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Abstract: We discuss numerical results of diffusion-driven separation into three phases of a symmetric,
three-component highly viscous liquid mixture after an instantaneous quench from the one-phase
region into an unstable location within the tie triangle of its phase diagram. Our theoretical approach
follows a diffuse-interface model of partially miscible ternary liquid mixtures that incorporates the
one-parameter Margules correlation as a submodel for the enthalpic (so-called excess) component
of the Gibbs energy of mixing, while its nonlocal part is represented based on a square-gradient
(Cahn–Hilliard-type) modeling assumption. The governing equations for this phase-field ternary
mixture model are simulated in 3D, showing the segregation kinetics in terms of basic segregation
statistics, such as the integral scale of the pair-correlation function and the separation depth for
each component. Based on the temporal evolution of the integral scales, phase separation takes
place via the simultaneous growth of three phases up until a symmetry-breaking event after which
one component continues to separate quickly, while phase separation for the other two seems to be
delayed. However, inspection of the separation depths reveals that there can be no symmetry among
the three components at any instant in time during a triphase segregation process.

Keywords: spinodal decomposition; liquid–liquid phase transitions; diffusion; nonequilibrium
thermodynamics

1. Introduction

A ternary mixture of partially miscible liquids, which is homogeneous at some high temperature
in the one-phase region of its phase diagram, may separate into three phases after rapid quenching
to an unstable location within the spinodal range of its phase diagram [1,2]. Presented herein is
a numerical study of isothermal spinodal decomposition of a very viscous ternary liquid mixture
in the limit of zero fluidity coefficient (further addressed below), following a thermal quench from
a stable state in the one-phase region to an unstable location within the tie triangle of its phase
diagram. Although our attention in this work will be restricted to nonreactive (symmetric) ternary
liquid mixtures, it should be acknowledged that the behavior of reactive (not necessarily symmetric)
ternary mixtures has received considerable attention over the past two decades [3–10]. In fact, even
though spinodal decomposition in a number of reaction-diffusion systems is usually triggered by
a thermal or compositional quench, actually the necessary displacement from a stable state in the
one-phase region into the spinodal range can also occur by reaction, e.g., polymerization of a monomer
when the polymer being formed is incompatible with one or more of the other components in the
mixture. Such reaction-induced spinodal decomposition is particularly relevant to the design of
new materials, such as, e.g., monolithic porous polymer or carbon materials, and consequently has
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been studied extensively over the past two decades, mostly by experiment [11–18]. However, in
what follows, we will not address reaction-induced spinodal decomposition in any detail, since the
primary objective of this work is to elucidate whether or not the assumption of a perfectly symmetric
ternary system implies some kind of statistical symmetry during the triphase segregation process
after spinodal decomposition triggered by a thermal quench. We will also briefly discuss segregation
patterns (i.e., isosurfaces of concentration as a function of time) in two cases wherein phase separation
for one component in a ternary mixture turns out to be faster or slower than that for the remaining
components. Note that, since we focus on a ternary system with a vanishing ratio of capillary to viscous
forces, the results reported herein may be considered as pertaining to ternary alloy systems or polymer
blends. In fact, as is well known, the mechanical properties and rheology of ternary polymer blends
are greatly influenced by their phase morphology, and, consequently, the most important application
of phase separation dynamics to date has been to predict those phase morphologies as a function
of controlling factors such as viscosity of components, composition, interfacial interaction between
phases, and processing parameters. For the sake of the present discussion, we note that, while in a
binary blend there are only two basic morphologies (particulate and bicontinuous), a large number of
phase morphologies have been documented in ternary polymer blends, and, consequently, a taxonomy
of phase morphologies has been the subject of a number of previous works; in particular, Nauman
and He [19] showed 23 morphologies of which 18 were actually observed in their 2D simulation study
but also included morphological types which reflected the topological limitations of 2D space. Once
again, we emphasize that phase morphologies in a ternary polymer system are beyond the scope of the
present work since the focus of this paper is on the triphase segregation kinetics following spinodal
decomposition of a very viscous and symmetric ternary liquid mixture. Finally, we also acknowledge
that significant progress in understanding the kinetics of ternary phase-separating mixtures in the
absence of chemical reactions has been reported in a number of previous works [1,20–25].

