21].

It is known that the fundamental property of chaos is the existence of strong sensitivity to a change
of the initial conditions. The definition of chaos, given first by Devaney in 1989 [22], includes three
fundamental parts. In addition to sensitivity to the variation of the initial conditions, a condition of
mixing, known also as the transitivity condition and the regularity condition, measured by the density
of the periodic points or classical notion of periodicity is also included. In 1992, Banks et al. [23] proved
that the condition of sensitivity to the initial condition can be neglected, i.e., conditions of transitivity
and periodicity imply the sensitivity condition.

Knudsen [24] has defined chaos as a function given on a bounded metric space which has a dense
orbit and essentially depends on initial conditions.

Owing to the definition proposed by Gulick [25], chaos exists when either there is essential
dependence on the initial conditions or a chaotic function has positive Lyapunov exponents in each
point of the space and which does not eventually tend to a periodic orbit. This definition has been also
employed in the present work.

2. Lyapunov Exponents

2.1. The Largest Lyapunov Exponent

The following dynamical system was considered:

.
x = f (x) (1)

where x stands for the N-dimensional state vector.
Two closed phase points x1 and x2 were chosen (in the phase space). They stand for the origins of

the trajectories (x1(t) and x2(t)). The change in the distance d between two corresponding points of
these trajectories under evolution of system (1) can be monitored by:

d(t) =
∣∣∣→ε (t)∣∣∣ = |x2(t)− x1(t)| (2)
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If the dynamics of system (1) is chaotic, d(t) increases exponentially in time, i.e.,:

d(t) ≈ d(0)ekt (3)

This yields the average velocity of the exponential divergence of the trajectories:

k ≈
ln
[

d(t)
d(0)

]
t

(4)

or more precisely:

k = lim
d(0)→ 0

t→ ∞

ln[d(t)/d(0)]
t

(5)

The quantity h is known as the Kolmogorov-Sinai entropy (KS-entropy). Employing the
KS-entropy, one can define the studied process, i.e., quantify if the process is regular or chaotic.
In particular, if the system dynamics is periodic or quasi-periodic, the distance d(t) is not inversed
in time and the KS-entropy is equal to zero (h = 0). If the system dynamics tends to a stable fixed
point d(t)→ 0, then h < 0. Contrarily, KS-entropy is positive (h > 0) if one deals with chaotic dynamics.
KS-entropy is the maximum characteristic Lyapunov exponent that enables one to follow velocity of
information lost with respect to the initial system state.

2.2. Results

The spectrum of Lyapunov exponents makes it possible to qualitatively quantify a local property
with respect to the stability of an attractor. Consider a phase trajectory x(t) of the dynamical system (1),
starting from the point x(0) as well as its neighborhood trajectory x1(t) as follows:

x1(t) = x(t) +
→
ε (t) (6)

The following function can be constructed:

λ
[→

ε (0)
]
= lim

t→∞

ln

[ ∣∣∣→ε (t)∣∣∣∣∣∣→ε (0)∣∣∣
]

t
(7)

which is defined on the vector of initial displacement
→
ε (0) such that

∣∣∣→ε (0)∣∣∣ = ε, where ε→ 0.
All possible rotations of the initial displacements vector with respect to n directions of the

N-dimensional phase space of the Function (7) will suffer the jump-like changes in the finite series
of the values λ1, λ2, λ3, . . . , λn. These values of the function λ are called Lyapunov exponents
(LEs). Positive/negative values of LEs can be viewed as a measure of the averaged exponential
divergence/convergence of the neighborhood trajectories.

A sum of LEs stands for an averaged divergence of the phase trajectories flow. In the case of
a dissipative system, i.e., a system possessing an attractor, this sum is always negative. As numerical
case studies show, in some dissipative systems the LEs are invariant with respect to the chosen initial
conditions. Hence, a spectrum of LEs can be understood as the property of an attractor.

Usually, LEs are presented in a sequence of LE values in decreasing order. For instance, symbols
(+, 0, −) mean that for the analyzed attractor, there is one direction in a 3D space, where exponential
stretching is exhibited, the second direction indicates neutral stability, and the third one—exponential
compression. It should be noted that all attractors different from stable stationary points always have
at least one LE equal to zero (in average sense, all points of a trajectory are bounded by a compact
manifold and they cannot exhibit divergence or converge).
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In what follows, relationships between the Lyapunov exponents and the properties and types of
attractors are illustrated and discussed:

(1) n = 1. In this case only a stable fixed point can be an attractor (node or focus). There exists one
negative LE denoted by λ 1 = (−),

(2) n = 2. In 2D systems, there are two types of attractors: stable fixed points and limit cycles.
The corresponding LEs follow:

• (λ1, λ2) = (−,−)—stable fixed/fixed point;
• (λ1, λ2) = (0,−)—stable limit cycle (one exponent is equal to zero).

(3) n = 3. In 3D phase space, there exist four types of attractors: stable points, limit cycles, 2D tori
and strange attractors. The following set of LEs characterizes possible dynamical situations to
be met:

• (λ1, λ2, λ3) = (−,−,−)—stable fixed point;
• (λ1, λ2, λ3) = (0,−,−)—stable limit cycle;
• (λ1, λ2, λ3) = (0, 0,−)—stable 2D tori;
• (λ1, λ2, λ3) = (+, 0,−)—strange attractor.

In the majority of the studied problems, it is impossible to give an analytical definition of LEs,
since the analytical solution to the governing differential equations would have to be known. However,
there exist reliable algorithms to find all Lyapunov exponents numerically.

