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Abstract: We apply the stochastic thermodynamics formalism to describe the dynamics of systems of
complex Langevin and Fokker-Planck equations. We provide in particular a simple and general recipe
to calculate thermodynamical currents, dissipated and propagating heat for networks of nonlinear
oscillators. By using the Hodge decomposition of thermodynamical forces and fluxes, we derive
a formula for entropy production that generalises the notion of non-potential forces and makes
transparent the breaking of detailed balance and of time reversal symmetry for states arbitrarily far
from equilibrium. Our formalism is then applied to describe the off-equilibrium thermodynamics of
a few examples, notably a continuum ferromagnet, a network of classical spin-oscillators and the
Frenkel-Kontorova model of nano friction.
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1. Introduction

Dissipation and heat transfer are universal phenomena in Physics, appearing whenever a small
system is coupled to the much larger environment. In this situation, it is, in practice not, possible to
keep track of all the observables of the universe. Instead, some measurable macroscopic quantities,
such as energy, entropy and heat flows are used to describe the evolution of the system and of its
average properties.

In the presence of several environments (thermal baths or reservoirs) at different temperatures,
the system reaches a non-equilibrium steady state where thermodynamical currents (such as heat,
energy, spin or electrical) may flow through the system from one reservoir to the other. Close to
equilibrium, those currents are proportional to the corresponding thermodynamical forces. Examples
of thermodynamical forces include gradients or differences of temperature, voltage, chemical potentials
and concentrations of chemical species. The language of thermodynamical forces and currents, which is
nowadays the cornerstone of non equilibrium thermodynamics, was first developed by L. Onsager in
the 1930s [1,2], and by R. Kubo in the 1950s [3]. The formalism can be naturally extended beyond the
linear regime, as it was first observed by Schnakenberg [4] and subsequently in more recent works on
stochastic thermodynamics [5–7].

In out-of-equilibrium setups, it is of primary importance to determine the (possibly many) currents
that flow between subparts of the system, together with the corresponding forces, and the heat flow
that is dissipated to the environment [8]. The first case corresponds typically to the work done on
the system by the environment, while the latter is associated to the production of entropy and an
increased disorder of the ensemble (the system and environment), and it is related to the efficiency
of the thermodynamical process. In networks of nonlinear oscillators, the heat flow throughout the
system is a coherent phenomenon that requires synchronisation of the oscillators, while the dissipated
heat is incoherent [8–10].
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The scope of this paper is twofold. On one hand, to provide a unified and concise view of many
subjects that are scattered in the literature and are apparently disconnected, such as non-hermitian
hamiltonians, brackets and anti-brackets formalism, canonical transformations and their connections to
heat transfer in oscillators’ networks. Then, and most importantly, to give a general recipe to calculate
currents, dissipated heat and work in a large class of out-of-equilibrium systems. To this end, we shall
adopt the formalism of stochastic thermodynamics (ST) [5] applied to the dynamics of complex-valued
Langevin and Fokker-Panck equations.

Complex Langevin equations, which here represent the paradigm to treat oscillator’s networks,
have been long investigated and have application in a variety of physical systems, from the stochastic
formulation of Quantum Mechanics [11,12] to Quantum Cromo Dynamics [13], quantum statistics [14]
and lattice gauge theories [15,16]. Recently, they found application also in polymer field theory [17]
and random matrices [18]. In the present paper, we shall focus on the discrete nonlinear Schrödinger
equation (DNLS), a general complex Langevin oscillator equation, which has ramification in many
branches of Physics and has recently attracted a certain attention.

At variance with the standard formulation of stochastic thermodynamics, which uses colloidal
particles as paradigm [5], using complex Langevin equations, here we provide a systematic way to
describe the non-equilibrium thermodynamics of networks of nonlinear oscillators. Following the
idea of ST, we start from the stochastic trajectories of a small ensemble of oscillators coupled to a bath
and we extract useful information (such as currents and entropy) from the ensemble averages of the
main observables. As the system evolves, different parts of the network and the environment become
statistically correlated. The currents are expressed in terms of those correlations.

