
entropy

Article

Entropy Churn Metrics for Fault Prediction
in Software Systems

Arvinder Kaur and Deepti Chopra *

University School of Information and Communication Technology (U.S.I.C.T), Guru Gobind Singh
Indraprastha University, New Delhi 110087, India; arvinder@ipu.ac.in
* Correspondence: dchopra27@gmail.com; Tel.: +91-971-735-3072

Received: 5 November 2018; Accepted: 11 December 2018; Published: 13 December 2018 ����������
�������

Abstract: Fault prediction is an important research area that aids software development and the
maintenance process. It is a field that has been continuously improving its approaches in order
to reduce the fault resolution time and effort. With an aim to contribute towards building new
approaches for fault prediction, this paper proposes Entropy Churn Metrics (ECM) based on History
Complexity Metrics (HCM) and Churn of Source Code Metrics (CHU). The study also compares
performance of ECM with that of HCM. The performance of both these metrics is compared for
14 subsystems of 5different software projects: Android, Eclipse, Apache Http Server, Eclipse C/C++
Development Tooling (CDT), and Mozilla Firefox. The study also analyses the software subsystems
on three parameters: (i) distribution of faults, (ii) subsystem size, and (iii) programming language,
to determine which characteristics of software systems make HCM or ECM more preferred over others.

Keywords: fault prediction; entropy; mining software repositories; software metrics

1. Introduction

With growing research in the field of software engineering, many fault prediction approaches
have been developed. Predicting faults in software helps software developers and maintainers to focus
on more fault-prone entities. More time and effort is expended on fault-prone software components
during software development and the maintenance process. Software metrics are used to measure
the degree to which a software system possesses a certain characteristic [1]. Fault prediction is also
usually based on certain characteristics of the software development process (i.e., software metrics
are used to predict faults in a software system). For instance, Chidamber and Kemerer (CK) metrics
are a set of popular software metrics used for fault prediction [2]. Also, Khoshgoftaar et al. devised a
metric suite for prediction offault-prone modules based on the amount of past modifications done in
the code files [3]. Bernstein et al. employed temporal features such as number of changes and number
of reported issues for predicting number of faults in future releases of the software [4].

There are many software metrics proposed for predicting faults in software systems and
D’Ambros et al. conducted a broad comparison of popular fault prediction approaches, namely,
Change Metrics, Previous Defects, Source Code Metrics, Entropy of Changes, Churn of Source Code
Metrics, and Entropy of Source Code Metrics [5]. D’Ambros et al. extended their study and provided
an open source benchmark dataset for fault prediction, for evaluation of a variety of fault prediction
approaches [6]. The benchmark dataset consisted of metrics for five open source software systems.
Source code metrics and churn of source code metrics are both popular metrics for fault prediction.
Churn of source code metrics were shown to perform better than source code metrics for fault
prediction [6]. Entropy of software system is another metric which is used for fault prediction, but the
concept of churn of entropy has not yet been proposed and evaluated. With this motivation, this paper
proposes Entropy Churn Metrics (ECM) for prediction of faults in software systems. Its performance
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is compared with History Complexity Metrics (HCM), which model entropy of changes in software
subsystems [7]. Both these metrics are based on the concept of entropy of software change. HCM is
based on absolute value of entropy, whereas ECM models the change in entropy. In this study, ECM is
evaluated to determine whether churn-of-entropy-based metrics can be used for efficient prediction of
faults in a software system. The study also aims to determine when it is better to use churn of entropy
(ECM) over entropy (HCM) for predicting faults in a software subsystem and vice versa. The fault
prediction performance of both these metrics is evaluated on 14 software subsystems from 5software
projects, namely Android, Eclipse, Apache Http Server, Eclipse C/C++ Development Tooling (CDT),
and Mozilla Firefox. The software subsystems chosen for the study are of different sizes, are written in
different programming languages, and have varying distribution of faults. This would help in analyzing
and determining the tendency of certain types of subsystems to favor a particular metric over another.

The rest of the paper is organized as: Section 2 discusses related work in the area of fault prediction
and entropy; Section 3 proposes ECM and describes other related metrics. Research materials and
methods are described in Section 4 and results are presented and analyzed in Section 5. Results are
discussed in Section 6, while Section 7 discusses threats to the validity of the study. Finally, in Section 8,
the study is concluded.