An outline of the remainder of this paper is as follows. Below, we first present a brief review of
the governing equations for our phase-field formulation, emphasizing that the ternary mixture model
of interest herein is supposed to describe a nonideal liquid mixture with perfectly symmetric pure
species; consequently, our phase-field formulation has been based on the one-parameter Margules
correlation since that is the simplest excess Gibbs energy submodel one can write for a nonideal
liquid mixture. In contrast, in some cases, more complex excess Gibbs energy submodels are required
for modeling nonideal mixtures having a strong asymmetry among the component species (e.g.,
when two or more components are partially immiscible). That was specifically the case with the
benzene-acetonitrile-water mixture considered in our previous work [26], where the phase-field ternary
mixture model presented herein was generalized to incorporate the nonrandom, two-liquid (NRTL)
equation [27–29] as an excess Gibbs energy submodel. Finally, in Section 3, using different initial
concentration field perturbations, we discuss simulation results of a symmetric ternary mixture in
terms of the integral scale of the pair-correlation function and the separation depth for each component.
Conclusions are then presented.

2. Model Description

Below, we provide a brief summary of the governing equations for a diffuse-interface description
of partially miscible ternary liquid mixtures, given that a detailed derivation of those equations has been
presented elsewhere [2,26,30]. Consider a regular ternary mixture, whose component liquids have the
same molar density, ρ. This mixture can be modeled within a diffuse-interface description by assuming
that its free energy is the sum of a thermodynamic part and a nonlocal contribution [26,30–34], i.e.,

G = ρRT
∫

V
g̃ d3r with g̃ = g(x1, x2)−

a2

2
(∇x1 · ∇x2 +∇x1 · ∇x3 +∇x2 · ∇x3) , (1)

where g is the (dimensionless) thermodynamic (i.e., coarse-grained) bulk free energy density, T the
absolute temperature, V the volume, R the universal gas constant, while a is a characteristic length.
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Note that, since Equation (1) represents a coarse-grained expression of the free energy, the characteristic
length is in no way equal to the actual interfacial thickness (still a is representative, on the mesoscale, of
the typical interface thickness at local equilibrium). Assuming that the mixture has zero excess volume
of mixing and zero excess entropy of mixing, the simplest expression [28,29,35] for the thermodynamic
free energy density, g, corresponding to a perfectly symmetric, partially miscible ternary mixture, is
the sum of an entropic, ideal part, and an enthalpic (so-called excess) part, with

g = g0 + x1 ln x1 + x2 ln x2 + x3 ln x3 + Ψ(x1x2 + x1x3 + x2x3). (2)

Here, g0 is the free energy of each pure component, while xi (i = 1, 2, 3) denotes the molar
(and mass) fraction of the ith species, and Ψ is the Margules parameter corresponding to any one
component pair [35]. [Obviously, since we are considering an ideally, perfectly symmetric ternary
mixture, the Margules parameter for the (i, j) component pair must be equal to those for the remaining
pairs. Note that, for strongly nonideal systems (particularly for partially immiscible components when
there is no symmetry among the pure species), we have shown a derivation of the species balance
equations that incorporates NRTL as an excess Gibbs energy submodel [26], in place of the standard
one-parameter Margules correlation employed in Equation (2).] When the mixture finds itself in a state
of nonequilibrium, it evolves according to the equations governing dynamic processes, expressing
standard conservation principles [36]. Herein, we assume isothermal conditions and therefore ignore
the energy balance equation; consequently, the governing equations reduce to a pair of (nonreactive)
species balance equations, that are normally coupled to the Navier–Stokes equation (in addition to the
zero divergence constraint on the mass-averaged velocity that strictly applies to an isopycnic, regular
mixture). Nondimensionalizing each species conservation equation (as well as the Navier–Stokes
equation) based upon a diffusive scaling [37–41] gives rise to the so-called fluidity coefficient [42]