3. Methods of Analysis of Lyapunov Exponents

3.1. Benettin Method

We began with the numerical investigation of the Kolmogorov entropy of the Hénon-Heiles
model. Numerical computations were carried out with accuracy up to 14 digits by means of employing
the so-called method of central points. Observe that a similar method has been used in reference [26].

Based on the Lyapunov exponents, the ergodic properties of dissipative dynamical systems with
a few degrees of freedom were numerically studied with the Lorenz system. The system exhibited
the exponents spectrum of the (+, 0, −) type, and the exponents had the same values for the orbits
beginning from an arbitrary point on the attractor. It means that the ergodic property of a general
dynamical system can be quantified by a spectrum of the characteristic Lyapunov exponents. Below,
a brief description of the used method is presented.

Let a point x0 belong to the attractor A of a dynamical system. An evolution trajectory of the point
x0 is referred to as a real/true trajectory. A positive quantity ε, being significantly less than the attractor
dimension, is chosen. Furthermore, an arbitrary perturbed point x̃0 is chosen in a way to satisfy
‖x̃0 − x0‖ = ε. The evolution of points x0 and x̃0 is considered in a short time interval T, and new
points are denoted by x1 and x̃1, respectively. A vector ∆x1 = x̃1 − x1 is called the perturbation vector.
The first estimate of the exponent is found with the use of the following formula

λ̃1 =
1
T

ln
||∆x1||

ε
. (8)

The time interval T is chosen in a way to keep the amplitude of perturbation less than the
linear dimensions of the phase space nonhomogenity and the attractor dimension. The normalized
perturbation vector ∆x′1 = ε∆x1/||∆x1|| is taken, and a new perturbed point x̃′1 = x1 + ∆x′1 is defined.
Finally, the so far described procedure is implemented taking into account x1 and x̃1 instead of x0 and
x̃0, respectively.

After repeating this procedure M times, λ is defined as an arithmetic average of the estimates λ̃l
obtained on each computational step:
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λ ∼=
1
M

M

∑
i=1

λ̃l =
1
M

M

∑
i=1

1
T

ln
||∆xi||

ε
=

1
MT

M

∑
i=1

ln
||∆xi||

ε
. (9)

In order to achieve a higher estimate, one can take large M and carry out computations for
a different initial point x0. This method can be used when the equations governing the system
evolution are known. It should be noted, however, that these equations are usually unknown for the
experimental data.

To compute the Lyapunov spectrum numerically, one can use another approach generalizing the
Benettin’s algorithm. In general, it is necessary to follow a few trajectories of the perturbed points
instead of only one, fundamental trajectory (the number of perturbed trajectories is equal to the
dimension of the phase space). For this purpose, a numerical approach based on derivation of the
dynamic equations in variations can be used [27]. Since the largest LE plays a crucial role in the
evolution of all perturbed trajectories, it is necessary to carry out orthogonalization of the perturbation
vectors on each step of the algorithm. In what follows, a procedure of numerical estimation of the
Lyapunov spectrum of a dynamical system is briefly described. To simplify, the considerations are
limited to 3D systems.

Let r0 stand for a point of the chaotic attractor and ε be a fixed positive number, small in
comparison to linear dimensions of the attractor. The points x0, y0 and z0 are chosen so that the
perturbation vectors ∆x0 = x0 − r0, ∆y0 = y0 − r0, ∆z0 = z0 − r0 have the length ε and are mutually
orthogonal. After a certain small time interval T, the points r0, x0, y0 and z0 are transformed into
points r1, x1, y1 and z1, respectively. Then, new perturbation vectors ∆x1 = x1 − r1, ∆y1 = y1 − r1,
∆z1 = z1 − r1 are considered. The orthogonlization using the well-known (in linear algebra)
Gramm–Schmidt method is carried out. After this step, the obtained vectors of perturbation
∆x′′1 , ∆y′′1 , ∆z′′1 become orthonormalized, i.e., they are mutually orthogonal and have the unit length.
Then, the renormalization of the perturbation vectors is carried out again to get lengths of the vectors
in terms of the magnitude ε:

∆x′′′1 = ∆x′′1 × ε, ∆y′′′1 = ∆y′′1 × ε, ∆z′′′1 = ∆z′′1 × ε (10)

. We take the following perturbed points:

x′1 = x1 + ∆x′′′1 , y′1 = y1 + ∆y′′′1 , z′1 = z1 + ∆z′′′1 (11)

Next, the process is repeated, i.e., instead of the points r0, x0, y0 and z0, the points r1, x′1, y′1 and z′1
are taken into account, respectively.

Repeating the so far described procedure M times, one finds:

S1 = ∑M
k=1 ln ‖∆x′k‖, S2 = ∑M

k=1 ln ‖∆y′k‖, S3 = ∑M
k=1 ln ‖∆z′k‖. (12)

Then, a spectrum Λ = {λ1, λ2, λ3} of LEs can be found by the following formulas:

λi =
Si

MT
, i = 1, 2, 3 (13)

In this method, the choice of time interval T is crucial. If one takes too large time interval T,
then all perturbed trajectories are inclined in the direction corresponding to the maximum LE, and
hence the obtained results are not reliable.

3.2. Wolf Method

In Reference [1], a novel algorithm to find nonnegative Lyapunov exponents by using a time
series has been proposed. It has been illustrated that the Lyapunov exponents are associated with
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either exponential divergence or convergence of the neighborhood orbits in the considered phase space.
In general, the method is applicable only when analytical governing equations are known, and it is
based on tracing the large time-consuming increase in the number of elements in a small volume of
an attractor.

