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Abstract: In nonadditive systems, like small systems or like long-range interacting systems even in the
thermodynamic limit, ensemble inequivalence can be related to the occurrence of negative response
functions, this in turn being connected with anomalous concavity properties of the thermodynamic
potentials associated with the various ensembles. We show how the type and number of negative
response functions depend on which of the quantities E, V and N (energy, volume and number of
particles) are constrained in the ensemble. In particular, we consider the unconstrained ensemble in
which E, V and N fluctuate, which is physically meaningful only for nonadditive systems. In fact, its
partition function is associated with the replica energy, a thermodynamic function that identically
vanishes when additivity holds, but that contains relevant information in nonadditive systems.
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1. Introduction

Additivity can be defined in very simple terms for physical systems. In fact, a system is said
to be additive if, thought as the union of several parts, the energy of interaction between the parts
is negligible with respect to the total energy [1,2]. In other words, the total energy is the sum of the
energies of the different parts, i.e., the energy is additive. In additive systems, all of the extensive
quantities, in particular all the thermodynamic potentials and not only the energy, are additive, and,
as a consequence, these quantities are linear homogeneous functions of the system size; more precisely,
the thermodynamic potentials can be expressed as functions of the intensive variables multiplied by
an extensive variable related to the system size, like the number of constituents N or the volume V.

Small systems [3—6] are obvious examples of nonadditive systems, i.e., systems composed of
a number of constituents which is not very large. However, a very important class of nonadditive
systems is represented by systems with long-range interactions including, for instance, self-gravitating
systems [7-14], plasmas [15,16], or fluid dynamics [17,18]. At variance with small systems with
short-range interactions, that become additive by increasing the number of constituents, systems with
long-range interactions are never additive, independently from their size. It is a simple matter to see
that a necessary condition for additivity in macroscopic systems is that the interaction between the
constituents decays more rapidly that the inverse of the d-th power of the distance, where d is the
dimension of the space where the system is embedded.
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In nonadditive systems, the thermodynamic potentials are no more linear homogeneous functions
of extensive variables; however, this does not prevent the application of the formalism and of
the computational tools of thermodynamics and statistical mechanics. The statistical mechanics
formulation requires proper generalizations [1,2] to take into account the nonnegligible interaction
between parts of the system, but also a purely thermodynamic description, stemming from the
formalism introduced by Hill for small systems [3], is possible [19].

A relevant physical peculiarity of nonadditive systems is that their possible equilibrium states
depend on which thermodynamic quantities are held fixed. These fixed quantities are usually called
control parameters (e.g., the total energy E is a control parameter in an isolated system, while the
temperature T is a control parameter in a system kept in contact with a heat bath at that fixed
temperature); the other thermodynamic quantities fluctuate around their equilibrium values. Using
the example of the total energy and the temperature, in an additive system, the following holds at
equilibrium: fixing the total energy to a value E and finding that the expected value of the temperature
is T, we know that fixing the temperature at T = T, will make the expected value E. of the energy
equal to E (this holds in the so-called thermodynamic limit in which N and V tend to infinite). In other
words, the equilibrium states do not depend on which control parameters we use to define them.
In the statistical mechanics formalism, this is expressed by the equivalence of the ensembles. This
equivalence is in general absent in nonadditive systems, and physically this implies that there are
equilibrium states defined by given control parameters that do not exist if one chooses another set of
control parameters. This will be stated in more precise terms later.

Ensemble inequivalence is related to the occurrence of negative response functions, this in turn
being related to anomalous concavity properties of the thermodynamic potentials associated with the
various ensembles. In this paper, we focus exactly on this issue, making a survey of all the statistical
ensembles and thermodynamic potentials, showing in each case the response function that can have a
negative value. We stress that ensemble inequivalence can give rise to negative response functions,
but that this is not necessary, since there can be inequivalence without negative response functions.
We will be more precise about this issue in the following. For the moment, we underline that a negative
response function implies ensemble inequivalence, while ensemble inequivalence does not necessarily
imply a negative response function.

The paper is organized as follows. In Section 2, we show how the replica energy can be introduced,
a relevant thermodynamic function for nonadditive systems, and present the associated statistical
ensemble that is treated in more detail later. In Sections 3 and 4, we describe the relation between
ensemble inequivalence and the anomalous concavity properties and response functions; the latter
section is dedicated to the ensemble associated with the replica energy, while the former section
concerns the other ensembles. In the last section, we present a discussion with concluding remarks.