The present paper is organised as follows. In Section 2 we apply the Lagrangian and Hamiltonian
formalism to describe complex-valued equations of motion, following References [19–22]. In particular,
we formulate the conservative and dissipative dynamics, respectively, in terms of Poisson commutators
and anti-commutators for a possibly non-Hermitian Hamiltonian, a topic that has been extensively
studied [19,23–26].

In Section 3 we develop the stochastic thermodynamics formalism for complex-valued equations,
and we derive a simple and general formula for entropy production, which makes transparent the
breaking of detailed balance and is proportional to the heat dissipated to the environment. This section
generalises previous work [8,27,28] to complex Langevin equations with multiplicative noise.

Section 4 contains the formulation of the first principle of thermodynamics. This constitutes the
main result of this paper and allows one to identify the heat transported and dissipated.

Section 5 provides some examples of realistic physical systems where thermodynamical
currents and entropy production are calculated. We shall describe in particular the dynamics of
a one dimensional continuum ferromagnet, of a network of classical magnetic spins and of the
Frenkel-Kontorova model [29] for nano-friction.

2. Hamiltonian-Lagrange Formulation for Complex Equations of Motion

We consider here the following complex Langevin equation:

ψ̇m = Fm + gmξm(t), (1)

where the dot indicates time derivative and ψm =
√

pm(t)eiφm(t) is a complex wave function with
amplitude pm = |ψ2

m| (also referred as power) and phase φn. The force Fm is an arbitrary function of
the ψ = (ψ1, ..., ψN) and their complex conjugate ψ∗ = (ψ∗1 , ..., ψ∗M). We assume that both the coupling
between the ψs and the damping are contained in the definition of Fm.

The terms ξm, which model the stochastic baths, are complex Gaussian random processes with
zero average and correlation 〈ξm(t)ξ∗n(t′)〉 = δmnδ(t − t′). Here gm is an arbitrary function of the
(ψ, ψ∗). Throughout the paper vectors and matrices are written in bold text, while their components
are written in plain text with m and n subscripts. The quantity |g2

m| plays the role of diffusion constant.
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We assume that the latter is proportional a damping coefficient Γm and temperature Tm, according to
the fluctuation-dissipation theorem. Thus, at variance with previous studies [8], we consider here the
more general situation of Langevin equations with multiplicative noise.

The force is given by the derivative
Fm = i∂∗mH (2)

of a complex (and possibly non-Hermitian) Hamiltonian H. Here the Wirtinger derivatives are
defined as

∂m ≡
∂

∂ψm
=

1
2

(
∂

∂xm
− i

∂

∂ym

)
(3)

where ∂∗m is the complex conjugate and ψm = xm + iym. The complex conjugate equation to Equation (1)
contains the forces F∗m = −i∂mH. A straightforward calculation shows that in a dissipative system
with Hamiltonian H = HR +HI , where R and I are respectively the Hermitian (or reversible) and
anti-Hermitian (or irreversible) components, the dynamics of an arbitrary function f of the observables
(ψ, ψ∗) can be written as

ḟ = i
{

f ,HR
}
−
+
{

f ,HI
}
+

. (4)

Here the Poisson commutators (−) and anti-commutators (+) are defined respectively as

{ f , ·}∓ = ∑
m

(
∂ f

∂ψ∗m

∂

∂ψm
∓ ∂ f

∂ψm

∂

∂ψ∗m

)
. (5)

We note in particular that, from Equations (2)–(4), the reversible and irreversible forces can be
expressed as FR

m = i{HR, ψm}− and FI
m = {HI , ψm}+. On the other hand, the couple (ψn, iψ∗n) are

canonical conjugate variables, since one has i{ψm, iψ∗n}− = δmn.
In order to derive Equation (4), one proceeds as in the case of classical Hamiltonian mechanics,

by writing the evolution equation for an arbitrary function of the observables

ḟ = ∂m f ψ̇m + ∂∗m f ψ̇∗m, (6)

then one substitutes the equations of motions: ψ̇m = i∂m(HR +HI) and its complex conjugate equation
for ψ̇m. Note that ψm and the conjugate variable iψ∗m are considered here independent variables.