α ≡ RTa2

MWνD
, (3)

with MW and ν denoting the molecular mass and kinematic viscosity of each pure component,
while D denotes the (same) binary diffusivity for all component pairs. This dimensionless group
can be introduced as an inverse capillary number [43], while it can also be interpreted as a Peclet
number [33,34,38–41], i.e., the ratio of convective to diffusive mass fluxes in the species balance
equations. In fact, in previous works [33,34,44–49], we have noted that, in low-viscosity systems,
α is usually of order O(103 ÷ 106), while highly viscous mixtures (e.g., polymer melts and alloys)
correspond to a vanishing fluidity coefficient. In the latter case (which is the focus of the work
reported herein), the diffuse-interface model describes a diffusive (or antidiffusive) separation process
in the absence of flow, and the species balance equations assume the particularly simple form seen
earlier [26,30]:

∂x1

∂t
= ∇ · {−x1x2∇µ̃23 + x1(1− x1)∇µ̃13} , (4)

∂x2

∂t
= ∇ · {−x1x2∇µ̃13 + x2(1− x2)∇µ̃23} . (5)

These equations have been scaled based on the characteristic length a and the diffusive time a2/D.
The generalized chemical potential differences in Equations (4) and (5) can be readily obtained from
the Bakhuis relation [50], µ̃i3 = δg̃

δxi
(i = 1, 2). In particular, we find

µ̃13 = ln
x1

x3
+ Ψ(x3 − x1)−

a2

2
∇2 (x1 − x3) , (6)

µ̃23 = ln
x2

x3
+ Ψ(x3 − x2)−

a2

2
∇2 (x2 − x3) . (7)
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These relations, together with the equalities µ̃ij = µ̃ik + µ̃kj and µ̃ij = −µ̃ji, define all chemical
potential differences for a ternary system. Finally, it is worth reiterating that Equations (4) and (5)
constitute a system of fourth-order equations, which represents a generalization (specifically, a ternary
version of Model B in the taxonomy of Hohenberg and Halperin [51]) of the classical Cahn–Hilliard
equation to describe phase separation in binary mixtures [33,34,37–39,41,52–54].

3. Results and Discussion

Numerical methods employed herein for integrating the species balance equations above in
a periodic box are exactly the same as discussed in a previous work [26] and therefore will not
be repeated below. In fact, due to our assumption of periodic boundaries, initially we attempted
simulations based on a pseudospectral spatial discretization [30,38–41,49], in conjunction with an
adaptive temporal scheme (which had been successfully employed in simulations of dissolution or
growth of a multicomponent drop into the continuous phase of another liquid [26,30]). Subsequently,
even though our pseudospectral code achieved a stable integration, we realized (based on numerical
tests) that a pseudospectral discretization does not preserve the scalar boundedness of the concentration
fields. Consequently, the temporal evolution of the separation depth for some component usually
went out of bounds, since at some locations in the computational domain the mass fraction for that
component became slightly larger than one, or less than zero (or both) for a significant fraction
of simulation time. However, assuming the same explicit adaptive temporal scheme as in our
pseudospectral code, we also found that issues of scalar boundedness could be circumvented by
changing the spatial discretization from pseudospectral to finite volume. (Incidentally, we chose a
standard finite volume discretization based on a cell-centered variable arrangement, and using central
differencing for both interpolation and differentiation; consequently, our scheme is second-order
accurate in space since it relies on a uniform Cartesian grid.) As to the time marching, we also noticed
that a stable integration could be achieved using the standard fourth-order Runge–Kutta scheme.
Finally, we chose this last temporal scheme (in conjunction with a standard finite-volume discretization)
in our production runs for calculating the results presented below.

In our simulations we chose Ψ = 4, since that was the value for the Margules parameter in
the triphase separation simulation of an ideally perfectly symmetric ternary mixture reported by
Park et al. [2]. In fact, for Ψ = 4 > 8

3 the phase diagram for the mixture is a tie triangle [1], whose
vertices represent the compositions of three coexisting phases (see Figure 1) at local equilibrium. If we
let xξ = (x, x, 1− 2x), xη = (1− 2x, x, x), and xζ = (x, 1− 2x, x), the coordinates for the vertices are
readily found by observing that all (thermodynamic) chemical potential differences reduce to either a
trivial identity or the following relation

µth
21 = ln

x
1− 2x

+ Ψ(1− 3x) = 0 =⇒ x∗ = 0.023. (8)

Hence we find xξ = (0.023, 0.023, 0.954), xη = (0.954, 0.023, 0.023), and xζ = (0.023, 0.954, 0.023).
We investigate (isothermal) triphase separation in an ideally perfectly symmetric and highly

viscous (zero fluidity) ternary mixture, which is instantaneously quenched from a stable state having
the initial composition xA =