2. Related Work

Entropy is used to measure the degree of randomness or uncertainty in the system. Apart from
thermodynamics and information theory, entropy measures are being used in a variety of other areas.
Gou et al. have used hesitant fuzzy linguistic entropy and cross-entropy measures for multiple
criteria decision making [8]. The hesitant fuzzy linguistic entropy and cross-entropy measures are
used to determine the weights for the multiple criteria, so that a ranking of alternatives is obtained.
Pramanik et al. have also used cross-entropy measures of bipolar and interval bipolar neutrosophic
sets to develop two approaches for multiattribute decision making [9]. Entropy measures also have
applications for water monitoring. Keum et al. [10] review and summarize the applications of entropy
for water monitoring network design, such as usage of entropy weight method to measure the water
quality [11]. Wu et al. [12], employ a joint entropy-based learning model for optimizing image retrieval.
Thus entropy has applications in many fields, including fields like the stock market [13]. In fact,
Baldwin has used maximum entropy modelling to determine distribution and habitat selection for
various wildlife species [14]. In this study, an entropy-based metric (i.e., ECM) is proposed to model
churn of entropy of software code changes. The proposed metric (i.e., ECM) is used for predicting faults
in software systems and its performance is compared with HCM.

Fault prediction is an active research area in the field of software engineering. Many techniques
and metrics have been developed to improve fault prediction performance. D’Ambros et al. have
compared popular fault prediction approaches for software systems [6], namely, process metrics [15],
previous faults [16], source code metrics [17], entropy of changes [7], churn of source code metrics [18],
and entropy of source code metrics [6]. Nagappan and Ball proposed a technique for prediction of defect
density of the system using relative code churn measures and compared its performance with absolute
churn metrics [19]. Hassan proposed absolute entropy metrics or HCM that modelled the complexity of
code changes and validated its use for fault prediction [7]. In this study, it is proposed to extend entropy
metrics and predict faults on the basis of change in entropy (ECM) rather than absolute value of entropy
(HCM). The concept of churn of entropy had not been established earlier, thereby making its evaluation
essential to fault prediction research.

Fault prediction is based not only on the current characteristics of the software, but on the entire
software evolution history. Historical data stored in software repositories has been time and again used
for fault prediction. For instance, Raja et al. presented a time series analysis of software faults from eight
different open source software (OSS) projects [20]. It was found that the time series model accurately
predicted the software evolution faults for all of the eight OSS projects. Wu et al. also conducted a
study that used time series analysis for prediction of fault numbers [21]. The study compared three
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different approaches for time series analysis on bug data from Debian software. Faults are closely related
to changes made in the software systems and studying the changes that take place during software
evolution is also important. Yazdi et al. studied the evolution of changes in the software systems
using reverse-engineered class diagrams from nine open source Java projects [22]. It was observed that
only discrete Pareto, Waring, Yule, and Beta-Negative Binomial distributions were able to satisfactorily
describe the observed evolution of changes. Further, Yazdi et al. proposed a framework that captured
the changes between model revisions [23]. Forecasting and simulation performance of different time
series models were also tested. In this study also, the software changes are analyzed to compute ECM
and HCM that are used for predicting faults.

Entropy-based measures have been used for various purposes in software engineering research.
For instance, Trienekens et al. used the concept of internal and external entropy to model the level of
disorder in the system and its environment, and then based process improvement on these suggested
directions [24]. Allen et al. also proposed measures for size, complexity, and coupling of software
using entropy and information theory concepts [25]. Ma combined fractal and entropy measures to
determine self-similarity and structural ordering in software [26]. Kaur et al. evaluated entropy-based
fault prediction using neural-network-based regression [27] and locally weighted regression [28].
Kaur et al. also studied and compared machine learning techniques for entropy-based fault prediction
without reference to churn of entropy [29]. In this paper, a new metric Entropy Churn Metric (ECM)
based on History Complexity Metric (HCM) is proposed. It takes into account the complexity of code
changes for fault prediction and calculates its churn. ECM is calculated using HCM similar to Source
Code Churn Metrics [18], which calculated the churn of source code metrics.