We remark that the time reversal of our system corresponds to the transformation of the
HamiltonianH(t)→ H∗(−t). The irreversible and reversible components respectively change and do
not change sign under this transformation. A typical way to make the Hamiltonian irreversible and
non Hermitian is by adding a non-symmetric coupling between the oscillators. This will be discussed
in the next sections, and has been treated extensively also in Reference [8].

Since the commutators and anti-commutators define respectively a symplectic and a metric
structure on the space tangent to the phase space, this kind of system is called metriplectic.
The formulation of dissipative dynamics in terms of anti-brackets in metriplectic structures has
been extensively studied, both for classical and quantum systems [24,30–32]. In those formulations,
the irreversible part of the Hamiltonian is usually identified with the entropy of the system. Here we
do not pursue this identification, since we will describe the irreversibility in terms of the information
entropy and the associated entropy production, as it is customary in the ST formalism. Later in the
paper, we shall elucidate the connection between the irreversible part of the Hamiltonian and the
entropy production.

An important step here is to determine the canonical transformations, that must preserve the
metriplectic structure. In practice, from the definition of force and from Equation (5) one must have that

ḃk = i
{
HR, bk

}
−
+
{
HI , bk

}
+
=

∂

∂b∗k
(HR +HI) (7)
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for a variable bk function of the old coordinates ψ. From the chain rule of partial derivative one has

∂

∂b∗k
= ∑

m

(
∂ψ∗m
∂b∗k

∂

∂ψ∗m
+

∂ψm

∂b∗k

∂

∂ψm

)
(8)

However, from the definition of commutators and anti-commutators the following equalities
must also hold:

∂

∂b∗k
= ∑

m

(
∂bk
∂ψm

∂

∂ψ∗m
− ∂bk

∂ψ∗m

∂

∂ψm

)
(9)

∂

∂b∗k
= ∑

m

(
∂bk
∂ψm

∂

∂ψ∗m
+

∂bk
∂ψ∗m

∂

∂ψm

)
(10)

The two equalities can be both satisfied only if the following holds:

∂bk
∂ψm

=
∂ψ∗m
∂b∗k

(11)

∂bk
∂ψ∗m

=
∂ψ∗m
∂bk

= 0. (12)

This means essentially that the new coordinates must be analytic functions of the old ones,
since they cannot contain both a variable and its complex conjugate. Adding a complex number
or performing a U(1) gauge transformation preserves the commutators [16], however note that the
Bogoliubov transformations are not canonical in this case, although they are canonical transformations
of the system without dissipation.

Note that the system can be described using the following Lagrangian, similar to the one for the
heat Equation [20]:

L =
i
2 ∑

m
(ψ̇mψ∗m − ψ̇∗mψm)−H. (13)

The equations of motion for ψ∗m are given by the Euler-Lagrange equations

d
dt

∂L
∂ψ̇m

− ∂L
∂ψm

= 0 (14)

while the dynamics of ψ given by the complex conjugate equations. Equations (13) and (14) are
particularly useful to determine the conserved currents of the system associated to the invariance
of the Lagrangian with respect to a global U(1) transformation, according to the Noether theorem,
as it will be clarified in the next sections. We remark also that one could in principle consider a
stochastic Lagrangian, from which the full Langevin equation can be obtained by means of the usual
Euler-Lagrange equations, as it has been noted in Reference [16].

3. Fokker-Planck Equation and Entropy Production

This section generalises the material presented in Reference [8] to the case of multiplicative noise.
The time evolution of the probability distribution in the phase space, associated to the Langevin
Equation (1), is given by the following Fokker-Planck (FP) equation:

Ṗ = ∑
m

[
−∂m(FmP)− ∂∗m(F∗mP) + 2∂m∂∗m(|gm|2P)

]
. (15)

Following References [8,27], we define the reversible and irreversible probability currents as

J I
m = FI

mP− Dm∂∗m(|gm|2P)

J R
m = FR

m P, (16)
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with Jm = J R
m + J I

m and J ∗m the complex conjugate. By using those currents, Equation (15) assumes
the usual form of a continuity equation:

Ṗ = −∑
m
[∂mJm − ∂∗mJ ∗m]. (17)

Thermal equilibrium corresponds to the case where the probability currents are zero,
while non-equilibrium steady state corresponds to non-zero divergenceless currents, with Ṗ = 0.

