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1. Introduction

Some of the predictions made by quantum mechanics appear to be at odds with common sense.
Yet quantum mechanics remains the most precisely tested and successful quantitative theory of nature.
It is therefore believed that even if quantum mechanics is someday replaced, any successor will have
to inherit at least some of its “preposterous” but highly predictive principles. Perhaps the most
counter-intuitive quantum mechanical feature is nonlocality [1]: the correlations exhibited by remote
parties may exceed those allowed by any local realistic model.

The mystery of nonlocality is not only why nature is as nonlocal as it is, but why nature is not
more nonlocal than it is. There are alternative Non-Signaling theories which permit nonlocality beyond
the quantum limit [2,3]; why doesn’t nature choose one of these theories over quantum mechanics?
In Section 1.1 we review several previously proposed explanations. This paper presents another
explanation, from statistics.

In this paper we construct a protocol (a repeated oblivious transfer) which sends messages
through a disconnected channel. We show that Alice can communicate nontrivial information to
Bob via this protocol if and only if the maximal quantum mechanical violation of the Bell–CHSH
inequality [1,4], Tsirelson’s bound [5], is exceeded. We thus provide a statistical explanation of this
bound that is independent of the mathematical formalism of quantum mechanics.

We briefly recall the setting for the Bell–CHSH experiment. Section 2 provides a more detailed
account. A famous application of nonlocality is to construct an 1-2 oblivious transfer protocol between
two distant agents (A)lice and (B)ob. Alice and Bob each hold a box. Alice’s box might, for example,
contain one half of a singlet state of spin– 1

2 particles, with Bob’s box containing the other half [1,4].
In addition, Alice possesses a pair of bits x0 and x1, each of which is a zero or a one. Using boolean
algebra and her boxes (the protocol will be described later), Alice encodes her pair of bits into a single
bit x(1) which she sends across a classical channel to Bob. Bob wants to know the value either of x0 or
of x1, but Alice doesn’t know which of these Bob wants to know. Bob uses the received bit x(1), his
box, and some boolean algebra to construct an estimate yi for his desired bit xi. See Figure 2 later on.

What is the probability that Bob correctly estimates the bit he wishes to know? He has two
possible sources of knowledge—the bit x(1) he received from Alice, and some mysterious “nonlocal”
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correlation between his box and Alice’s. The strength of such a nonlocal coordination between two
systems is captured by a parameter c ∈ [−1, 1] called the Bell–CHSH correlator. Bob’s probability of
guessing the value of Alice’s bit correctly is (1 + |c|)/2. The Bell–CHSH inequality states that |c| ≤ 1/2
in a world governed by classical (non-quantum) mechanics [1,4]. Nonlocality is the state of affairs
in which the Bell–CHSH inequality is violated. To the best of our knowledge, real world physics is
nonlocal. Over the years, the violation of the Bell–CHSH inequality has been measured in increasingly
accurate and loophole-free experiments, culminating in celebrated loophole-free verifications [6–8].

Thus, we know that |c| can exceed 1/2. How large can |c| be? Tsirelson’s bound tells us that
|c| cannot exceed 1/

√
2 in a world described by quantum mechanics [5]. This quantum bound

on nonlocality:

|c| ≤ 1√
2

, (1)

has been tested experimentally, with the current state of the art being an experiment which has achieved
a value of c which is only 0.00084± 0.00051 distant from Tsirelson’s bound [9]. Such experimental
evidence supports the contention that Tsirelson’s bound indeed holds true in the real world. Tsirelson’s
result as presented in the original paper is a specifically quantum mechanical fact, following from
the Hilbert-space mathematical formalism for quantum mechanics, for which there has been no good
conceptual physical explanation. How fundamental is Tsirelson’s bound? Must this inequality also
hold for any future theory which might someday supercede quantum mechanics [10]? We are led to
the following question: Can we identify a plausible physical principle, independent of quantum mechanics
(or independent of functional analysis), which is necessary and sufficient to guarantee that |c| ≤ 1/

√
2?