Researchers have been conducting studies to review and compare existing fault prediction
approaches. Comparison of approaches leads to better understanding of performance of various
approaches on different types of software projects. Radjenovic et al. conducted a review on fault
prediction metrics which identified and analyzed the applicability of various fault prediction metrics [30].
The review not only discussed the applicability of fault prediction metrics, but also reported the datasets
on which these metrics had been evaluated. It also tried to determine the correlation between the
software development phase of the project and the fault prediction metric used. Similarly in this study,
ECM and HCM are not only compared, but an effort is made to establish a relation between choice of
entropy metric, that is, ECM (churn of entropy) and HCM (absolute entropy), and characteristics of the
software system.

D’Ambros et al. conducted a study for evaluating various fault prediction approaches [6]. They not
only evaluated the performance of different fault prediction metrics, but also provided a benchmark
dataset for other researchers. It was concluded that the difference in results obtained by churn of source
code and entropy metrics was not statistically significant. The main intuition for proposing churn of
entropy is that degree of change in entropy will better model the faults rather than the absolute value
of entropy.

Canfora et al. empirically evaluated the relationship between complexity of source code and
entropy of code changes based on four factors, namely, refactoring activities, number of developers
working on a file, involvement of classes in design patterns, and type of change [31]. Their study
tried to understand whether different types of changes produce a different magnitude of change in
entropy. It was observed that for different types of changes, the difference in change in entropy was
also statistically significant. In this study, ECM is used to model change in entropy, with an intuition
that it is the change in entropy, rather than the absolute value of entropy, which leads to an indication
of the number of faults in the software system.

Our study proposes a new fault prediction metric, that is, Entropy Churn Metric (ECM) based
on HCM and churn of source code metric. It also compares the performance of the proposed metric
(i.e., ECM with that of HCM). This will help determine whether it is better to use entropy of changes or
churn of entropy of changes. The study not only proposes a new metric for fault prediction based on
entropy of changes, but also investigates which metric is more suitable for what type of software systems.
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The software systems are characterized based on three parameters: (i) distribution of faults, (ii) system
size, and (iii) programming language, to determine when it is preferable to use ECM over HCM and
vice versa.

3. Entropy Churn Metrics

Entropy Churn Metrics (ECM) are derived from History Complexity Metrics (HCM). ECM combines
concepts of entropy of changes and churn of source code metrics. Before proposing the new metric for
fault prediction (i.e., ECM), the following subsections describe HCM and churn of source code metrics.

3.1. History Complexity Metrics

HCM was given by Hassan [7]. Hassan measured the complexity of source code changes and
quantified it using entropy of changes [7]. Entropy of changes for a particular time period (taken as
one year for this study) is calculated using Shannon entropy [32], as defined in Equation (1).

Entropyn(P) = −
n

∑
f=1

Pf × log2 Pf (1)

where n denotes number of files in the software system and Pf is the probability of changes in file
f during the time period under consideration.

To account for different numbers of files in different software systems, the entropy defined in
Equation (1) is normalized to give normalized entropy as defined in Equation (2).

Normalized Entropy(P) = −
n

∑
f=1

Pf × logn Pf (2)

This entropy of changes is used to calculate the History Complexity Metric (HCM). HCM of a file
b is calculated using Equation (3).

HCM{i,...,j}(b) = ∑
kε{i,...,j}

HCPFk(b) (3)

where, {i, . . . ,j} denotes the set of evolution periods and HCPFk(b) denotes the History Complexity
Period Factor of file b for time period k. HCPF for file b is calculated using Equation (4).

HCPFk(b) =

{
Complextykb ×Normalized Entropyk , b ε Mk
0 otherwise

(4)

where Normalized Entropyk is the value of normalized entropy for the time period k, Mk is the set of
files modified in period k, and Complexitykb has the following three definitions:

• HCM1: Complexitykb = 1, Complexity associated with file b in period k is equal to one and HCPF
is equal to the value of Normalized Entropy.

• HCM2: Complexitykb = Pb, Complexity is equal to the probability of changes in file b in period
k for files modified in that period. Otherwise, it is equal to zero.

• HCM3: Complexitykb = 1/|Mk|, Complexity is equal to reciprocal of number of files modified in
period k for files modified in that period. Otherwise, it is equal to zero.

HCM for a subsystem S over the set of evolution periods {i, . . . ,j} is defined as the sum of HCM
for all files in the subsystem as given in Equation (5).