The entropy flow Φ and entropy production Π are obtained starting from the definition of phase
space entropy

S = − 〈log P〉 ≡ −
∫

P log Pdx, (18)

where 〈·〉 denotes the ensemble average. Computing the time derivative Ṡ by means of Equation (17)
we obtain:

Ṡ =
∫

∑
m
(∂mJm + ∂∗mJ ∗m) ln Pdx. (19)

Upon integrating by parts, and observing that the divergence of the reversible forces, ∑m(∂mFR
m +

∂mFR∗
m ) vanishes, Equation (19) becomes

Ṡ = −2Re
∫

∑
m
J I

m
∂mP

P
dx. (20)

We remark that the fact that the reversible forces have zero divergence is due to the expression
for the force FR

m = i∂mHR, where HR is the reversible (Hermitian) component of the Hamiltonian.
A straightforward calculation then gives ∂mFR

m = i∂m∂∗mHR and ∂∗mFR∗
m = −i∂∗m∂mHR, so that their

sum vanishes.
From the definition of probability currents Equation (16) one has

∂∗mP
P

=
−J I

m
P|gm|2

− FI
m

|gm|2
− ∂∗m ln |gm|2, (21)

together with the complex conjugate equation. Upon substituting the previous equation into
Equation (20) gives

Ṡ = 2Re
∫

∑m JmFI∗
m

|gm|2
dx− 2

∫
∑
m

|J I |2
P|gm|2

dx

− 2Re
∫

∑
m
J I

m∂m ln |gm|2dx. (22)

The first and second terms are respectively entropy flow and entropy production. We remark that
we here consider only steady states. In this condition, assuming that the probability currents vanish at
infinity [8,27], one can integrate by part the last term, which is proportional to ∂mJ + c.c. However,
since the divergence of the thermodynamical currents is zero in stationary states, the last term vanishes
in that case. Thus, in steady state the entropy flow Φ is minus the entropy production Π [8,27], as in
the case of additive noise.

At this point we substitute integrals containing P with ensemble averages. In this way
Equations (16) and (22) give

Φ = 2 ∑
m

〈
|FI

m|2
|gm|2

〉
+ 2Re ∑

m

〈
∂mFI

m

〉
, (23)

which is the same expression obtained in Reference [8], with |gm|2 playing the role of diffusion constant.
As in References [8,27] we identify the quantity TΦ with the heat exchanged with the bath.
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We proceed now by deriving an expression for the entropy production that makes transparent the
breaking of detailed balance and the onset of irreversibility. Since in steady states one has ∑m(∂mJ ∗m +

∂mJ ∗m) = 0, one can apply the Hodge decomposition [33] and write the currents as

J ∗m = ∑
`

∂`Ω`m + ∂mΛ, (24)

where Ω is an anti-symmetric tensor and Λ a scalar. We separate the entropy flow into two components
Φ1 and Φ2 containing respectively Ω and Λ. For the first component one has

Φ1 = 2Re
∫

∑
`

∂`Ω`m
Fm

|gm|2
dx

= 2Re
∫

∑
ell

Ω`m

(
∂`Fm

|gm|2
− ∂mF`
|g`|2

)
dx (25)

where we have used the anti-symmetry of Ω and integrated by parts discarding the boundary terms.
One has that the condition of detailed balance is ∂m F`

|g` |2
− ∂`Fm
|gm |2

= 0, which is met when the forces are

potentials and/or the temperatures are the same, |gm|2 = |g`|2. Note that this condition generalises
the formulation of References [27,28] to the case of complex-valued forces.

However, in our system we have two coupled currents, associated respectively to the conservation
of energy and of the total power pn, or “number of particles”. Thus, we expect that the entropy
production contains two components: one that depends on the temperature differences and one that
depends on the chemical potential differences.