(
1
3 , 1

3 , 1
3

)
in the one-phase region to an unstable state (at a smaller

temperature) corresponding to point A in the phase diagram in Figure 1. Assuming an instantaneous
quench to a uniform temperature, the initial field for each mass fraction is specified as random
(delocalized) concentration fluctuations superimposed on a uniform xi,0 = 1

3 composition. From
this simulation (denoted as case I, more precisely defined below), we show isosurfaces of phase η

vs. those for phase ξ at one particular instant in time in Figure 2, suggesting that phase separation
for component 3 is faster than that for component 1. For a more quantitative characterization of the
the phase-separation kinetics in such a highly viscous system, we looked at the temporal evolution of
three characteristic length scales of single-phase microdomains, defined as
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Li(t) =
1

x2
i,rms

∑
k

|x̂i(k)|2
|k| (i = 1, 2, 3), (9)

with x̂i(k) denoting the Fourier coefficient for the ith mass fraction at wavevector k. In other words, Li
is the same as the the integral scale of the pair-correlation function associated with the ith mass fraction.
As can be seen (Figure 3), at first the integral scales for different components are essentially coincident as
they undergo a rapid transient with an undershoot behavior that delays phase separation, after which
the three phases seem to grow together, with a coarsening rate that could be expressed approximately
as Li ∼ τ0.07 (where τ ≡ 10−5t); note, however, that there does not seem to be enough of a scaling range
for this power law to be physically meaningful. Finally, at about τ ≈ 4× 10−4, a symmetry-breaking
event occurs as component 3 continues to separate quickly, while phase separation for the other two
components seems to be delayed. From our simulation results, this behavior seems to be robust, in
that very similar temporal histories are obtained for the reciprocal first and second moments of the
structure factor associated with the ith mass fraction, i.e.,

λ
(1)
i =

∑k |x̂i(k)|2

∑k |x̂i(k)|2|k|
, and λ

(2)
i =

[
∑k |x̂i(k)|2

∑k |x̂i(k)|2|k|2

]1/2

. (10)

We also looked at the temporal evolution of the separation depth for each component, defined as

si =

〈
xi(r)− xi,0

xi,eq(r)− xi,0

〉
, (11)

where

xi,eq(r) =

{
1− 2x∗ if xi(r) > xi,0,

x∗ if xi(r) < xi,0.
(12)

Clearly, this definition is the same as that employed for studying phase separation in a binary
system [38,39,41,49,52,54–56]; in fact, the reason that the same definition can be brought to bear on a
ternary system is that, based on the mixture phase diagram in Figure 1, both phases in any one pair of
coexisting phases at equilibrium possess the same xi,eq (with i denoting the component at the opposite
vertex in the phase diagram). As can be seen (Figure 4), phase separation for component 3 is faster
than that for the remaining two components, thus confirming the (qualitative) conclusions that were
reached by observing Figure 2. In Figure 4 we can see that s3 at any instant in time is larger than s1

and s2, but for a very small subrange of simulated times wherein all three separation depths show
a very rapid increase to their steady state values. In fact, in this case (I) the initial fields for the first
two components were taken to be numerically identical in order to have s1 = s2 at the initial time;
consequently, conservation of mass necessarily implies s3(0) > s1(0) [in fact, it is easily seen that
s3(0) ≈ 2s1(0)].
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A

3 1

2

Figure 1. Phase diagram for an ideally perfectly symmetric ternary mixture with Ψ = 4. Point A denotes
an (unstable) equilibrium state [with xA = ( 1

3 , 1
3 , 1

3 )] corresponding to the initial mixture composition.

Figure 2. Isosurfaces of phase η (x1 = 0.95, top) vs. those for phase ξ (x3 = 0.95, bottom) at the same
(non-dimensional) time τ = 1.43× 10−3 from 3D simulation (case I) of a ternary mixture with Ψ = 4
on a 1283 grid.
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Figure 3. Integral scales vs. time (diffusive time units) from 3D phase separation simulation (case I) of a

perfectly symmetric ternary mixture with Ψ = 4 and global composition xA =
(

1
3 , 1

3 , 1
3

)
on a 1283 grid.
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Figure 4. Separation depths vs. time (diffusive time units) from 3D phase-field simulation (case I) of a

perfectly symmetric ternary mixture with Ψ = 4 and global composition xA =
(

1
3 , 1

3 , 1
3

)
on a 1283 grid

with s1(0) = s2(0) and s3(0) ≈ s1(0) + s2(0).