HCM{i,...,j}(S) = ∑
bεS

HCM{i,...,j}(b) (5)
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3.2. Churn of Source Code Metrics

Churn of source code metrics were first used by Nikora and Munson [18]. In [6], Dambros et al.
compared this metric with other popular fault prediction metrics. The intuition behind use of churn
of source code metrics was that it may provide better results than simple source code metrics like
number of added and deleted lines of code. To calculate churn of source code metrics, the source code
history needs to be sampled over every predefined period of time, say, two weeks, one month, or a
year. If a class does notexist in a particular version, then its metric value is set to −1 (default value).
The delta value of the source code metrics is calculated for each consecutive pair of samples using
Equation (6).

delta(x, y) =

{
−1 if vx = 0 or vy = 0∣∣vx − vy

∣∣ otherwise
(6)

where vx is the value of metric at sample x and vy is the value of metric at sample y; x and y are
consecutive samples.

The churn value is then calculated using Equation (7).

CHU(x) =
C

∑
y=1

{
0 delta(x, y) = −1
delta(x, y) otherwise

(7)

where C is the number of samples. Thus churn is the summation of values of delta over all the samples
excluding the samples where delta value is −1.

3.3. Entropy Churn Metrics (ECM)

The proposed Entropy Churn Metrics (ECM) enhance the History Complexity Metrics (HCM) by
calculating the churn of entropy of code changes. This is done with the intuition that churn of entropy
(i.e., churn of HCM) may provide better results than a simple entropy metric (i.e., HCM). The major
motivation for proposing ECM is that, rather than absolute value of entropy, it may be the change in
entropy that is a better predictor of faults.

HCM and HCPF values for all files in the selected system/subsystem are computed using
Equations (1)–(4). The Entropy Churn (ECHU) for a file b for period j is computed using Equation (8).

ECHUj(b) =
∣∣∣HCM{i,...,j+1}(b)−HCM{i,...,j}(b)

∣∣∣ (8)

where HCM{i,...j}(b) denotes the value of HCM metric of file b until period j.
The ECM for a subsystem is calculated as the sum of ECHU for all files in the subsystem as

depicted in Equation (9).
ECM{i,...,j}(S) = ∑

bεS
ECHU{i,...,j}(b) (9)

Similar to HCM, ECM has three variants, namely, ECM1, ECM2, and ECM3. The three variants of
ECM are depicted in Figure 1.

Entropy 2018, 20, x FOR PEER REVIEW  5 of 18 

 

3.2. Churn of Source Code Metrics 

Churn of source code metrics were first used by Nikora and Munson [18]. In [6], Dambros et al. 
compared this metric with other popular fault prediction metrics. The intuition behind use of churn 
of source code metrics was that it may provide better results than simple source code metrics like 
number of added and deleted lines of code. To calculate churn of source code metrics, the source 
code history needs to be sampled over every predefined period of time, say, two weeks, one month, 
or a year. If a class does notexist in a particular version, then its metric value is set to −1 (default 
value). The delta value of the source code metrics is calculated for each consecutive pair of samples 
using Equation (6). delta(𝑥, y) = ൜ −1                            if v௫ = 0 or v௬ = 0|v௫ − v௬|                                  otherwise (6)

where vx is the value of metric at sample x and vy is the value of metric at sample y; x and y are 
consecutive samples. 

The churn value is then calculated using Equation (7). 

CHU(𝑥) = ෍ ൜0                         delta(𝑥, 𝑦) = −1delta(𝑥, 𝑦)                    otherwiseେ
௬ୀଵ  (7)

where C is the number of samples. Thus churn is the summation of values of delta over all the 
samples excluding the samples where delta value is −1. 

3.3. Entropy Churn Metrics (ECM) 

The proposed Entropy Churn Metrics (ECM) enhance the History Complexity Metrics (HCM) 
by calculating the churn of entropy of code changes. This is done with the intuition that churn of 
entropy (i.e., churn of HCM) may provide better results than a simple entropy metric (i.e., HCM). 
The major motivation for proposing ECM is that, rather than absolute value of entropy, it may be the 
change in entropy that is a better predictor of faults.  

HCM and HCPF values for all files in the selected system/subsystem are computed using 
Equations (1)–(4). The Entropy Churn (ECHU) for a file b for period j is computed using  
Equation (8). ECHU௝(𝑏) = |HCM{௜,…,௝ାଵ}(𝑏) − HCM{௜,…,௝}(𝑏)| (8)

where HCM{௜,..௝}(𝑏) denotes the value of HCM metric of file b until period j.  
The ECM for a subsystem is calculated as the sum of ECHU for all files in the subsystem as 

depicted in Equation (9). ECM{௜,..,௝}(𝑆) = ෍ ECHU{௜,…,௝}(𝑏)௕஫ௌ  (9)

Similar to HCM, ECM has three variants, namely, ECM1, ECM2, and ECM3. The three variants 
of ECM are depicted in Figure 1. 