To see this, let us write the force as the derivative of the following Hamiltonian:

H̃ = H+ i ∑
k

µk|ψk|2 (26)

where µk is the local chemical potential.
A straightforward calculation gives for Equation (25):

Φ1 = 2Re
∫

∑
`m

Ω`m

(
∂`∂
∗
m

|gm|2
−

∂m∂∗`
|g`|2

)
Hdx

+ 2Re
∫

∑
`m

Ω`m

(
µm

|gm|2
− µ`

|g`|2

)
dx. (27)

The first term is non zero if the Hamiltonian is non-Hermitian and/or if the temperatures are
different. On the other hand, the second term is non zero if the chemical potentials or the temperatures
are different.

There is also another way to drive the system off equilibrium: by applying a constant chemical
potential that compensates the damping [8,34]. In this case one expects that the entropy production
is non zero, even if the current vanishes. To see this, we consider the second contribution to the
entropy production:

Φ2 = −2Re
∫

∂mΛFmdx =

= 2Re
∫

iΛ∂m∂∗m[H−∑
k

µk|ψk|2]dx

= 2Re
∫

iΛ(∂m∂∗mH− µm)dx

(28)
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However, if we write the Hamiltonian as in the case of the DNLS [8,35], the term Re[∂m∂∗mH] is
the damping of the system, Γm. Thus one has Φ2 ∝

∫
iΛ(Γm − µm)dx. This shows that the system does

not relax to equilibrium in the case where the chemical potential compensates the damping, as has
been pointed out also in Reference [34].

4. Transported Vs Dissipated Heat

This section contains the main results of the paper. Starting from the first principle of
thermodynamics, we derive the expressions for the heat dissipated and flowing through the system.
To keep the notation simple, we consider the case with gm = Dm ≡ αTm, with α the damping of the
system. It is straightforward to generalise our discussion to the case of multiplicative noise. Following
Reference [8], for a network of m = 1, ..., M oscillators, we consider the Hamiltonian

H = ∑
m
[hm + iα(hm + µ|ψm|2)] (29)

where hm is the local energy, and the Hamiltonian splits into a reversible and irreversible component,
respectively HR = ∑m hm and HI = iα ∑m(hm + µm|ψm|2). Here µm is the local chemical potential,
while |ψn|2 plays as usual [8] the role of particle number.

The first principle of thermodynamics can be expressed as a balance equation for the energy
according to

d
dt

1
iα

〈
HI
〉
=

1
iα

∫
ṖHIdx +

1
iα

∫
PḢIdx (30)

where dx = i
2 ∑ dψm ∧ dψ∗m is the volume element of the phase space. In Reference [5] and in stochastic

thermodynamics in general, the first and second terms of the previous equation are respectively
identified with heat Q and work W. However, in the present case one does not have a clear distinction
between heat and work. In particular, it turns out that Q is the heat dissipated to the environment,
while W contains contributions both from the dissipated heat and from the heat flow that propagates
between oscillators m and n in the network.

To see this, we started by calculating the value of Q. We remark that, as observed in Reference [8],
only the irreversible part of the Hamiltonian enters these expressions. We use the FP equation
Equations (15) and (17) and substitute Ṗ with the derivative of the currents J :

Q =
1
iα

∫
∑
m
(∂mJ + ∂∗mJ ∗)HIdx (31)

Then, upon substituting the expression for the currents, integrating by parts and discarding
boundary terms one has

Q = − 2
iα

Re
∫

∑
m
(FI

mP− Dm∂∗mP)∂HIdx

= ∑
m

(
2
α

〈
|FI

m|2
〉
+ 2

Dm

α
Re
〈

∂mFI
m

〉)
. (32)

This corresponds to the entropy flow multiplied by the temperature, which constitutes the
heat dissipated to the environment. This generalises to the complex case the results obtained in
References [27,28].

From Equation (30), we calculate W as

W =
1
iα

∫
PḢIdx =

1
iα ∑

m

〈
∂mHI ψ̇m + ∂∗mHI ψ̇∗m

〉
. (33)

Here one can see that this expression corresponds to the work of the system, i.e., to the average
forces ∂mH along the “velocity” ψ̇m. Applying the substitution ∂mHI = iF∗m and its complex
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conjugate and substituting ψ̇m with the equation of motion, a straightforward calculation shows
that W = jQ

m + Q, where

jQ
m =

2
α

Re
〈

FR
m F∗I

m

〉
. (34)

Thus, the “work” is indeed the heat flowing through the mth oscillator, and therefore transported
along the network [8]. On the other hand, Q is the heat dissipated to the bath, given by Equation (31).

