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Abstract: The Seebeck effect is derived within the thermodynamics of irreversible processes when
the generalized forces contain the magnetic term M∇B. This term appears in the formalism when
the magnetic field is treated as a state variable. Two subsystems are considered, one representing
atomic magnetic moments, and the other, mobile charges carrying a magnetic dipole moment.
A magnetic contribution to the Seebeck coefficient is identified, proportional to the logarithmic
derivative of the magnetization with respect to temperature. A brief review of experimental data
on magneto-thermopower in magnetic metals illustrates this magnetic effect on thermally-driven
charge transport.
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1. Introduction

Thermoelectricity continues to be a subject of intense research. As energy is clearly a global
issue, some scientists are motivated by the search for the largest possible Seebeck coefficient [1,2],
and examine the potential of topological metals [3], while others seek to optimize the material ZT
coefficient to attain a thermal efficiency which would be sufficient for widespread applications [4,5].
The anomalous Nernst effect is now an active field of research [6–8]. As a recent textbook indicates,
there are still puzzles in thermoelectricity that need proper theoretical underpinning [9,10], though
much progress has been made in describing transport in, for example, strongly correlated electron
systems [11–13].

Thermoelectricity has also gained a lot of interest in fundamental research, thanks to the advent
of spin caloritronics, the field of study of the cross effects between spin, charge, and heat transport.
Intense research was sparked by the discovery of the spin Seebeck effect [14–16]. While the field has
somewhat matured and reviews have appeared [17–19], its latest developments address, for example,
time-resolved measurements [20], and new topics such as spin wave spin current [21], spin currents in
antiferromagnets or in dichalcogenides [22,23].

Thermodynamics continues to be a method by which to investigate novel effects, including
thermally-driven spin accumulation [24,25]. In this paper, we apply the thermodynamics of irreversible
processes and find a connection between thermoelectricity and magnetization dynamics. The idea
that magnetization dynamics contributes to thermopower is of course not new, but it was analyzed
starting from a microscopic picture. Herzer, for example, analyzed the thermopower of amorphous
ferromagnets [26]. When treating the case of temperatures near Tc, he included scattering of electrons
with local magnetic moments, following the s-d model of Kasuya [27]. Thus, he found a contribution
to the thermopower proportional to a correlation function of the local moments.
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The use of correlation functions to calculate thermopower was described by Richter and
Goedsche [28]. Their approach could account for experimental data on the intermetallics YCo12B6

and GdCo12B6 [29]. Korenblit used the s-d picture and Boltzmann transport equation to describe
conduction in disordered ferromagnets. He inferred that the Seebeck coefficient reached a maximum
at some temperature below Tc [30]. Kettle et al. pointed out that the s-d model may be insufficient
and that scattering by magnons should be taken into account [31]. These authors pointed out that the
magnetic contributions could be better calculated in the framework of statistical thermodynamics of
irreversible processes [32,33].

2. Thermodynamics with Magnetic Dipoles and Fields

When electromagnetic fields are treated as state variables [34], the entropy source density contains
a term of the form

ρs =
1
T ∑

α

jα · Fα (1)

where jα designates either the vectorial entropy current density, or the current density of the substances
A, B, ... i.e. α = s, A, B, .... Here, we will consider two substances only, labelled A and B. Each substance
carries a magnetic moment mA and mB per mole. If nA(r) is the number density of substance A at
position r, then the magnetization of substance A is given by MA = nA(r)mA and likewise for B.