 
Figure 1. Three variants of ECM. 

•It is defined as the churn of HCM1ECM1
•It is defined as the churn of HCM2ECM2
•It is defined as the churn of HCM3ECM3

Figure 1. Three variants of ECM.



Entropy 2018, 20, 963 6 of 17

In the next section, the detailed steps used for carrying out the research are described along with
the datasets on which the ECM are evaluated.

4. Research Methodology

The process used for carrying out this study is depicted in Figure 2. The research was carried out
in the following stages:

1. Project Selection: The first step was to determine the software projects and subsystems to be
studied. The details of the software projects considered in this study are given in Section 4.1.

2. Data Extraction: The second step was to collect the number of changes per year and the number
of faults per year in the selected subsystems of the software projects under study. This was done
by first extracting the commits from software repositories and then analyzing the commits to
determine the type of change done in the commit. The data regarding the number of changes of
each type was then cleaned to determine the number of changes and faults per year. The data
extraction process along with metric calculation is described in detail in Section 4.2.

3. Metric Calculation: The third step was metric calculation, which used the data collected in step
two for calculating HCM and ECM. The data extraction and metric calculation processes are
explained in Section 4.2.

4. Regression Analysis and Comparison of Results: In the next step, the two metrics (i.e., ECM
and HCM) were compared for fault prediction using regression analysis. Finally, the results were
analyzed and the study was concluded. The results are analyzed and discussed in Sections 5
and 6, respectively.
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4.1. Selected Software Projects and Subsystems

Five software projects were selected to conduct the study, namely, Android, Eclipse, Apache Http
Server, Eclipse C/C++ Development Tooling (CDT), and Mozilla Firefox. Three subsystems each of
Android, Apache Http Server, Eclipse C/C++ Development Tooling (CDT), and Mozilla Firefox were
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examined in the study and two subsystems of Eclipse were examined. The details of these subsystems
and repositories are given in Table 1. Mozilla data was collected from Mozilla Central [33], whereas
data for all other software projects was collected from GitHub [34]. These subsystems were chosen on
the basis of following criteria:

• Size and Lifetime: The selected software subsystems included representatives from small-,
medium-, and large-sized systems. The selected subsystems included both systems that had been
released for several years as well as new systems that had been released only a few years ago.
This criterion enabled us to determine the impact of size of the system on the prediction power of
HCM and ECM.

• Programming Language: The selected software subsystems were programmed using different
programming languages, namely, Java, C, and C++. Subsystems with different programming
languages were selected so that the impact of programming language of the subsystem on
prediction performance of ECM and HCM could be studied.

• Availability of Data: All data regarding the changes in the software subsystems was extracted
from open source software repositories that are accessible to all.

Table 1. Software Projects and Subsystems studied.

Software
Project Repository Subsystem No. of

Files URL Acronym

Android GitHub

android/platform
frameworks base/drm 17

https://github.com/android/
platform_frameworks_base/tree/

master/drm
D1

android/platform
frameworks base/keystore 18

https://github.com/android/
platform_frameworks_base/tree/

master/keystore
D2

android/platform
frameworks base/location 80

https://github.com/android/
platform_frameworks_base/tree/

master/location
D3

Eclipse GitHub

eclipse/platform-core 196
https:

//github.com/eclipse/eclipse/
tree/master/platform-core

D4

eclipse/development 282
https:

//github.com/eclipse/eclipse/
tree/master/development

D5

Apache
Http Server GitHub

apache/httpd/modules/
filters 61

https:
//github.com/apache/httpd/

tree/trunk/modules/filters
D6

apache/httpd/modules/
mappers 38

https:
//github.com/apache/httpd/
tree/trunk/modules/mappers

D7

apache/httpd/modules/ssl 34 https://github.com/apache/
httpd/tree/trunk/modules/ssl D8

Eclipse
C/C++

Development
Tooling
(CDT)