We defined a Lyapunov exponent and a spectrum of Lyapunov exponents, and then illustrated
how the system dynamics depends on the number of exponents with different signs in the spectrum.
Our approach included reconstruction of an attractor and investigation of orbital divergence on the
possibly smallest distances using the approximate Gramm–Schmidt orthogonalization procedure in the
reconstructed phase. In order to estimate the largest Lyapunov exponent, a long trace of time evolution
of the chosen pair of the neighborhood orbits was carried out. Note that a particular attention should
be paid, since the reconstructed attractor may contain points belonging to different attractors.

Two versions of the method are proposed. The first one includes the so-called fixed evolution
time, where the time interval associated with the change of the points is fixed.

The main idea of the proposed method is that the largest Lyapunov exponent is computed based
on one time series and used when the equations describing the system evolution are unknown and
when it is impossible to measure all remaining phase coordinates.

Consider a time series x(t), t = 1, . . . , N of one coordinate of a chaotic process measured in equal
time intervals. The method of mutual information allows one to define the time delay τ, whereas
the method of false neighbors yields the dimension of the embedded space m. As a result of the
reconstruction, one gets a set of points of the space Rm:

xi = (x(i), x(i− τ), . . . , x(i− (m− 1)τ)) = (x1(i), x2(i), . . . , xm(i)), (14)

where i = ((m− 1)τ + 1), . . . , N.
We take a point from the series (3) and denote it by x0. In the series (3), one can find a point

x̃0, where the relation ||x̃0 − x0||= ε0 < ε holds, and where ε is a fixed quantity, essentially less than
the dimension of the reconstructed attractor. It is required that the points x0 and x̃0 are separated in
time. Then, time evolution of these points is observed on the reconstructed attractor until the distance
between points achieves εmax. The new points are denoted by x1 and x̃1, the distance is ε′0, and the
associate interval of time evolution is denoted by T1.

After that, we again consider the Sequence (14) the find the point x̃′1, located close to x1,
where ||x̃′1 − x1|| = ε1 < ε holds. Vectors x̃1 − x1 and x̃′1 − x1 should possibly have the same direction.
Then, the procedure is repeated for points x1 and x̃′1.

By repeating the above procedure M times, the largest Lyapunov exponent is estimated:

λ ∼=
M−1

∑
k=0

ln(ε′k/εk)/
M

∑
k=1

Tk. (15)

This method has been employed in the present research to test the accuracy of results by using the
classical and known spectra of the Lyapunov exponents of the Hénon map, Rössler equations, chaos and
hyperchaos exhibited by the Lorenz system, and McKay-Glass equation [28]. In addition, it has been also
employed to study the Belousov–Zhabotinsky reaction [29] and the Couette-Taylor flow [30].

Wolf et al. [1] have pointed out certain restrictions on the choice of the embedding dimension
and the time required for the attractor reconstruction to achieve the most accurate estimates of the
Lyapunov exponents. Using the Rössler attractor [16] and the Belousov–Zhabotynskiy reaction [29],
the authors have demonstrated the effects of the time change during the attractor reconstruction,
the time of evolution of the system between steps of the time change, the maximum length of the
replacement vector and the minimum length of the exchange vector on the values of the estimated
largest Lyapunov exponent. Furthermore, it has been shown that variation (between 0.5 and 1.5) of the
time of the system evolution leads to reliable estimates of the studied three chaotic attractors. Also,
some data requirements that make it possible to obtain the most accurate estimate of the Lyapunov
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exponent, such as the use of small length scale data as well as some restrictions on the presence of
noisy perturbations in the data (static and dynamic), have been discussed.

The proposed algorithms can be used to detect chaos as well as to compute its parameters also for
the experimental data with a few positive exponents. Furthermore, numerical studies have presented
the topological complexity of chaos (the Lorenz attractor) and have shown that the deterministic chaos
can be distinguished from white noise (the Belousov–Zhabotinsky reaction).

3.3. Rosenstein Method

Despite this method is simple in realization in comparison to the previous ones and it is
characterized by high computational speed, it does not directly yield λ1, but rather the function:

y(i, ∆t) =
1

∆t
〈
ln dj(i)

〉
, dj(i) = minxj ||xj − x′j||, (16)

where xj is a given point, and x′j denotes its neighbor.
The algorithm is based on the relationship between dj and the Lyapunov exponents:

dj(i) ≈ eλ1(i∆t). The largest Lyapunov exponent is computed by estimating the inclination of the
most linear part of the function. It should be mentioned, however, that finding this linear part does not
belong to easy tasks.

3.4. Kantz Method

The algorithm proposed by Kantz [5] computes the LLE by searching all neighbors in vicinity of the
reference trajectory and estimates the average distance between neighbors and the reference trajectory
as a function of time (or a relative time multiplied by the data sampling frequency). The algorithm is
based on the following formula:

S(τ) =
1
T

T

∑
t=1

ln

(
1
|Ut| ∑

i∈Ut

|xt+τ − xi+τ |
)

(17)

where xt stands for an arbitrary signal point; Ut is a neighborhood of xt; xi is a neighbor of xt;
τ—relative time multiplied by the sampling frequency; T—sample size; S(τ)—stretching factor in
the region of a linear growth indicating a curve whose slope is equal to LE, i.e., eλτ ∝ eS(τ). However,
the assumption of a linear growth introduces new errors. Despite the fact that the method is useful and
accurate for systems with known LEs, the choice of parameters and the region where the mentioned
linear growth occurs is, in practice, arbitrary.

The method yields correct results if the value of the Lyapunov exponent is known a priori,
and hence the space with the tangent equal to that value can be chosen.