In order to ensure the positivity of ρs, we write

jα = ∑
β

Lα,β Fβ (2)

where the Onsager rank-2 tensors Lα,β satisfy the condition

1
T
{Lα,β} ≥ 0. (3)

In Reference [34], we showed that in a metallic ferromagnet, in the absence of convection, intrinsic
rotations and electric dipoles, FB is given by

FB = −∇µ̄B + mB∇B (4)

where µ̄B = µB + qBV is the electrochemical potential of substance B, with qB the charge per mole of B,
V the electrostatic potential, M the magnetization, and B the magnetic induction field. The notation
F∇G is to be understood as, e.g., (F∇G)x = ∑i Fi∂xGi. One consequence of this extra term in the
generalized force is a damping term in the Landau–Lifshitz equation which is proportional to the
temperature gradient [35]. The force term mB∇B is the equivalent for a continuum description to the
force that a magnetic dipole experiences in a non-uniform magnetic induction field (Stern–Gerlach
experiment). It is also known as the Kelvin force [36].

From Equation (2), we have the phenomenological transport equation

jB = −LBs∇T + LBBFB (5)

where we have the usual contribution of the temperature gradient, Fs = −∇T, and a contribution of
FB to the current jB. We have omitted the cross-effect described by LBA for the following reason. Here
below, we consider substance A as the core electrons which are responsible for the atomic magnetic
moments of a ferromagnetic metal. Therefore, the magnetic moments of A are considered fixed and
LAB can be assumed to vanish, since it describes the contribution of the generalized force of B to the
current of A. Because of Onsager’s reciprocity relations, this implies also that LBA = 0.
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3. Thermolectric Effect

Here, we want to analyze thermoelectric properties, namely, the Nernst and the Seebeck effects.
The coefficients that characterize these effects are measured in the absence of current. Hence, we have
jB = 0.

We assume that the magnetic induction field B varies spatially only because a temperature
gradient is applied to the sample. We take the coordinate z along the temperature gradient. Thus
we have

∇T = ∂zT ẑ (6)

and

mB∇B =

(
mB ·

∂B
∂T

)
∂zT ẑ. (7)

As is customary in thermoelectricity, we consider situations where the temperature changes over
distances that are long compared to a characteristic relaxation length scale of substance B, such as a
spin diffusion length. Then, there is no spatial variation of the chemical potential, ∇µB = 0. Under
these conditions, Equation (4) and Equation (5) yield

∇V = − 1
qB

L−1
BBLBs (∂zT ẑ) +

1
qB

(
mB ·

∂B
∂T

)
∂zT ẑ. (8)

Since the first term is expressed in terms of a rank-2 tensor, it may include a Nernst effet. On the
other hand, the second term, which is due to the magnetic contribution to the force FB, contributes
only to the Seebeck effect.

Let us consider that substance B represents the conduction electrons of a ferromagnetic metal.
The magnetic dipoles mA constitute the main contribution to the magnetization,

M = nA mA. (9)

By analogy with the s-d model [37–40], we assume from here on that the magnetic dipoles mB
experience the exchange field due to the A electrons. Thus, we write

B = λx M (10)

where λx is assumed to have the same value everywhere.
Since the spatial variation of B takes place over a large length scale, the magnetic moments

mB track the magnetization M. When approaching the Curie point, the saturation magnetization
Ms = |M| depends on the temperature T. Therefore, we write

mB∇M = mB
∂Ms

∂T
∂zT ẑ. (11)

Under these conditions, Equation (8) implies a magnetic contribution to the Seebeck effect,

∂zV|M = − 1
qB

(
−λx mB

∂Ms

∂T

)
∂zT. (12)

Therefore, this effect depends critically on how much the magnetization M depends on
temperature. The corresponding Seebeck coefficient εM is given by

εM =
∆Ex

qB

(
−1
Ms

∂Ms

∂T

)
(13)

where ∆Ex is the exchange energy,
∆Ex = mBλx Ms. (14)
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We have used the usual sign convention for the Seebeck coefficient, according to which ∂zV =

−εM∂zT. As the exchange constant λx in Equation (10) is positive, the magnetic contribution in
Equation (13) to the thermopower is negative if qB < 0 (electrons), since ∂Ms/∂T < 0.