1.1. Existing Principles

For the last two decades, people have searched for physical principles that bound nonlocality. It was
initially expected that the physical principle of relativistic causality (no-signaling) itself restricts the
strength of nonlocality [11–13]. But then it was discovered that no-signaling theories may exist for which
|c| > 1/

√
2. This led to the device-independent formalism of No-Signaling (NS)–boxes [2,14] (see also [3]).

In particular, maximum violation of the Bell–CHSH inequality is achieved by Popescu–Rohrlich (PR)–boxes
which are consistent with relativistic causality.

So relativistic causality doesn’t limit nonlocality after all; Why then does nature not permit (1) to
be violated (as far as we know)? Several suggestions have been made. Superquantum correlations
lead to violations of the Heisenberg uncertainty principle [15,16], which is another seemingly purely
quantum result. PR–boxes would allow distributed computation to be performed with only one bit
of communication [17], which looks unlikely but doesn’t violate any known physical law. Similarly,
in stronger-than-quantum nonlocal theories some computations exceed reasonable performance
limits [18]. The principle of Information Causality [19] shows that no sensible measure of mutual
information exists between pairs of systems in superquantum nonlocal theories. Our approach is
most directly comparable with Information Causality, with a conceptual difference being that we use
variance of an efficient estimator, therefore Fisher information, whereas information causality uses
mutual information (Shannon information). The relationship between our approach and theirs is
the topic of Section 6. Finally, it was shown that superquantum nonlocality does not permit local
(non-nonlocal) physics to emerge in the limit of infinitely many microscopic systems [20,21].

1.2. Tsirelson’s Bound from a Statistical No-Signaling Condition

Here we show that Tsirelson’s bound follows from the following principle applied to a certain
limiting Bell–CHSH setting:

Statistical No-Signaling: It is impossible to communicate a nontrivial message through a channel whose
output is independent of its input.
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Our strategy is to construct a channel whose input is a Bernoulli random variable X of mean θ and
whose output is another Bernoulli random variable Y (Section 3.2). The construction of our channel is
not new— it is a reinterpretation of the well-known van Dam protocol [17]. Through the channel, Alice
sends 2n samples A def

= {x0, x1, . . . , x2n−1} from X, and at the other end Bob receives a set of values
B def
= {y0, y1, . . . , ym−1}.

We imagine θ ∈ [−1, 1] as encoding a message, perhaps in the digits of its binary expansion.
Bob’s task is to estimate θ. The following theorem states that he can do so if and only if Tsirelson’s
bound fails.

Theorem 1.1.

1. The channel from X to Y we construct is described by the conditional probability p(Y = x | X = x) =
(1 + cn)/2, where c is the Bell–CHSH correlator. Its output satisfies:

p(Y = 1 | θ) =
1
2
+

cn · θ
2

.

In the n→ ∞ limit it disconnects for p(Y | X) = p(Y) (i.e. we can arrange that c < 1).
2. The unbiased estimator:

θ̂
def
=

1
2ncn

2n−1

∑
i=0

yi ,

for θ has variance:

Var
[
θ̂ | θ

]
= lim

n→∞

1− c2nθ2

(2c2)
n =


0, 2c2 > 1 (signaling)
1, 2c2 = 1 (randomness)
∞, 2c2 < 1 (no-signaling)

3. The estimator θ̂ is efficient, i.e. it has the minimal variance of any estimator of θ constructed from Bob’s
set of samples B for all n ∈ N.

The theorem is visually summarized by Figure 1.
The theorem shows that failure of Tsirelson’s bound leads to failure of the following consequence

of Statistical No-Signaling—Consequence of Statistical No-Signaling—In the above notation, if X and Y
are independent, then no estimator constructed from B has both mean θ and variance 0.