In another simulation (denoted as case II below), the initial conditions were generated such that
the random noise for component 2 exactly canceled that for 1 at the initial time; this necessarily implies
s3(0) = 0, along with s1(0) = s2(0). In this case (see Figure 5), phase separation for component 3 is
slower than that for the remaining two components, given that the separation depth for component 3
remains smaller (and in fact close to zero) than that for 1 and 2 for some time after the initial time, after
which all separation depths show a very rapid increase to their steady state values. Once again, even
though s1 and s2 remain identical for all time, the steady state value for 3 turns out to be slightly larger
than that for the first two components. Also note that in this simulation the temporal evolution of the
integral scales is very different from that corresponding to case I; in fact, even though the integral scales
for 1 and 2 are essentially identical for all time (see Figure 6), the integral scale for 3 is systematically
smaller than that for 1 (or 2) while showing a similar decrease–increase behavior. Once again, this
temporal evolution seems to be robust, in that very similar temporal histories are also displayed by the
reciprocal first and second moments of the structure factor.
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Figure 5. Separation depths vs. time (diffusive time units) from 3D phase-field simulation (case II) of a

perfectly symmetric ternary mixture with Ψ = 4 and global composition xA =
(

1
3 , 1

3 , 1
3

)
on a 1283 grid

with s1(0) = s2(0) and s3(0) = 0.
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Figure 6. Integral scales vs. time (diffusive time units) from 3D phase separation simulation (case II) of

a perfectly symmetric ternary mixture with Ψ = 4 and global composition xA =
(

1
3 , 1

3 , 1
3

)
on a 1283

grid with s1(0) = s2(0) and s3(0) = 0.

Summarizing, in simulation case I [such that s3(0) > s1(0) = s2(0)] based on the temporal
evolution of the integral scales, it seemed as though a symmetry-breaking event took place after which
the integral scale vs. time dependences showed a different phase-separating behavior for components
1 and 2 as opposed to 3. However, looking at the separation depth in this case reveals that phase
separation for component 3 is always faster than that for the first two components, implying that there
can be no symmetry among the three components at any instant in time. A similar conclusion is arrived
at by looking at simulation case II [such that 0 = s3(0) < s1(0) = s2(0)], wherein phase separation for
component 3 was always slower than that for the remaining components. Furthermore, in this case the
integral scale for 3 was always less than that for 1 (or 2), providing even stronger evidence against any
presumption of symmetry among the three components during a triphase segregation process.

As a final note, it should be acknowledged that, even though a perfectly symmetric ternary mixture
does not exist in practice, our phase-field ternary mixture model has been successfully employed to
simulate the so-called continuous-phase/dispersed-circular/dispersed-circular (a.k.a. dual discrete
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particle) phase morphology for a phase-separating symmetric polymer-polymer-polymer system [57].
Although improved agreement between model predictions and experimental results of phase
morphology for a polystyrene/PMMA/polybutadiene blend was obtained in simulations that allowed
for different diffusivities and Flory parameters [58], simulation results that instead assumed equality
between all diffusivities, Flory parameters, and chain lengths showed that a phase-field ternary mixture
model [59] is able to capture the main features of the previously noted phase morphology [58,60].

4. Conclusions

We have presented 3D numerical results of an isothermal phase-field ternary mixture model
in application to a symmetric and highly viscous (zero fluidity parameter) three-component liquid
mixture as it separates into three phases after a thermal quench from a stable state in the one-phase
region. In particular, we have shown the temporal evolution of basic segregation statistics such as
the integral scale of the pair-correlation function and the separation depth for each component. In
fact, for a ternary system the latter quantity can be introduced using the same definition of separation
depth as employed for measuring the phase separation rate in a binary system. In addition, we have
shown that the triphase segregation process considered herein is inherently asymmetrical since it
can occur in either one of two ways: depending on the details of the noise used for building the
initial conditions, phase separation for the third component will be faster or slower than that for the
remaining components.
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