3.5. Computation of LLE Based on Synchronization of Nonnegative Feedback

In reference [7], the method of LLE computation based on synchronization of coupled identical
systems has been proposed. The following k-dimensional discrete system:

y′i = f (yi) (18)

has been considered, where y ∈ Rk, i ∈ (1, 2, . . . , k). The supplemental system has been proposed in
the following way:

x′i = f (yi + ∆yi)

y′i = f (yi)

∆y′i = [ f (yi + ∆yi)− f (yi)] exp(−p)
(19)
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where x, y, ∆y ∈ Rk. Evolution of k-dimensional system is governed by k of LLEs. Consequently,
synchronization of the perturbed and nonperturbed systems (19) is guaranteed by the following inequality:

p > λmax (20)

where λmax stands for LLEs of the studied systems (18).
Figure 1 shows synchronization between perturbed (first equation of (19)) and nonperturbed

(second equation of (19)) systems for alogistic map. The synchronization starts at p equal to λ, and this
value represents the largest Lyapunov exponent of the system.Entropy 2018, 20, x  8 of 27 
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In reference [8], systems with excitations have been studied. The authors have proposed the
following way of coupling of identical systems:

.
x = f (x)

.
y = f (y) + d(x− y)

(21)

The application of this approach is limited to the systems with known equations of evolutions,
and the way of introducing the coupling of two identical systems depends on the type of the
considered system.

3.6. Jacobi Method

This method has been proposed in references [31,32]. The main idea is to use an algorithm,
the scheme of which is illustrated in Figure 2. A sphere of small radius ε is taken. After a few iterations
m, a certain operator Tm transforms this sphere into an ellipsoid having a1, . . . , ap half-axes. The sphere
is stretched along the axes a1, . . . , as > ε, where s is the number of positive LEs. For sufficiently small
ε, the operator Tm is close to the sum of the shear operator and the linear operator A. The LLEs are
computed as averaged eigenvalues of the operator A on the whole attractor.

A vector ς j is chosen, and a set
{

ςki

}
(i = 1, . . . , N) of i-th neighborhood vectors is found.

The following set of vectors yi ≡ ςki
− ς j, where ‖yi‖ ≤ ε, is taken. After m successive iterations,

the operator Tm transforms the vector ς j into ς j+m, and the vector ςki
into ςki+m

. Eventually, the vectors
yi are transformed into

yi+m = ςki+m
− ς j+m
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Assuming that the radius ε is sufficiently small, one can introduce the operator Aj as follows

yi+m = Ajyi

The operator Aj describes the system in variations. To estimate the operator A, the least-square
method can be employed:

min
Aj

S = min
Aj

1
N

N

∑
i=0

(
yi+m − Ajyi

)2

This yields the following system of equations of the dimension n× n:

AjV = C, (V)kl =
1
N

N

∑
i=1

yk
i yl

i

(C)kl =
1
N

N

∑
i=1

yk
i + myl

i

where V, C are the matrices of the dimension n× n, yk
i stands for the k-th component of vector yi,

and yk
i + m is the k-th component of the vector yi + m. If A is a solution of the equations, then the LEs

can be found in the following way

λi = lim
n→∞

1
nτ

n

∑
j=1

ln Aje
j
i

where
{

ej
}

is a set of basic vectors in a tangent space ς j.
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The algorithm can be realized in a way similar to the computation of LEs of the ODEs
given analytically.

Let us choose an arbitrary basis {es} and then follow the changes in the length of the
vector Ajes. As the vectors Ajes grow and their orientations change, it is necessary to perform
their orthogonalization and normalization by using, for example, the Gramm–Schmidt procedure.
The procedure is then repeated for the new basis.

The mentioned method allows one to estimate a spectrum of nonnegative LEs. However, it has
a serious disadvantage—it is highly sensitive to noise and errors.
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3.7. Modification of the Neural Network Method

We have proposed a novel counterpart method to compute LEs based on a modification of the
neural network method (see Figure 3).

A single-layer feed forward neural network presented in Figure 3 has multiple input neurons,
a layer of hidden neurons and one output neuron. The following notation is employed: aij—weight of
the connection between the i-th input neuron and the j-th hidden neuron; bi—weight of connection
between the i-th hidden neuron and the output neuron. To realize the neural network algorithm,
the following criteria were taken into account:

(i) the network is sensitive to the input information (information is given in the form of real numbers);
(ii) the network is self-organizing, i.e., it yields the output space of solutions only based on the inputs;
(iii) the neural network is a network of straight distribution (all connections are directed from input

neurons to output neurons);
(iv) owing to the synapses tuning, the network exhibits dynamic couplings (in the learning process,

the tuning of the synaptic coupling takes place (dW/dt 6= 0), where W stands for the weighted
coefficients of the network).
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neurons and one output neuron.

The hidden layer of neurons contains the hyperbolic tangent, which plays a role of an activation
function (Figure 4). A derivative of the hyperbolic tangent is described by a quadratic function, as it
is in the case of a logistic function. However, contrarily to the logistic function, the space of the
values of the hyperbolic tangent falls within the interval (−1; 1). This results in higher convergence in
comparison to the standard logistic function.
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Prognosis of x̂k of a scalar time series xk is made by employing the following formula

x̂k =
n

∑
i=1

bitanh

(
ai0 +

d

∑
j=1

aijxk−j

)
(22)

where n stands for the number of neurons, d is the number of the searched LE, aij stands for the
n × (d + 1) matrix of coefficients, and bi is the vector of the length n. The matrix aij contains the
coupling forces with respect to the network input, the vector bi is used to control the input of each
neuron to the network output, whereas the vector ai0 is used for relatively simple learning based on
data with nonzero averaged value.