Section 5 shows that a violation of Uffink’s inequality [22], a generalization of Tsirelson’s bound,
also leads to the failure of the same consequence of Statistical No-Signaling. Uffink’s inequality is also
known to be recovered by Information Causality [23].

Theorem 1.1 is formulated as an asymptotic construction, but in practice a finite number of samples
suffices because for any experimental setup there exists a nonzero minimal possible environmental
noise level ε > 0 . By Theorem 1.1, p(Y = 1 | θ) is physically indistinguishable from 1/2 when the
absolute value of cnθ/2 is less than ε. Since |θ| ≤ 1, we need n ≥ ln 2ε/ ln c trials. As an example, for a
photon pair where ε is greater than or equal to the reduced Planck constant h̄, we find that n ≥ 244
suffices to make p(Y = 1 | θ) physically indistinguishable from 1/2 when |c| ≤ 1/

√
2. Thus, if we can

still distinguish p(Y = 1 | θ) from 1/2 for n = 244, we know that Tsirelson’s bound has been violated,
and if not then it holds.
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Figure 1. The Statistical No-Signaling condition. The van Dam protocol defines an underlying channel
which becomes disconnected in the n→ ∞ limit. The upper illustration shows this channel and the
Fisher information (one over the variance) of the maximum likelihood estimators for θ at its input
and at its output. When the number of nonlocal resources increases unboundedly, the two ends of
the channel become disconnected as illustrated by a vanishing bottleneck in the lower illustration.
Statistical No-Signaling dictates that in this case no information can pass through. This occurs if and
only if 2c2 ≤ 1. The case of 2c2 > 1 leads to a physically unreasonable limit where Bob can fully read
off the value of Alice’s θ through a disconnected channel.

1.3. Organization of This Paper

Section 2 recalls the bipartite Bell experiment and exhibits the Bell–CHSH correlator c as the
correlator of a certain noisy symmetric channel. Section 3 presents the van Dam protocol as an
extension of the Bell–CHSH setup, and explain how it defines a noisy symmetric channel with
correlator cn. Section 4 computes the means and variance of an estimator θ̂ for θ, and proves that θ̂ is an
efficient estimator. Section 5 extends Theorem 1.1 to recover Uffink’s inequality [22,23] for anisotropic
correlators from Statistical No-Signaling. Finally, Section 6 discusses the relationship of Statistical
No-Signaling with Information Causality.

2. The Bipartite Bell Experiment as a Noisy Symmetric Channel

In this section we recall the definition of the Bell–CHSH correlator c and we formulate the
Bell–CHSH inequality, establishing notation. We then exhibit c as the correlator of a symmetric
binary channel.

2.1. The Bell–CHSH Inequality

Let us recall the classical bipartite Bell experiment [1]. Alice and Bob each hold one half of an EPR
pair (a pair of particles with certain properties summarized below) such as a singlet state of spin– 1

2
particles. They each possess two different measuring instruments. Alice measures her particle using
one of the instruments, and Bob measures his particles using one of his. We write i for the index of
the instrument used by Alice, and a for its reading. Similarly, we let j and b denote the index of an
instrument chosen by Bob and its reading correspondingly. In the language of probability, a and b are
±1–valued Bernoulli random variables. The choices of measuring instrument, i and j, may be either
parameters or 0/1–valued Bernoulli random variables.
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Repeating the experiment for many different EPR pairs, Alice and Bob may compute the two-point

correlator E
[

ab | i, j
]

of their readings a and b for any given pair of indices i and j, where E[·] is the
statistical expectation operator. We now define the Bell–CHSH correlator c by the formula:

c def
=

1
4

{
E
[

ab | 0, 0
]
+ E

[
ab | 0, 1

]
+ E

[
ab | 1, 0

]
− E

[
ab | 1, 1

]}
. (2)

In a theory in which both Alice and Bob’s choices, and the readings of their measuring devices,
are local, the Bell–CHSH inequality [4] holds:

|c| ≤ 1
2

. (3)

Operationally speaking, locality means that Alice’s readings may only be affected by her own
choices (and perhaps by other variables hidden locally at her site), and similarly for Bob’s readings.
Quantum mechanically, however, Alice and Bob may violate (3). Correlators violating (3) are said to
be nonlocal.