5. Application to Physical Systems

5.1. Hamilton-Lagrange Description of a One Dimensional Continuum Ferromagnet

We consider here the dissipative dynamics of a continuum ferromagnet at zero temperature.
In particular, we show how the symmetry of the system allows one to obtain the conserved quantities
and the corresponding equations of motion.

The (linearised) magnetisation dynamics close to equilibrium of such a system is described by the
following Schrödinger equation with complex potential [36]

ψ̇ = −(Γ− µ)ψ− iωψ− iA∂2
xψ. (35)

The stereographic variable ψ(x, t) = (Mx + iMy)/2Ms describes the precession of the
magnetisation vector M = (Mx, My, Mz) in the x-y plane, around the z axis, see Figure 1a. Here Ms is
the saturation magnetisation. The precession frequency reads ω = γhext, where γ is the gyromagnetic
ratio and hext is the applied field along the z direction. The quantity Γ = αω is the damping rate,
proportional to the phenomenological damping parameter α. The chemical potential µ accounts for
spin transfer torque, which can compensate the damping and leads to a steady state precession of the
magnetisation [34]. The spin stiffness A is the strength of the exchange interaction.

Figure 1. (a) Magnetisation vector M precessing around the effective field H along the z direction.
The precession occurs in the x-y plane and is conveniently described by the stereographic projection ψ.
(b) Network of nonlinear oscillators connected to thermochemical baths with different temperatures
and chemical potentials. The “particle” current jp

mn describe the transport of the local power pm

between oscillators m and n.

Note that in realistic cases one should consider a nonlinear damping [34,35] Γ(p) ≈ Γ0(1 + 2p),
with p ≡ |ψ|2, that allows the system to have limit cycle oscillations when µ > Γ0. Apart from
chemical potential term, Equation (35) can have more terms, accounting for temperature and additional
time-dependent magnetic fields that drive the system out of equilibrium. In the present case however
we shall first consider the linearised dynamics with zero temperature, since this is sufficient for our
purpose to derive and illustrate the expressions for the spin currents. The more general case of a
network at finite temperature will be discussed in the next section.
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The Lagrangian density for our Schrödinger equation reads

L =
i
2
(ψ̇ψ∗ − ψψ̇∗)− (iΓ + ω)|ψ|2 − A∂xψ∂xψ∗. (36)

The equations of motion are given by the Euler-Lagrange equations

δL
δψ∗
≡ d

dt
∂L
∂ψ̇∗

+ ∂x
∂L

∂(∂xψ∗)
− ∂L

∂ψ∗
= 0 (37)

with the dynamics for ψ∗ being given by δL
δψ = 0.

From the Lagrangian one can derive the following moments

Πt =
∂L
∂ψ̇

=
i
2

ψ∗

Π̄t =
∂L
∂ψ̇∗

= − i
2

ψ

Πx =
∂L

∂(∂xψ)
= −J∂xψ∗

Π̄x =
∂L

∂(∂xψ∗)
= −J∂xψ (38)

and finally a Legendre transform gives the following complex Hamiltonian density:

H = Πtψ̇ + Π̄tψ̇
∗ −L

= (ω− iΓ)|ψ|2 + A|∂xψ|2. (39)

From the Hamiltonian one obtains the equation of motion Equation (35) as ψ̇ = δH
δiψ∗ , so that ψ

and iψ∗ are conjugate variables. One can check that this equivalent to the derivation of the equations
of motion using commutators and anti-commutators as described in Equation (4).

The conservation equation for the local spin wave power p ≡ |ψ|2 is obtained from the invariance
of the Lagrangian Equation (36) with respect to the global phase transformation ψ→ e−iαψ, with the
corresponding infinitesimal transformation δψ ≈ −iαψ. The invariance of the Lagrangian with respect
to such infinitesimal transformation yields δL

δψ δψ + c.c. = 0, c.c. indicating the complex conjugate.
A straightforward calculation gives then

0 =
δL
δψ

δψ + c.c.