GitHub

eclipse/cdt/build 2063 https://github.com/eclipse/cdt/
tree/master/build D9

eclipse/cdt/codan 385 https://github.com/eclipse/cdt/
tree/master/codan D10

eclipse/cdt/dsf 745 https://github.com/eclipse/cdt/
tree/master/dsf D11

Mozilla
Firefox

Mozilla
Central

(Mercurial
Repository)

mozilla-central/layout/
generic 132 http://hg.mozilla.org/mozilla-

central/file/tip/layout/generic D12

mozilla-central/layout/
forms 43 http://hg.mozilla.org/mozilla-

central/file/tip/layout/forms D13

mozilla-central/layout/
printing 14 http://hg.mozilla.org/mozilla-

central/file/tip/layout/printing D14

4.2. Data Extraction and Metrics Calculation

Data required for computation of HCM and ECM was extracted from Mozilla Central and GitHub
using a programmed tool [35]. The commits of each file in a subsystem were extracted using regular
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expression matching [36]. The extracted commits were then analyzed by the tool and the number of
changes per year of each type was calculated. Similar to Hassan [7], the extracted changes are classified
as follows:

• Fault Repairing Changes (FRCs): the changes that are made to the software system for removing
a bug/fault. These changes usually represent the fault resolution process and do not represent
the code change process.

• General Changes (GCs): the changes that are done for maintenance purposes and do not reflect
any changed feature in the code. Examples of general changes include changes to copyright files
and reindentation of the code.

• Feature-Introducing Changes (FICs): the changes that are done with the intention of enhancing
the features of the software system. These changes truly reflect the code change process.

The tool returned data regarding the number of changes per year of each type in a particular file
of the software system. Hassan used the number of FRCs to validate the study, as they represent the
fault resolution process rather than the code change process and hence do not impact the complexity
of code changes [7]. The number of GCs was also not used to calculate the complexity of code changes
as GCs are only maintenance-related changes that do not impact features of the code. The number of
FICs were used to calculate the complexity of code changes, as these changes truly reflect the code
change process. Similarly, in this study, only FICs were used to model the complexity of code changes,
FRCs were used for validating the number of faults, and GCs were discarded.

After extracting the number of changes per year in each file of the software subsystem,
the probability of change was calculated for every file of the subsystem. HCM and ECM were
then calculated using Equations (1)–(5), (8) and (9) as described in Section 3. Figures 3–5 depict the box
plots for HCM1, HCM2, and HCM3 metrics, respectively, for the 14 selected datasets. ECM1, ECM2,
and ECM3 metrics for the 14 datasets are depicted in Figures 6–8.
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5. Results

The performance of ECM was compared with that of HCM. Linear regressionwas employed for
the comparison of prediction power of both these metrics [37]. Rapid Miner Studio [38] was used for
performing linear regression with number of faults as the dependent variable and HCM/ECM metric
as independent variable. The following parameters were used for the Linear Regression operation:

• Feature selection method: M5 Prime
• Eliminate collinear features: TRUE
• Minimum tolerance: 0.05
• Use bias: TRUE
• Ridge: 1.0 × 10−8

Table 2 lists the Root Mean Square Error (RMSE) [39] observed for each metric.
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Table 2. RMSE of each metric.

Dataset HCM1 HCM2 HCM3 ECM1 ECM2 ECM3

D1 2.757 1.396 1.396 11.500 11.500 11.500
D2 4.680 4.261 4.261 7.658 7.658 7.658
D3 17.691 17.691 17.691 17.691 17.691 17.691
D4 1.920 1.920 1.920 1.920 1.920 1.920
D5 2.059 2.059 2.059 1.359 2.059 2.059
D6 15.756 15.756 15.756 15.756 15.756 15.756
D7 13.877 16.990 16.990 23.356 25.748 25.748
D8 42.682 42.270 42.270 46.546 46.546 46.546
D9 381.786 381.786 381.786 76.917 57.880 57.880

D10 69.801 69.801 69.801 5.711 37.700 37.700
D11 12.656 12.656 12.656 3.856 41.272 41.272
D12 140.827 137.312 137.207 451.133 451.133 451.133
D13 74.449 66.326 66.326 161.429 161.429 161.429
D14 30.223 30.223 30.223 30.223 30.223 30.223

The Friedman test was used to compare performance of the metrics over 14 datasets that were
selected for this study [40]. The Friedman test ranks the performance of metrics for each dataset
separately. The best performing metric gets rank one, the second best metric gets rank two, and so on;
in case of ties, average rank is assigned. The results of the Friedman Test are depicted in Table 3.