2.2. The Bell–CHSH Correlator c as a Channel Correlator

Non-signaling (NS)–boxes provide an abstraction and an extension of the Bell–CHSH
experiment [2,14]. This time, Alice and Bob each owns a box. Such a box may be thought
of as a complete laboratory containing two measuring devices. Either participants inserts their
choice of measuring device into their box. The box output is the respective reading of the chosen
measuring device.

Alice and Bob share a pair of NS–boxes whose 0/1–valued inputs are i and j and whose±1–valued
outputs are Bernoulli random variables a and b. We will show that the Bell–CHSH correlator (2)
represents the correlator of a symmetric binary channel whose input is the Bernoulli random variable
X def

= (−1)ij and whose output is the Bernoulli random variable Y def
= a · b.

Let x ∈ {−1, 1}. Define the channel correlators cx as follows:

cx
def
= E

[
XY | X = x

]
= p(Y = x | X = x)− p(Y 6= x | X = x) = 2p(Y = x | X = x)− 1 . (4)

With respect to a particular choice of measuring devices i and j and for x = (−1)ij, (4) becomes:

cx(i, j) = E
[

a · b · (−1)ij | i, j
]
= 2p(a · b = (−1)ij | i, j)− 1 . (5)

Assume the underlying channel is symmetric and therefore that cx(i, j) is fixed for all i, j. By (5)
the Bell–CHSH correlator (2) may be written as:

c =
1
4
(c1(0, 0) + c1(0, 1) + c1(1, 0) + c−1(1, 1)) = cx(i, j) = 2p(a · b = ij | i, j)− 1 . (6)

which is our promised interpretation of the Bell–CHSH correlator as a correlator of a noisy symmetric
binary channel.

3. The Van Dam Protocol as a Noisy Symmetric Channel

In this section we recall the construction of the van-Dam protocol [17,19]. We then reinterpret
this protocol as underlying a noisy symmetric binary channel, as a special case of the construction of
Section 2. We compute its correlator, and establish the effect of noise on its classical component.
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3.1. The Van Dam Protocol

The van Dam protocol realizes an oblivious transfer protocol by means of a classical channel and a
collection of NS-boxes. Each of Alice’s boxes has a corresponding box on Bob’s side, and different pairs
of boxes are statistically independent. Suppose that Alice has in her possession the bits x0, . . . , xm−1

where m = 2n, n ≥ 1. Bob wishes to know the value of one of her bits. He may do so by specifying the
address of the bit whose value he wishes to know via its binary address j = jn−1 jn−2 · · · j0. For example,
if n = 2 then Bob may specify which of the bits x0 to x3 he wants by specifying a binary address, 00,
01, 10, or 11. Alice bits and Bob addresses are encoded into the inputs of 2n − 1 NS-boxes following a
particular protocol which is described next.

Alice uses outputs of boxes and choices of measuring device to determine choices of measuring
device for other boxes. Such a procedure is called wiring. The wiring of boxes on Alice side admits a
recursive description which we now give. Let ak,l

i denote the output of Alice’s lth box on the kth level
for the input i. We follow the convention that box outputs for the van Dam protocol are 0/1–valued
(rather than ±1–valued) random variables. Let also:

f k,l (q1, q2)
def
= q1 ⊕ ak,l

q1⊕q2
. (7)

Suppose that Alice wishes to encode m = 4 bits with her boxes. To do so, she first picks two boxes
and computes:

x(1)1
def
= f 1,1 (x0, x1) , x(1)2

def
= f 1,2 (x2, x3) . (8)

This forms the first level in her construction. The second level then follows:

x(2) def
= f 2,1

(
x(1)1 , x(1)2

)
. (9)

In this example there are only two levels and so x(2) is the bit which Alice transmits to Bob
through the classical channel. In case where m = 2n there will be n levels and thus x(n) is the bit Bob
will receive from Alice.