=
∂L
∂ψ

ψ +
∂L
∂ψ̇

ψ̇ +
∂L

∂(∂ψ)
∂ψ + c.c. (40)

By using Equations (35), (36) and (40) one obtains the following conservation equation for the
spin wave power

ṗ = −2(Γ− µ)− ∂x jp, (41)

where the spin current reads jp = 2AIm[ψ∗∂xψ], while Γ and µ act respectively as sink and source
of excitations. We remark that this is precisely the same expression as the probability currents that
appears in the Schrödinger equation of quantum mechanics. In the present case, it describes the
transport of the z component of the magnetisation along the system. Indeed, one can check that jp is
the same as the spin-wave current j = AM ×∇M written in terms of the stereographic variable ψ [37].
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5.2. Entropy Production for a Network of Classical Spins

The finite-temperature dynamics of an ensemble of magnetic spins {Mm}, n = 1, ..., M, inside a
ferromagnet is described by the Landau-Lifshitz-Gilbert (LLG) equation of motion [38] with stochastic
thermal baths. The LLG equation is a vector equation, and obtaining the associated FP equation in
practice very cumbersome. A great simplification is obtained by re-writing the LLG equation in terms
of the complex variable ψm =

mxm+imym
1+mzm

, where m = M/Ms is the magnetisation vector normalised
over the saturation magnetisation. In this way one obtains [34,36,39]

ψ̇m =
i + α

1 + α2

(
Fm +

3

∑
k=1

gk
mξk

m

)
, (42)

where the force reads

Fm = γHzψm + C
1− |ψm|2
1 + |ψm|2

ψm + ∑
`

Am`ψ` (43)

The first term corresponds to the applied field Hz along the precession axis z of the magnetisation.
The second term corresponds to the demagnetising field, while the last term models the coupling
with the other spins. Note that the formulation of the coupling is completely general. In particular,
such coupling can have different origins (exchange or dipolar interaction) depending on the coupling
matrix A, which can be a function of the ψs.

The reversible and irreversible components of the forces read respectively

FR =
i

1 + α2 (γHzψm + ∑
`

Am`ψ`)

FI =
α

1 + α2 (γHzψm + ∑
`

Am`ψ`) + C
i + α

1 + α2
1− |ψm|2
1 + |ψm|2

ψm. (44)

From here one can check immediately that the divergence of the conservative forces, ∑m(∂mFR
m +

∂∗mFR∗
m ) vanishes as it should, since ∂mFR

m = −∂∗mFR∗
m = i

1+α2 (γHz + Amm). This holds in the case
where the coupling A is Hermitian, so that its diagonal is real.

The term gk
n in Equation (42) is the strength of the noise, and models thermal fluctuations on site

n. There are three components of the noise on each site, one per each direction of the magnetisation:

g1
n =

1
2
√

DmTm(1− ψ2
m),

g2
n = − i

2
√

DmTm(1 + ψ2
m),

g3
n =

√
DmTmψm. (45)

Here Dm = αkB
µ0Vm Ms

is the diffusion constant, with kB the Boltzmann constant, µ0 the vacuum
magnetic permeability and Vm the elementary volume containing the magnetisation vector at site m,
of the order of few nm3. Tm is the temperature at site m. The ξ are Gaussian random variables with
zero average and correlation

〈
ξk

m(t)ξk′
m′(t′)

〉
= δkk′mm′δ(t− t′)

The entropy production splits into the sum of two components, Φ = Φ1 + Φ2, with

Φ1 =
2α2

1 + α2

〈
∑2

m |FI
m|2

∑km |gk
m|2

〉
+

2α

1 + α2 Re ∑
m

〈
∂mFI

m

〉
(46)

and
Φ2 =

2α

1 + α2 γHz. (47)



Entropy 2018, 20, 992 11 of 14

In the more general case where easy axis anisotropy and spin transfer torque are present, the LLG
equation contains additional terms, but is still very similar to Equation (42) [36].