Table 3. Results of Friedman Test.

Test Statistics

N 14
Chi-Square 10.190

df 5
Asymptotic
Significance 0.070

The Friedman test revealed that there was no statistically significant difference in prediction errors
reported by the six metrics (Chi-Square= 10.190, significance = 0.070). Hence, it can be said that all
the six metrics perform equally well for fault prediction, that is, there is no difference between ECM
and HCM metrics. However, from Table 2, it can be observed that ECM performed better for 4 out of
14 datasets, HCM performed better for 6 out of 14 datasets, while both ECM and HCM gave equal
results for 4 out of 14 datasets. This makes it essential to analyze the characteristics of the datasets in
order to determine which metrics should be used with which datasets. For this purpose, we analyzed
the datasets/software subsystems on the following parameters:

• Distribution of number of faults per year
• No. of files in the subsystem
• Programming language

These three parameters of the datasets and performance of ECM and HCM with respect to these
parameters are analyzed in the following subsections.

5.1. Distribution of Faults

In this subsection, the datasets were classified based on whether the distribution of number of
faults per year in a software subsystem was normal or non-normal. A dataset is said to be normally
distributed if the curve is symmetric around the mean, otherwise, it has non-normal distribution.
We used the Shapiro–Wilk Test to determine whether the distribution was normal or non-normal [41].
Table 4 depicts the distribution of number of faults for the 14 datasets.



Entropy 2018, 20, 963 12 of 17

Table 4. Distribution of faults per year.

Dataset Distribution

D1 Normal
D2 Normal
D3 Normal
D4 Normal
D5 Normal
D6 Normal
D7 Non-normal
D8 Non-normal
D9 Normal

D10 Normal
D11 Normal
D12 Normal
D13 Normal
D14 Non-normal

It was observed that for normal distribution of number of faults per year, either of the two metrics
may perform better. But when number of faults per year has a non-normal distribution, HCM always
performs better than or equal to ECM. Hence, it can be concluded that HCM is better suited for
subsystems having non-normal distribution of faults per year.

5.2. System Size

A software subsystem/system can be classified according to the number of files in the subsystem.
A subsystem can be classified as small, medium, or large according to the criteria shown in Figure 9.
A subsystem is considered small-sized if the number of files in the subsystem is less than 150. It is
considered to be medium-sized if the number of files in the subsystem is between 150 and 1000.
A subsystem is considered large if it contains more than 1000 files.
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Figure 9. Classification of subsystems according to number of files.

Table 5 specifies the classification of the 14 datasets based on size. It can be observed that for
small-sized subsystems, HCM gave better or comparable results to ECM. But for medium-sized and
large-sized subsystems, ECM provided better results. Hence, it can be inferred that for medium-sized and
large-sized subsystems, it is better to use ECM, and for small-sized subsystems, it is better to use HCM.
In other words, ECM is a better predictor when dealing with systems having large coupling between files.
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Table 5. Classification of subsystems based on size.

Dataset No. of Files Subsystem Size

D1 17 Small
D2 18 Small
D3 80 Small
D4 13 Medium
D5 21 Medium
D6 61 Small
D7 38 Small
D8 34 Small
D9 2063 Large
D10 385 Medium
D11 745 Medium
D12 132 Small
D13 43 Small
D14 14 Small

5.3. Language

Programming language of the 14 datasets were analyzed in order to determine which metric
(i.e., ECM or HCM) is better suited for software systems programmed using which language.
The 14 datasets were programmed using C, C++, or Java, as shown in Table 6.

Table 6. Programming language of the software subsystems.

Dataset Programming Language

D1 JAVA
D2 JAVA
D3 JAVA
D4 JAVA
D5 JAVA
D6 C
D7 C
D8 C
D9 JAVA

D10 JAVA
D11 JAVA
D12 C++
D13 C++
D14 C++

It can be observed that for subsystems programmed using C and C++, HCM performed better or
comparable to ECM, whereas for software subsystems programmed using Java, either of ECM and
HCM may give better results. Hence, it can be suggested that HCM should be preferred for software
subsystems/systems programmed using C and C++.

6. Discussion

Comparison of ECM and HCM revealed that there is no statistically significant difference between
the prediction errors obtained using both the metrics. This implies that both ECM and HCM have
comparable performance and both of these metrics can be used for predicting faults in software systems.