Unbeknownst to Alice, Bob now decides which bit xj he would like to know the value of. He takes
its binary address j = jn−1 ji−2 · · · j0, and inserts jk−1 into all of his boxes whose counterparts are on
the k level on Alice’s side. He then uses the values bk,l

jk−1
that he obtains, together with the bit x(n) he

received from Alice, to construct the decoding function:

yj
def
= x(n) ⊕ b1,l1

j0
⊕ b2,l2

i1
⊕ · · · ⊕ bn,ln

jn−1
. (10)

The values l1, . . . , ln (which boxes Bob uses) are determined by the binary address j =

jn−1 jn−2 · · · j0 via the recursive formula lh−1 = 2lh − 1 + lh−1 for h = 1, 2, . . . n − 1 starting from
ln = 1.

The van Dam protocol we have described above is summarized in Figure 2.
The probability that Bob will decode the correct value of the bit he desires is governed by the

NS–box correlator c. In general, decoding any bit out of 2n possible bits involves using n pairs of
NS boxes. Noting that an even number of errors, a⊕ b 6= ij, will cancel out in such a construction,
we obtain the following expression [19]:

cn = 2p(yj = xj | xj)− 1 . (11)
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For example, for n = 2:

p(ai1 ⊕ bj1 ⊕ aj2 ⊕ bj2 = i1 j1 ⊕ i2 j2 | i1,2, j1,2, i1 j1 ⊕ i2 j2) =

p(ai1 ⊕ bj1 = i1 j1 | a1, b1)p(ai2 ⊕ bj2 = i2 j2 | i2, j2)+

p(ai1 ⊕ bj1 6= i1 j1 | i1, j1)p(ai2 ⊕ bj2 6= i2 j2 | i2, j2) =
1
2
(1 + c) · 1

2
(1 + c) +

1
2
(1− c) · 1

2
(1− c) =

1
2
(1 + c2) . (12)

Figure 2. Distributed oblivious transfer (van Dam) protocol [17]. Its basic building block is on the
left, where Alice inserts x0 ⊕ x1 into her box, receives a, and sends x0 ⊕ a to Bob. Bob decides that he
wants to know the value of xj, and he feeds j into his box, which outputs b. Bob’s estimate of xi is then
x(1) ⊕ b. When there are multiple boxes, Alice concatenates (the process is called wiring). For example,
with seven boxes, Alice begins with a collection of bits x0, x1, . . . , x7, and she inputs x2i ⊕ x2i+1 into
box i, where i = 0, 1, 2, 3, receiving a0, a1, a2, a3 correspondingly. The bits fed into the next level of

boxes become x(1)i
def
= x2i ⊕ ai with i = 0, 1, 2, 3. The final output x(3) is sent to Bob. Bob encodes the

address of the bit he wants as the binary number j3 j2 j1—for example, if he wants x2, then he sets
j3 = 0, j2 = 1, and j1 = 0 because 10 is 2 in binary. This binary encoding describes a path in his binary
tree from a root to a branch, where 0 means ‘go left’ and 1 means ‘go right’. Bob inserts j3 into the
lowermost box to obtain b6. Setting k def

= 5− (1− j3), he then inserts j2 into box k to obtain bk. Finally,
setting l def

= k − (3− j3)− (1− j2), Bob inserts j1 into box l to obtain Bl . His final estimate for xj is
yj = x(3) ⊕ b6 ⊕ bk ⊕ bl .

3.2. Van Dam Protocol as a Symmetric Channel

This section describes the modification of the van Dam protocol that we use.
Alice has in her possession an information source that is a ±1-valued Bernoulli random variable

X whose mean is θ. Alice takes m iid samples, x̃0, . . . , x̃m−1, from X and converts them into 0/1-valued
bits, x0, x1, . . . , xm−1 by mapping 0 to −1 and 1 to 1. Alice and Bob repeat the van Dam protocol m
times, once for each of Alice’s samples. Each time, Bob uses the protocol to estimate Alice’s bit, first x0,
then x1, and so on until xm−1.