2. Thermodynamics, Replica Energy, Statistical Ensembles

To obtain the thermodynamic properties of a system from the principles of statistical mechanics,
one considers a great number .4 of independent replicas of the system, namely, a statistical ensemble.
The replicas are identical in nature, but they differ in phase, that is, in their condition with respect to
configuration and velocity [20]. If the energy, entropy, volume and number of particles of the system
under consideration are E, S, V and N, respectively, the corresponding quantities of the ensemble are
Ey = ANE, St = NS, Vi = A4V and Ny = 4 N. Energy variations in the ensemble satisfy the general
thermodynamic relation [3]

dE; = TdS; — PAV; + udN; + £d.4, (1)

where T is the temperature, P is the pressure exerted on the boundary of the systems, and u is the
chemical potential of a single system. The last term on the right-hand side of Equation (1) accounts for
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the energy variation when the number of members of the ensemble .4 varies, holding S, Vi and N¢
constant. The replica energy &, formally given by

oE; )
s = ( , @
0N ) s VN

vanishes if the system is additive; this can be derived using the fact that for additive systems the
extensive variables are linear homogeneous functions of the system size [19]. The physical reason
why the replica energy & does not vanish for nonadditive systems can be traced back to the following
argument. By changing the size of a macroscopic nonadditive system, its bulk properties in general
change, while this does not occur, as it is well known, for an additive system (that is why the extensive
variables are linear homogeneous functions of the systems size for additive systems). The replica
energy is a measure of the energy associated with this change and Equation (2) is the mathematical
expression of this fact.

In the case in which all single systems properties are held constant, Equation (1) can be
written EdA” = TSd A" — PVd.A + uNdA + &d4, which can be integrated from 0 to .4 to give
Ei = TSt — PVi + uNi + &.4. Dividing by ./, the latter equation gives

E=TS—PV+uN+&, 3)
which relates the properties of a single system with the replica energy. By differentiation, one obtains:
dé& = dE — TdS — SdT + PdV + VdP — udN — Ndpu. 4)

Thus, one can exploit the first law of thermodynamics, expressed by
dE = TdS — PdV + udN, ®)

to obtain
d& = —SdT + VdP — Ndu. (6)

The above equation generalizes the usual Gibbs-Duhem equation for additive systems, which is
obtained by setting to zero the left-hand side of Equation (6). Since, in general, the usual Gibbs—-Duhem
equation does not hold for nonadditive systems [21], there exists the possibility of taking T, P and y as
independent variables, a fact that is forbidden when & = 0. Moreover, as can be seen from Equation (3),
we highlight that when & # 0, the Gibbs free energy G = E — TS + PV is not equal to uN.

Depending on the control parameters defining the state of the system, certain quantities fluctuate
and other quantities are fixed. Distinguishing between these two kinds of quantities is relevant here,
and it is convenient to set now the notation that will be used to indicate such a distinction when
necessary: if the energy E, volume V, or number of particles N are not control parameters, they are
fluctuating quantities and will be denoted with a bar by E, V, and N, respectively. Equations (3), (5),
and (6) are general relations at a thermodynamic level and have to be understood for quantities with
or without bars.

We will refer to the variables E, V, and N as constraint variables, and ensembles in which at
least one of the constraint variables is a control parameter will be termed as constrained ensembles.
The thermodynamic properties of an isolated system are obtained from a completely constrained
ensemble in which all the constraint variables are control parameters; as is well known, this is the
microcanonical ensemble. On the other hand, if none of the constraint variables is a control parameter,
the system is said to be completely open and the associated ensemble is the unconstrained ensemble.

We have reminded above that ensemble inequivalence is associated with the fact that,
for nonadditive systems, the possible equilibrium configurations depend on the specific control
parameters used to define its state. Therefore, the thermodynamics of the system must be necessarily
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derived from the characteristic function (the entropy or the free energies) in the ensemble associated
with the particular set of control parameters under consideration. In doing so, it is in general possible
to obtain the replica energy from the corresponding characteristic function, except in the case where the
replica energy itself is the characteristic function corresponding to a particular set of control parameters.
In fact, the replica energy is the free energy associated with the unconstrained ensemble where the
corresponding control parameters are T, P and y [22], namely,

&(T,P,u) = —kgTInY(T, P, u), (7)

where -
Y(T,P,u) = /dE/dV Y w(EV, N)e(E+PV—kN)/(ksT) (8)
: N=0

is the unconstrained partition function, w(E, V, N) being the microcanonical density of states, which is
defined below, and kg the Boltzmann constant. In Section 4, we will come back to the relation between
the microcanonical density of states (and the associated microcanonical entropy) and the replica energy.