In order to analyze which metric should be preferred for a particular software system, the results
were analyzed based on three characteristics (distribution of faults, system size, and programming
language) of the software system. The analysis of results leads to the following observations:

• It was observed that for normal distribution of faults, sometimes ECM performed better and
sometimes HCM gave better results. But for non-normal distribution of faults, HCM always
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gave better or comparable results to ECM. Thus, while any of ECM and HCM may be used for
prediction when using the distribution of faults, HCM should be the preferred metric when the
distribution is non-normal.

• When the performance of HCM and ECM was analyzed with respect to the size of the system,
it was observed that for small-sized systems, HCM gave better or comparable results to ECM,
but for medium- and large-sized systems, ECM outperformed HCM. Thus it can be recommended
to use ECM for medium- and large-sized systems and HCM for small-sized systems.

• Lastly, on analyzing the performance of ECM and HCM with regard to the programming language
of the system, it was observed that when the programming language of the subsystem was C/C++,
the results obtained using HCM were always better or comparable to those obtained using ECM.
It was also observed that when the programming language of the system was Java, either of ECM
and HCM gave better results. Hence, it can be suggested that for systems programmed in C/C++,
the preferred metric should be HCM, while for systems programmed in Java, either of ECM and
HCM may be preferred.

7. Threats to Validity

Fault prediction studies are predisposed to factors that influence the accuracy and reliability of
the results. These are called threats to validity of a study. Comprehensively, there are two types of
threats to validity: internal and external threats.

7.1. Threats to Internal Validity

Threats to internal validity happen if there is error in representation of causes that influence
the outcomes of the study. One such validity threat is that this study uses FRCs for validating the
study. The study does not contemplate the faults that are reported but not removed while counting the
year-wise number of faults. Since there are scarcely any faults that are not removed, the results of this
study are justified.

Another concern is regarding accuracy of classification of changes. The tool used for this purpose
is not artificially intelligent, that is, it does not exhibit human-like intelligence and relies on simple
rules to determine the reason of change for the commits extracted from the software repository.
However, the tool utilizes a basic yet powerful keyword-matching algorithm to classify the commits
with minimum odds of misclassification.

7.2. Threats to External Validity

Threats to external validity refer to concerns associated with generalization of the findings of the
study. For this reason, even though the study was conducted on 14 software subsystems from five
different software projects, the study should be replicated for other software systems also.

Another threat to validity is that although the study was conducted on 14 subsystems of different
size, of different programming language, and having different distribution of faults, they are from
open source software projects only, and these subsystems cannot be considered as representations
of subsystems of industrial software projects. Further studies should be carried out to check the
applicability of ECM for industrial software projects also.

8. Conclusion

The paper proposed a new metric for fault prediction based on churn of entropy (i.e., ECM).
ECM was compared with HCM for 14 software subsystems. The subsystems were selected from
popular software projects: Android, Eclipse, Apache Http Server, Eclipse C/C++ Development Tooling
(CDT), and Mozilla Firefox. The results revealed that there was no statistically significant difference
between the performance of HCM and ECM. Thus both the metrics can be used for fault prediction in
software systems by analyzing its change history.
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While ECM gave better results for 4 out of 14 datasets, HCM gave better results for 6 out of
14 datasets, and both ECM and HCM gave equal results for 4 out of 14 datasets. The study further
analyzed the characteristics of the software subsystems in order to determine which metrics were better
suited for what type of software systems. The subsystems were analyzed based on three parameters,
namely, (a) distribution of number of faults per year, (b) number of files, and (c) programming
language. It was inferred from the analysis that, (a) HCM metric are more appropriate for software
systems/subsystems having a non-normal distribution of faults per year, (b) ECM metrics are better
suited for medium-sized and large-sized software systems/subsystems, and (c) HCM metrics are
a better choice for software subsystems/systems programmed using C and C++.

A major conclusion that can be drawn from the study is that entropy metrics are dependent on
subsystem size. Simple entropy metrics (i.e., HCM) are better predictors of faults than ECM when the
system size is small. As the system sizes increases, the coupling between files becomes large and it
becomes difficult for programmers to efficiently organize the files. It was observed that under such
circumstances (i.e., large-sized systems with large coupling), ECM or churn of entropy is a better predictor
of faults. However, further studies specially using proprietary software projects and a comparison with
popular fault prediction metrics other than HCM should be done to explore the applicability of ECM.
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