Weights a and b are chosen in a probabilistic way, and the dimension of the searched solution
is decreased in the process of learning. The associated Gaussian is chosen in a way to have initial
standard distribution 2−j, centered with respect to zero in order to promote the most recent time
delays (small values of j) in the phase space. The coupling forces are chosen in a way to minimize the
averaged one step mean square error of a forecast:

e =
∑c

k=d+1(x̂k − xk)
2

c− d
(23)

During the training of the network, sensitivity of the output is defined by computing partial
derivatives of all averaged points of the time series in each time step xk−j:

Ŝ(j) =
1

c− j

c

∑
k=j+1

∣∣∣∣∣ ∂x̂k
∂xk−j

∣∣∣∣∣ (24)

In the case of the network given by (22), the partial derivatives have the following form:

∂x̂k
∂xk−j

=
n

∑
i=1

aijbisec h2

(
ai0 +

d

∑
m=1

aimxk−m

)
(25)

The largest value j is the optimal embedding dimension, and the key role is played by Ŝ(j) as in
the false nearest neighbors method. The individual values of Ŝ(j) yield a quantitative estimate of the
importance of each time step using the associated terms of the autocorrelation function or coefficients
of the associated linear model.

The weights of the trained neural network are substituted to the matrix of solutions, and the input
data are used to define the initial state. The computation of the spectrum is realized by employment of
the generalized Benettin’s algorithm based on the obtained system of equations.

4. Wavelet Methods

Gauss Wavelets

In the majority of engineering problems, the Fourier analysis is insufficient, since it deals with
the averaged spectrum of the whole studied vibration signal and presents only a general picture of
the signal. On the contrary, wavelets play a role of a “microscope” which allows one to observe the
spectrum at each time instant, and detect births/deaths of the frequencies in time.

A wavelet transform of a 1D signal is realized with respect to a basis being usually a soliton-like
function with given properties. The basis is obtained by displacement and tension/compression of
a function called a wavelet.

In the present work, the Gauss wavelets, defined as derivatives of the Gauss function, were used.
Higher-order derivatives have many zero moments, and hence they allow one to obtain information
about higher-order features hidden in the investigated signal.
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The 8th order Gauss wavelets of the of the following form were employed:

g8(x) = −
(

105− 420x2 + 210x4 − 28x6 + x8
)

exp
−x2

2 (26)

5. Analysis of Classical Dynamical Systems by LEs and Gauss Wavelets

In this section, simple classical systems (Figures 5–9) have been studied with emphasis put on
a comparison of the LEs (Tables 1–5) obtained using the Wolf, Rosenstein, Kantz and neural network
methods. The convergence of the mentioned methods, depending on the number of iteration steps,
has been illustrated and discussed (Tables 6–10). The Benettin method has been used as a reference
because for most systems, there are no analytically calculated spectra of Lyapunov exponents.
Moreover, the Benettin method calculates Lyapunov exponents based on the system equations.
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Table 1. Spectrum of Lyapunov exponents and LLEs computed by different methods (logistic map).

LE Spectrum

Benettin Method Neural Network

(LEs): 0.69315
Dimension Kaplan–Yorke (DKY): 1

Kolmogorov-Sinai entropy (KSE): 0.69315
Phase volume compression (PVC): 0.69315

LEs: 0.69290
DKY: 1

EKS: 0.69290
PVC: 0.69290

LLE

Wolf Method Rosenstein Method Kantz Method Method of Synchronization

LLE: 0.99683 LLE: 0.690553 LLE: 0.69810 LLE: 0.696

5.2. Hénon Map

The Hénon map takes a point (Xn, Yn) and maps it into another point by the following formulas:

Xn+1 = 1− aX2
n + Yn,

Yn+1 = bXn.
(28)

The following parameters are fixed for numerical experiments: a = 1.4, b = 0.3. Since the
Equations (28) do not correspond to a real object, the parameters are replaced with fixed values.
Sprott [34] has computed the Lyapunov spectrum and the Kaplan–Yorke dimension of the map
using the Benettin method [27] by solving (28). He has obtained the following LEs: λ1 = 0.419217,
λ2 = −1.623190, and the Kaplan–Yorke dimension: 1.258267.

Similarly to the logistic map, the power spectrum exhibits a uniform noisy shape. However,
one can distinguish a dominating frequency (ω1 ≈ 0, 45). This frequency is also visible on the wavelet
spectrum as a region of the largest amplitudes along the whole signal (brighter regions in the graph).
Plots of the change in the LLE correlate with bifurcation diagrams for the same interval of changes
in the parameters a and b. Dynamics of the LLE changes increases with the increase in both control
parameters. Starting with the graphs of LEs for a given set of control parameters, the system mainly
remains in a periodic regime, but it exhibits chaotic dynamics for large values of the control parameters.

Beginning from the results shown in Table 2, the majority of the employed computational methods
yielded good results. However, the most accurate results were obtained by the neural network
method (for whole spectrum of LEs), the Rosenstein method, the Kantz method, and the method of
synchronization (in the case of LLEs). The Wolf method gave decreased estimated values of the LLEs.

Table 2. Lyapunov exponents spectrum and LLEs computed by different methods (Hénon map).