As in (12), the van Dam protocol has a memoryless property:

p(yi = xi | x0, x1, . . . , xm−1) = p(yi = xi | xi) . (13)
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From this it follows that if Alice’s inputs x0, x1, . . . , xm−1 are iid then Bob’s outputs y0, y1, . . . , ym−1

are also iid. Therefore the set of ỹi
def
= (−1)yi determines a Bernoulli random variable Y. In this way,

the van Dam protocol may be viewed as a symmetric binary channel whose input is X and whose
output is Y. By (11) the channel correlator is:

E [XY | X = x̃i] = 2p(Y = x̃i | X = x̃i)− 1 = 2p(yi = xi | xi)− 1 = cn . (14)

We generalize slightly, for the purpose of treating the |c| = 1 case in the next section. Suppose that
Alice’s bits are contaminated with noise and therefore might be flipped once injected into her boxes.
Let [1− (c′)n]/2 be the probability that the bit xi is flipped where |c′| ≤ 1. In this case the corresponding
channel correlator (14) is E [XY | X = x̃i] = (cc′)n, which follows from (4) and:

p(Y = x̃i | X = x̃i) = p(Y = x̃i | X′ = x̃i)p(X′ = x̃i | X = x̃i)+

p(Y = x̃i | X′ 6= x̃i)p(X′ 6= x̃i | X = x̃i) =
1
2
[1 + (cc′)n] , (15)

where p(Y = x̃i | X′ = x̃i) = [1 + cn]/2 underlies the channel defined by the ordinary van Dam

protocol, and p(X′ 6= x̃i | X = x̃i) = [1− (c′)n]/2 is the probability of xi having been flipped.

3.3. The Van Dam Channel Disconnects in the n→ ∞ Limit

If |c| < 1 or |c′| < 1 then it follows that:

E[XY] = 2p(Y = i | X = i)− 1 = (cc′)n n→∞−→ 0 . (16)

Therefore, in the n→ ∞ limit:

p(Y = i | X = i) = 1/2 . (17)

But also:

p(Y = i) = p(Y = i | X = i)p(X = i) + p(Y = i | X 6= i)p(X 6= i) = 1
2 (p(X = i) + p(X 6= i)) = 1

2 . (18)

Combining (17) with (18) gives:

p(Y | X)
n→∞−→ p(Y) . (19)

Thus X and Y are statistically independent in the n → ∞ limit, proving the first part of
Theorem 1.1.

4. Bob’s Estimator

4.1. Bob’s Estimator

In Section 3 we used the van Dam protocol to construct a symmetric channel whose input is a
±1–valued Bernoulli random variable X and whose output is another ±1–valued Bernoulli random
variable Y. The channel correlator is cn.

Alice sends m iid random samples X def
= {X1, . . . , Xm} through the channel. Denote the set of

respective outputs Y def
= {Y1, . . . , Ym}. Assume a prior distribution for X given by:

p(X = −1 | θ) =
1
2
(1 + θ) , (20)
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with parameter θ ∈ [−1, 1].
Bob attempts to estimate θ using the estimator:

θ̂
def
=

1
2ncn

2n−1

∑
i=0

Yi . (21)

We will show that Bob’s estimator is unbiased, E
[
θ̂ | θ

]
= θ. Note that

E
[
Yi | θ

]
= p(Y = 1 | θ)− p(Y = −1 | θ) . (22)

and

p(Y = −1 | θ) = p(Y = −1 | X = −1)p(X = −1 | θ) + p(Y = −1 | X = 1)p(X = 1 | θ) = 1+cnθ
2 . (23)

From (22) and (23) together, deduce:

E
[
Yi | θ

]
= cnθ . (24)

and therefore, E
[
θ̂ | θ

]
= θ.