5.3. Entropy Production in the Frenkel-Kontorova Model

Let us consider the Frenkel-Kontorova (FK) model, which describes the motion of an oscillator
chain sliding over a periodic potential in the presence of random fluctuations:

ẍm + ηm ẋm + g(xm+1 + xm−1 − 2xm)

+ h sin xm =
√

DmTmξm + b, (48)

where for simplicity we consider unit mass oscillators. Here ηm the friction parameter, g the coupling
strength between the oscillators, h the strength of the on-site potential and ξm a real Gaussian random
variable with zero average and variance 〈ξm(t)ξ ′m(t′)〉 = δmm′δ(t− t′). The diffusion constant reads
Dm = 2ηmkB. The last term b is the constant force applied to the chain to make it slide on the
periodic potential.

For our purposes, it is useful to introduce the “frequency” ω =
√

2g and rewrite the FK equation as

ẋm + ηm ẋm −ω2xm + g(xm+1 + xm−1)

+ h sin xm =
√

DmTmξm + b (49)

Then, one can use the complex coordinates ψm = xm + i
ωm

ẋm and get

xm =
1
2
(ψm + ψ∗m)

ẋm =
ωm

2i
(ψm − ψ∗m). (50)

From Equation (49) one has that the kinetic term becomes

ẍm = −iωψ̇m −
ω2

2
(ψm − ψ∗m), (51)

and finally one obtains

ψ̇m = iωψm − ηm(ψm − ψ∗m)− i
g

ωm
sin
(

ψm + ψnm∗

2

)
− iA

ω
(ψm+1 + ψm−1 + c.c.)

+
iF
ω

+
i
√

DTmξm

ω
, (52)

where c.c. indicates the complex conjugate. The complex FK equation can be obtained as

ψ̇m = i∂∗mHFK +
i

ωm

√
DTmξm (53)

where the FK complex Hamiltonian reads

HFK = ∑
m

ωψm − iηm

(
|ψm|2 −

1
2

ψ2
m −

1
2

ψ∗2m

)
+

2A
ωm

Re (ψm+1 + ψm−1) (ψm + ψ∗m)

+
b
ω
(ψm + ψ∗m). (54)
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To calculate the entropy production, one needs the irreversible (or dissipative) components of
the force, given by FI = i∂∗mHI . It is straightforward to identify the dissipative component of the
Hamiltonian asHI = −iηm

(
|ψm|2 − 1

2 ψ2
m − 1

2 ψ∗2m

)
. Thus the irreversible force is FI = ηm(ψm − ψ∗m).

Then, applying Equations (22) and (23) gives

ΦFK = ∑
m

(〈
2η2

m|ψn − ψ∗m|2
〉

DmTm/ω2
m

− 2ηm

)
. (55)

We remark that, at variance with the DNLS, here the coupling is conservative and does not
enter in the definition of entropy production [8,35]. Finally, we apply the transformations given in
Equation (50) and go back to the real-valued variables:

ΦFK = ∑
m

2ηm

kBTm

〈
ẋ2

m

〉
− 2ηm (56)

The last formula, which contains the particle kinetic energy, is consistent with what has been
obtained in References [27,28] and is the dissipated power. Next, we compute the heat flow, defined as
the correlation function between reversible and irreversible forces [8]:

jQ
m+1 − jQ

m =
2

ηm
Re
〈

FI
mFR

m

〉
=

〈
−i

g
ω
(ψm − ψ∗m)(ψm+1 + ψm−1 + c.c.)

〉
(57)

where we identify the heat flow to the correlator between neighbours oscillators.
By substituting the expressions for the forces and changing coordinates to the real

displacements gives
jQ
m+1 − jQ

m = 〈(xm+1 + xm−1)ẋm〉 , (58)

which is the standard formulation of the heat flow for a chain of oscillators [40,41].

6. Conclusions

In summary, we have presented a general method, based on stochastic thermodynamics,
to calculate entropy production and heat flows in complex-valued Langevin equations with
multiplicative noise. The method is particularly useful to describe the off-equilibrium dynamics
of oscillator networks for a variety of physical systems, as described by our examples. Possible
research direction involves formulating the dynamics in terms of a master equation, following the
discretisation of the Fokker-Planck equation proposed in References [27,28]. This should allow to
formulate the irreversibility in terms of fluctuation theorems, relating the synchronisation of the
oscillators to the propagating currents and the breaking of detailed balance.
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