Spectrum of LLEs

Benettin Method Neural Network

LEs: 0.41919; −1.62316
DKY: 1.25826
EKS: 0.41919

PVC: −1.20397

LEs: 0.41919; −1.62316
DKY: 1.25826
EKS: 0.41919

PVC: −1.20397

LLEs

Wolf Method Rosenstein Method Kantz Method Synchronization Method

LLE: 0.38788 LLE: 0.414218 LLE: 0.41912 LLE: 0.40608
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Table 3. Lyapunov exponents spectrum and LLEs computed by different methods (generalized
Hénon map).

Spectrum of LEs

Benettin Method Neural Network

LEs: 0.27628; 0.25770; −4.04053
DKY: 2.13215
EKS: 0.53397

PVC: −3.50656

LEs: 0.29251; 0.27104; −4.04583
DKY: 2.13929
EKS: 0.56355

PVC: −3.48227

LLEs

Wolf Method Rosenstein Method Kantz Method Synchronization Method

LLE: 0.45214 LLE: 0.27930 LLE: 0.26601 0.27250

Table 4. Lyapunov exponents spectrum and LLEs computed by different methods (Rössler attractor).

Spectrum of LEs

Benettin Method Neural Network

LE: 0.07135; 0.00000; −5.39420
DKY: 2.01323
KSE: 0.07135

PVC: −5.32285

LE: 0.07593; −0.00060; −0.78178
DKY: 2.09635
EKS: 0.07593

PVC: −0.70646

LLEs

Wolf Method Rosenstein Method Kantz Method

LLE: 0.05855 LLE: 0.0726 LLE: 0.0774

Table 5. Lyapunov exponents spectrum and LLEs computed by different methods (Lorenz attractor).

Spectrum of LEs

Benettin Method Neural Network Method

LE: 0.90557; 0.00000; −14.57214
DKY: 2.06214
EKS: 0.90557

PVC: −13.66656

LE: 0.9490; 0.0610; −13.9101
DKY: 2.07261
EKS: 1.0101

PVC: −12.9000

LLEs

Wolf Method Rosenstein Methhod Kantz Method

LLE: 0.81704 LLE: 0.836 LLE: 0.807185

Table 6. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for ∆t = 1, 2 and the LLEs
computed by different methods (logistic map).

∆t = 1 ∆t = 2

Fourier Power Spectra (a)
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Table 6. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for ∆𝑡 = 1, 2 and the 
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Fourier Power Spectra (a) 
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Entropy 2018, 20, 175 21 of 28

Table 6. Cont.

∆t = 1 ∆t = 2
Entropy 2018, 20, x  21 of 27 
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Table 7. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for ∆t = 1, 2 and the
computed LLEs by different methods (Hénon map).
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Table 7. Cont.

∆t = 1 ∆t = 2

Entropy 2018, 20, x  21 of 27 

 

  

LLE (Wolf) 

0.99961 1.00014 
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Table 7. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for ∆𝑡 = 1, 2 and the 

computed LLEs by different methods (Hénon map). 

∆𝒕 = 𝟏 ∆𝒕 = 𝟐 

Fourier Power Spectra (a) 

  

Gauss Wavelet Spectra (b) 

  

LLE (Wolf) 

0.4158 0.39734 

LLE (Rosenstein) 

LLE (Wolf)

0.4158 0.39734

LLE (Rosenstein)

0.41637 0.400635

LLE (Kantz)

0.41912 0.41478

LLE (Synchronization)

0.40608 0.40510

All LEs (Benettin)

LEs: 0.41919; −1.62316
DKY: 1.25826
EKs: 0.41919

PVC: −1.20397

LEs: 0.41917; −1.62315
DKY: 1.25825
EKs: 0.41917

PVC: −1.20397

All LEs (Neural Network)

LEs: 0.41919; −1.62316
DKY: 1.25826
KSE: 0.41919

PVC: −1.20397

LEs: 0.40924; −1.61321
DKY: 1.25368
KSE: 0.40924

PVC: −1.20397

Table 8. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for ∆t = 1, 2 and the
computed LLEs by different methods (generalized Hénon map).

∆t = 1 ∆t = 2

Fourier Power Spectra (a)
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Table 8. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for ∆𝑡 = 1, 2 and the 

computed LLEs by different methods (generalized Hénon map). 

∆𝒕 = 𝟏 ∆𝒕 = 𝟐 

Fourier Power Spectra (a)  

  

Gauss Wavelet Spectra (b) 

  

LLE (Wolf) 

0.45214 0.46706 

LLE (Rosenstein) 

0.27930 0.27459 (0.62515) 

LLE (Kantz) 

0.26601 0.3359 

LLE (Synchronization) 

0.27250 0.27200 

All LEs (Benettin) 

LEs: 0.27628; 0.25770; −4.04053 

DKY: 2.13215 

KSE: 0.53397 

PVC: −3.50656 

LEs: 0.27487; 0.25631; −4.03774 

DKY: 2.13155 

EKS: 0.53118 

PVC: −3.50656 

All LEs (Neural Network) 

LEs: 0.29251; 0.27104; −4.04583 LEs: 0.26304; 0.24387; −4.14321 

Gauss Wavelet Spectra (b)
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Table 8. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for ∆𝑡 = 1, 2 and the 

computed LLEs by different methods (generalized Hénon map). 

∆𝒕 = 𝟏 ∆𝒕 = 𝟐 

Fourier Power Spectra (a)  

  

Gauss Wavelet Spectra (b) 

  

LLE (Wolf) 

0.45214 0.46706 

LLE (Rosenstein) 

0.27930 0.27459 (0.62515) 

LLE (Kantz) 

0.26601 0.3359 

LLE (Synchronization) 

0.27250 0.27200 

All LEs (Benettin) 

LEs: 0.27628; 0.25770; −4.04053 

DKY: 2.13215 

KSE: 0.53397 
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LEs: 0.27487; 0.25631; −4.03774 
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Table 8. Cont.