4. Experimental Evidence

Let us estimate the order of magnitude of the contribution in Equation (13) to the Seebeck
coefficient. The exchange energy ∆Ex is of the order of 0.05 eV [38]. The logarithmic temperature
derivative of Ms can be estimated by assuming a temperature dependence of the form Ms(T) =

Ms(0)
√

1− T/TC where TC is the Curie temperature. Thus, we write

Ms(T) = M00
√

TC − T ⇒ − 1
Ms

∂Ms

∂T
=

1
2

1
TC − T

. (15)

At 90% of TC, this implies −(1/Ms)∂Ms/∂Ms = 5/TC. If TC= 500 K, Equation (13) yields
εM = 0.5 mV/K.

A Seebeck coefficient was observed to peak near the Curie transition of a manganite and reached
this order of magnitude [41].

A maximum in the thermopower at the Curie temperature was also observed in zinc-doped
Nickel ferrites [42]. The maximum value was quite large, reaching (−5000 µV/K). However, the
authors’ analysis brings out the possibility that this effect may be due to a peak in the charge density.
Thus, this example serves as a warning that, while thermodynamics points to the possibility of a
magnetic contribution to the Seebeck effect, one cannot take every maximum in the Seebeck coefficient
at a phase transition as evidence of this mechanism.

A very large Seebeck coefficient(−5000 µV/K) was obtained for Nickel powders embedded in an
insulating matrix, when the temperature was such that the thermal expansion made the material pass
the percolation threshold of the material [2]. Unfortunately, the authors did not provide any data on
magnetic susceptibility as a function of temperature, but it is likely to peak near the threshold [43].

So far, we have assumed a simple mean field model for the magnetization as a function of
temperature. A first correction, which has been used for itinerant ferromagnets, consists in applying a
correction to the exchange energy in Equation (14) of the form (Reference [44] (p. 245))

mBλx Ms = ∆Ex(1− α
T
Tc

). (16)

The coefficient α−1 amounts to a corrective factor for the Curie temperature predicted by the
Stoner model, given by α = D(EF)I − 1, where D(EF) is the density of states at the Fermi level, I
the exchange interaction of the Stoner model. Given the energy dependence in Equation (16), the
maximum of the Seebeck coefficient is found at a temperature T given by

T
Tc

=
1 + α

2α
. (17)

Let us consider that the Stoner correction brings the predicted value for the critical temperature
from TC to TC/2, meaning that α = 2. Then, we predict a maximum of the Seebeck coefficient
at T/Tc = 3/4. It turns out that the maximum is somewhat inferior to the estimate given by
Equation (17). It was observed in a series of NiFeB alloys that T/Tc ranged from 0.8 and 0.4 [31]. For
Ni–Fe alloys, the maximum approaches a ratio T/Tc closer to 1/3 (Reference [45], Figure 4).

5. Conclusions

The thermodynamics of irreversible processes is a powerful tool to discern a great variety of
cross-effects in transport phenomena. It constitutes a framework within which to define a variety of
spintronics effects [46]. Here, we make use of an earlier development in which we had treated the
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magnetic induction field as a state variable [34]. Thanks to this development, an additional term M∇B
had been found in the generalized force associated with the matter current density.

Here, we show that this magnetic term implies a magnetic contribution to the Seebeck effect.
When a temperature gradient is imposed on a sample, this magnetic term depends on ∇T provided
the magnetization M depends on temperature. When we impose the condition of zero current
corresponding to a thermoelectric power measurement, we find this term in the expression of the
thermoelectric voltage.

We treat the case where the system is composed of two substances, A and B. In analogy with
the sd-model for ferromagnetic metals, we assume A to be fixed, carrying a magnetic moment, and B
to be mobile, experiencing the magnetic field due to A. We have assumed a vanishing contribution
of the general force FB to the current of A, i.e., LAB = 0, since A represented fixed moments in
our development.

We could extend our model further. If substance A was considered as supporting magnetization
waves, it would make sense to include the cross term LAB in the calculation of the current jB. This
would allow for a magnon contribution to the Seebeck effect.
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