As for variance, by (24):

Var
[
Yi | θ

]
= E

[
Y2

i | θ
]
− E

[
Yi | θ

]2
= 1− c2nθ2 . (25)

Therefore:

Var
[
θ̂ | θ

]
=

1− c2nθ2

(2c2)n . (26)

We have proved the second part of Theorem 1.1.

4.2. Bob’s Estimator θ̂ is Efficient

We prove efficiency of θ̂ by calculating the Fisher information about θ contained in Bob’s set of
samples B. The Cramer–Rao Theorem tells us that one over this Fisher information is a lower bound
for the variance of an estimator for θ constructed from B. By showing that θ̂ saturates this bound, we
will have proven that it is efficient. In the derivation that follows, we assume that |c| < 1 by replacing
c by cc′ if necessary.

We compute the Fisher information. The likelihood of θ given the set B is given by the expression:

p(B | θ) =
[

p(Y = −1 | θ)
]∑2n

i=1 1{Yi=−1} [
p(Y = 1 | θ)

]∑2n
i=1 1{Yi=1}

, (27)

where the indicator random variable of a random event A is given as:

1A
def
=

{
1, A occurred;
0, otherwise.

(28)

According to (27) the log-likelihood is given by the expression:

L(θ) def
= log p(B | θ) =

[
2n

∑
i=1

1{Yi=−1}

]
log p(Y = −1 | θ) +

[
2n

∑
i=1

1{Yi=1}

]
log p(Y = 1 | θ) . (29)
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The Fisher information about θ contained in the set B is defined as:

IB(θ)
def
= E

[(
∂L(θ)

∂θ

)2
]
= −E

[
∂2L(θ)

∂θ2

]
. (30)

Note that:

E

[
2n

∑
i=1

1{Yi=s}

]
=

2n

∑
i=1

E
[
1{Yi=s}

]
= 2n p(Y = s | θ), s = −1, 1 . (31)

Using this, (30) reads:

IB(θ) =
(2c2)n

1− c2nθ2 . (32)

Indeed the Fisher information about θ in B as given by Equation (32) equals one over the variance
of θ̂ as given by Equation (26). Thus, by the Cramer–Rao Theorem, θ̂ is an efficient estimator for θ.
Parenthetically, note that the minimum of IB(θ) is obtained for θ = 0 in which case p(X | θ) = 1/2
and IB(0) = (2c2)n. We have proved the final part of Theorem 1.1.

5. Uffink’s Inequality from Statistical No-Signalling

The basic protocol in Section 3 assumes all box correlators are identical in absolute value. When
this assumption is relaxed, Statistical No-Signaling leads to Uffink’s inequality, which is a necessary
condition for quantum mechanical Bell-CHSH correlators [22,23]. Our approach is based on evaluating
the total Fisher information IB(θ) gained by Bob in 2n trials of the experiment.

Suppose that the mean of Alice’s bits, xi, is θ′ for even i, and θ otherwise. Consider now a pair of
NS-boxes with correlators, c(i, j) def

= E[ab | i, j]. The channel underlying the van Dam protocol in this
case is described by

p(yj = xj | x0, x1) = p(a⊕ b = ij | j, i = x0 ⊕ x1) = [1 + c(x0 ⊕ x1, j)] /2, (33)

where yj is Bob’s guess of Alice’s bit xj. It now follows that

p(yj = 1 | θ′, θ) =

p(yj = xj | xj = 1, x1−j = 1)p(xj = 1)p(x1−j = 1) + p(yj 6= xj | xj = 0, x1−j = 0)p(xj = 0)p(x1−j = 0)+
p(yj = xj | xj = 1, x1−j = 0)p(xj = 1)p(x1−j = 0) + p(yj 6= xj | xj = 0, x1−j = 1)p(xj = 0)p(x1−j = 1) =
1
2

[
1 + 1

2 (c(0, j) + (−1)jc(1, j))θ′ + 1
2 (c(0, j)− (−1)jc(1, j))θ

]
.