∆t = 1 ∆t = 2

LLE (Wolf)

0.45214 0.46706

LLE (Rosenstein)

0.27930 0.27459 (0.62515)

LLE (Kantz)

0.26601 0.3359

LLE (Synchronization)

0.27250 0.27200

All LEs (Benettin)

LEs: 0.27628; 0.25770; −4.04053
DKY: 2.13215
KSE: 0.53397

PVC: −3.50656

LEs: 0.27487; 0.25631; −4.03774
DKY: 2.13155
EKS: 0.53118

PVC: −3.50656

All LEs (Neural Network)

LEs: 0.29251; 0.27104; −4.04583
DKY: 2.13929
KSE: 0.56355

PVC: −3.48227

LEs: 0.26304; 0.24387; −4.14321
DKY: 2.12235
KSE: 0.50691

PVC: −3.63630

Table 9. Fourier power spectra and Gauss wavelet spectra obtained for ∆t = 0.05, 0.1, 0.15, 0.2 and
the computed LLEs by different methods (Rössler attractor).

∆t = 0.05 ∆t = 0.1 ∆t = 0.15 ∆t = 0.2

Fourier Power Spectrum
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Table 10. Fourier power spectra and Gauss wavelet spectra obtained for ∆𝑡 =

0.005, 0.01, 0.015, 0.02 and the computed LLEs by different methods (Lorenz attractor). 

∆𝒕 =  𝟎. 𝟎𝟎𝟓 ∆𝒕 =  𝟎. 𝟎𝟏 ∆𝒕 =  𝟎. 𝟎𝟏𝟓 ∆𝒕 =  𝟎. 𝟎𝟐 

Fourier Power Spectrum 

    

Gauss Wavelet 
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Table 10. Fourier power spectra and Gauss wavelet spectra obtained for ∆𝑡 =

0.005, 0.01, 0.015, 0.02 and the computed LLEs by different methods (Lorenz attractor). 

∆𝒕 =  𝟎. 𝟎𝟎𝟓 ∆𝒕 =  𝟎. 𝟎𝟏 ∆𝒕 =  𝟎. 𝟎𝟏𝟓 ∆𝒕 =  𝟎. 𝟎𝟐 

Fourier Power Spectrum 

    

Gauss Wavelet 

    

LLE (Wolf)

0.07283 0.05855 0.01731 0.02544

LLE (Rosenstein)

0.083 0.0726 0.06553 0.606

LLE (Kantz)

0.0234 0.0208 0.02133 0.0215

All LEs (Benettin)

LES: 0.07156; 0.00000;
−5.38768

DKY: 2.01328
KSE: 0.07156

PVC: −5.31612

LES: 0.06959; 0.00000;
−5.21949

DKY: 2.01333
KSE: 0.06959

PVC: −5.14990

LES: 0.06789; 0.00000;
−4.34385

DKY: 2.01563
KSE: 0.06789

PVC: −4.27596

LES: 0.06205; −0.00001;
−2.84111

DKY: 2.02184
KSE: 0.06205

PVC: −2.77906

All LEs (neural network)

LES: 0.06259; −0.07984;
−0.32528

DKY: 1.78396
KSE: 0.06259

PVC: −0.34253

LES: 0.07340; −0.02681;
−0.23525

DKY: 2.19807
KSE: 0.07340

PVC: −0.18865

LES: 0.07374; 0.00057;
−0.36909

DKY: 2.20135
KSE: 0.07432

PVC: −0.29477

LES: 0.07983; −0.02816;
−0.91182

DKY: 2.05667
KSE: 0.07983

PVC: −0.86015
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Table 10. Fourier power spectra and Gauss wavelet spectra obtained for ∆t = 0.005, 0.01, 0.015, 0.02
and the computed LLEs by different methods (Lorenz attractor).

∆t = 0.005 ∆t = 0.01 ∆t = 0.015 ∆t = 0.02

Fourier Power Spectrum
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Table 10. Fourier power spectra and Gauss wavelet spectra obtained for ∆𝑡 =
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5.3. Hyperchaotic Generalised Hénon Map

To obtain the hyperchaotic Hénon map, one needs to take a point (Xn, Yn, Zn) and map it into the
following one:

Xn+1 = a− aY2
n − bZn,

Yn+1 = Xn,
Zn+1 = Yn.

(29)

The computations were carried out for the following fixed parameters: a = 3.4, b = 0.1.
The Lyapunov spectrum reported in reference [14] is: 0.276; 0.257; 4.040.

One can distinguish a large number of frequencies in the power spectrum. Frequencies with the
largest amplitude are located in the interval [0.15; 0.3] (frequencies ω1 −ω4), but the remaining part of
the spectrum is noisy. This interval corresponds to the brightest region on the Gauss wavelet, which is
correlated with the values of the power spectrum. Changes in LLEs coincide with the bifurcation
diagrams constructed for the same intervals of changes in the control parameters a and b. Dynamics of
LLEs increases with the increase in the control parameters. As in the case of the Hénon map, the chart of
LEs for the selected control parameters exhibits, for a majority of studied parameters, periodic dynamics.
It transits into chaos for a ≈ 1.4, and is almost suddenly shifted into hyperchaos (2 positive LEs).
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Good results were obtained by the Benettin, Rosenstein and synchronization methods (divergence
from the third decimal place). The neural network yielded slightly increased estimates of two first
LEs, whereas the third LE was estimated almost exactly. The Kantz method gave a decreased result in
comparison to reference data. The Wolf method resulted in the largest error.

5.4. Rössler Attractor

The following Rössler system of ODEs was investigated:
.
x = −y− z,
.
y = x + ay,

.
z = b + z(x− c),

(30)

and the computations were carried out for the following fixed parameters a = b = 0.2 and c = 5.7.
The original study yielded the Lyapunov spectrum: 0.0714, 0, −5:3943, and the Kaplan–Yorke

dimension equal to 2.0132.
The power spectrum contains the fundamental frequency ω1, which is accompanied by damped

bursts (frequencies ω2 − ω10). In the whole time interval, the Gauss wavelet exhibits the brightest
region of the fundamental frequency with darker peaks going to zero. Thus, the picture is analogous
to the power spectrum. Contrarily to the studied maps, the bifurcation diagrams have a more
complex structure. However, there is still correlation with the changes in LLEs for the corresponding
control parameters. The parameter b has the smallest influence on the change in LLE. Graphs of
LLEs also exhibit a more complex structure. Borders of different vibration kinds have complex
forms, which illustrates the increase in the system complexity. Aside from the chaos and hyperchaos
zones, there are drops indicating 3 positive LEs. Amabili et al. [35] have suggested to call all chaotic
oscillations, for which at least two positive Lyapunov exponents exist, by hyperchaotic.

As far as Table 4 is considered, the best results were yielded by the Benettin and Rosenstein
methods. The method of neural networks gave very good results in the case of estimates of two
first LEs, but underestimated the third exponent. The Wolf method yielded smaller value of the
first exponent compared to the reference data. The most underestimated results were given by the
Kantz method.

The carried out numerical experiments showed that changing the sampling frequency did not
affect the power spectrum and wavelet spectrum. This was also validated by results obtained by the
Benettin, neural networks, and Rosenstein methods, which yielded the results very close to original
ones. The Kantz method gave underestimated results for different sampling frequency, correlating
with the results obtained for the standard sample size.

5.5. Lorenz Attractor

The system is described by the following ODEs:
.
x = σ(y− x),

.
y = x(r− z)− y,

.
z = xy− bz,

(31)

where r stands for the normalized Rayleigh number (nondimensional number defining fluid behavior
under gradient):

r =
gβ∆TL3

νχ
. (32)

In the above equation, the following notation is used: g—gravity of Earth; L—characteristic
dimension of the fluid space; ∆T—temperature difference between fluid walls; ν—kinematic fluid
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viscosity, χ—thermal conductivity of the fluid; β—coefficient of heat fluid extension; σ—Prandtl
number (takes into account heat source property) governed by the following equation

σ =
ν

α
=

ηCp

ℵ , (33)

where: ν = η/ρ—kinematic viscosity, η—dynamic viscosity, ρ—density, α = ℵ
ρCp

—temperature
transfer coefficient, ℵ—heat transfer coefficient, Cp—specific heat capacity under constant pressure;
and ρ—information about the geometry of the convective cell.

The following parameters were fixed: σ = 10.0, r = 28.0, b = 8/3. The original results are:
LEs: 0.9056, 0, −14.5723; the Kaplan–Yorke dimension: 2.06215.

The power spectrum of the attractor decreases uniformly when approaching a finite frequency,
and there are no frequencies with a strongly dominating amplitude. The latter observation has been
also verified by the Gauss wavelet spectrum. The bifurcation diagrams, similar to those for the
Rössler system, exhibit a complex structure, but the correlation to the LLEs change is conserved.
The richest/lowest dynamics of LLE is obtained for changing parameter r/σ. Based on the reported
graphs of LEs, one can conclude that the system dynamics is fully chaotic. There are also narrow
windows of hyperchaotic dynamics.

A comparison of the results reported in Table 5 with the original results exhibits an excellent
coincidence of the Benettin method (original results) and the neural network method (+4.79%).
The Wolf and Rosenstein methods yielded the underestimated results of the LLE value. The worst
estimation has been obtained by Kantz method.

Changing the sampling frequency did not change Fourier and wavelet power spectra. This was
also validated by the Benettin and Rosenstein methods, which yield the results very close to the
original values in spite of the arbitrary choice of the sampling frequency.

6. Concluding Remarks

The analysis of the dynamics of the studied classical system by different methods leads to
a conclusion that the most perspective and useful is the modified method of neural networks [9,10].
It gives excellent convergence to the original results and, as the only one (besides of the Benettin
method), allows to compute the spectrum of all Lyapunov exponents. In addition, very good results
were obtained by the Rosenstein and Kantz methods for all studied systems. However, this method
can be used to estimate only the largest Lyapunov exponents.

As far as the convergence is considered, the Wolf method yielded either over- or underestimated
values of LEs. The method of synchronization worked reasonably well for the maps, but it was not
useful in studying differential equations (the Rössler or Lorenz systems). The mentioned systems
require the use of another type of coupling, which is a drawback of the method.

It should be emphasized that this part of the paper serves as a preliminary study of a more
complicated nonlinear continuous structural system, which is studied in Part 2. The carried out
analysis of the works devoted to feasible methods for computation of Lyapunov exponents shows that
there is no universal, verified, and general method to compute the exact (in the sense of numerics)
values of the Lyapunov exponents. This observation leads to the conclusion that there is a need to
employ qualitatively different methods to check the reliability of “true chaotic results”. Furthermore,
the carried out analysis is a helping tool to study systems of an infinite dimension. Such an analysis is
the subject of the second part of the paper.
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