(34)
For simplicity, assume that θ′ = 0. It can now be verified that for a n-level construction in the

van Dam protocol

p(yj1,...,jn = 1 | θ) =
1
2
[
1 + cj1 cj2 · · · cjn θ

]
, (35)

where cj
def
= (c(0, j)− (−1)jc(1, j))/2. According to (32) the Fisher information about θ contained in

yj1,...,jn is

Ij1,...,jn(θ) =

(
cj1 · · · cjn

)2

1−
(
cj1 · · · cjn

)2
θ2

. (36)

Assuming |c(i, j)| < 1, Bob’s total amount of information about θ in 2n trials is

IB(θ) = ∑
j1=0,1

· · · ∑
jn=0,1

Ij1,...,jn(θ) ≈ ∑
j1=0,1

· · · ∑
jn=0,1

(
cj1 · · · cjn

)2
=
[
c2

0 + c2
1

]n
, (37)
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for large n. As before, the underlying channel asymptotically disconnects for cj1 · · · cjn → 0 in
the n → ∞ limit. Statistical No-Signaling dictates that in this case the variance of Bob’s estimator

limn→∞ Var
[
θ̂ | θ

]
= limn→∞ IB(θ)−1 ≥ 1, which holds if and only if Uffink’s inequality holds [22],

c2
0 + c2

1 =
1
4
[c(0, 0)− c(1, 0)]2 +

1
4
[c(0, 1) + c(1, 1)]2 ≤ 1. (38)

6. Relation to Information Causality

Of previous non-quantum justifications of Tsirelson’s bound, Information Causality (IC) is perhaps
the closest to Statistical No-Signalling [19]. IC is also stated as a limit on communication: Information
gain that Bob can reach about a previously unknown to him data set of Alice, by using all his local resources and
m classical bits communicated by Alice, is at most m bits.

IC is formally a restriction on the classical channel capacity. Detecting violation of this principle
therefore requires the utilization of nonlocal resources, which the authors achieve through the
application of IC to the van Dam protocol, that is the same communication protocol used in this paper.

The Information Causality quantity I is defined as the Shannon mutual information of Alice’s
input and Bob’s output given the value of the single bit transmitted in the van Dam protocol. IC
holds if I ≤ 1 and is violated if I > 1. At the end of the supplementary section of [19], the following
expression for the IC quantity is obtained:

I ≥ 1
2 ln(2)

(
c2

1 + c2
−1

)n
, (39)

where ci
def
= E

[
XY | X = ĩ

]
as in (4). In the symmetric setting, c1 = c−1 = c, and for θ = 0,

Equations (39) and (32) combine to yield:

I ≥ 2nc2n

2 ln(2)
=

[1− c2nθ2] IB(θ)
2 ln(2)

. (40)

In particular, in the n→ ∞ limit, if 2c2 > 1 then IB(θ)→ ∞ implying that I → ∞. Thus, violation
of Statistical No-Signaling implies violation of IC. Conversely, as (39) is an inequality, it is unknown
whether Tsirelson’s bound being satisfied implies I ≤ 1 (IC for the van Dam protocol), although, by our
main theorem, it does imply IB(θ) ≤ 1 (Statistical No-Signaling for the van Dam protocol).

7. Conclusions

We have formulated a Statistical No-Signaling principle which dictates that no information can
pass through a disconnected channel. A violation of Tsirelson’s bound, i.e. a value of |c| greater
that 1/

√
2, allows us to violate Statistical No-Signalling by constructing a disconnected channel

through which Bob can construct an unbiased estimator with variance 0 for Alice’s parameter θ.
Conversely, when Tsirelson’s bound holds, then, through this channel, so does Statistical No-Signalling.
Our construction thus provides a purely statistical justification for Tsirelson’s bound, independent of
quantum mechanics.
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