The replica energy can indeed be explicitly computed in a few physical examples. For instance,
given the potential energy

W= % [ dxnxe), ©)

where n(x) is the particle density and ®(x) is the two-body potential of a system embedded in a
d-dimensional space, the replica energy can be evaluated to be [23]

&=-W+pPOy, (10)

where P() = P — NT/V is the excess pressure due to the interactions. In the particular case in
which ®(x) is a long-range potential decaying as 1/|x|* with 0 < a < d, one has [21] & = —(1 —
a/d)W, showing that the replica energy vanishes when & — d, which corresponds to the limit of an
additive system.

Another remarkable example is the extended Thirring model [22], representing the physics of
self-gravitating systems, for which the potential energy is

W = —v(N3 4+ bN?), (11)

where Nj is the number of particle inside a given volume V; and Nj are those outside (v and b are
parameters of the model). The expression of the replica energy & is given by Equation (10) and can be
written as

& = v(N3 +bN?) + PVy — NoT. (12)

3. Response Functions and Ensemble Inequivalence

In this and in the next section, we analyze the relation between ensemble inequivalence and the
occurrence of negative response functions. Ensemble inequivalence can be studied with the help of
the properties of the Legendre—Fenchel transformation; this approach, already well documented for
constrained ensembles [24-26], can be extended to the case of the unconstrained ensemble. It is the
Legendre—Fenchel transformation that allows one to connect ensemble inequivalence and negative
response functions. In this paper, we are particularly interested in the inequivalence between the
unconstrained ensemble and the other ensembles. However, it is instructive to consider first the
inequivalence between constrained ensembles; this will be done in this section, showing the associated
anomalous response functions. The unconstrained ensemble will be considered in Section 4. In the
following, we use units in which the Boltzmann constant kp is set to unity.
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To begin, we consider the microcanonical and canonical ensembles for a system described by
the Hamiltonian H(p, q) with p = (p1,...,pn) and ¢ = (q1,...,qN), where p; € R? and g; € R?
are the momentum and position of particle i, respectively, and d is the dimensionality of the system.
Just for completeness, we remind readers that, while the constraint variables E, V and N are the control
parameters of the microcanonical ensemble, the control parameters of the canonical ensemble are T,
V and N. The microcanonical density of states is given by

1
w(E,V,N) = NN /5(5 — H(p,q))*NT, (13)
where  is a constant and d?NT = I—L‘IL a4 piddqi, while the canonical partition function is
1 _
Z(T,V,N) = T /e H(pa)/T 2N (14)

Taking advantage of the Dirac ¢ in (13), after posing Z = e~/

function as

, we rewrite the canonical partition

o~ FBV.N) _ /dEw(E, V,N)e bE — /dE eS(EV.N)—BE (15)

with B = 1/T being the inverse canonical temperature, 7 = BF the rescaled Helmholtz free energy,
and S = S(E, V, N), the logarithm of the density of states w, the microcanonical entropy. In the large
N limit, we can compute the integral on the right-hand side of Equation (15) using the saddle-point
approximation and write

F(B,V,N) :irE1f[[3E—S(E,V,N)]. (16)

We thus obtain the rescaled Helmholtz free energy as the Legendre—Fenchel transform of the
microcanonical entropy with respect to the energy [1,2,24-26], which reduces to the usual Legendre
transformation if the entropy is differentiable and concave in E at constant V and N.

On the one hand, the Legendre-Fenchel transformation of any function, as defined in (16),
is always a globally concave function [26]. This very remarkable property guarantees that the rescaled
free energy F is always globally concave with respect to 5. For convenience, we recall in Appendix A
the definition of locally and globally concave (and convex) functions, of concave (and convex) envelope,
together with some properties of the Legendre-Fenchel transformation and its relations with concave
functions. In the following, we will refer to these definitions and relations several times, therefore the
reader not familiar with them should read Appendix A at this point. Using that

E = (a]:) , (17)
9B v
the concavity of F with respect to f means that
oE 02
(), (),
B/vn  \B vy
which ensures that the response function
oE
== > 19
con=(57),, 20 19)

that is, the heat capacity, is a nonnegative quantity in the canonical ensemble. This statement is valid
regardless of the differentiability of F. If F is twice-differentiable, then Cy y is continuous; otherwise,
it has discontinuities, or it can even diverge, if F is not differentiable, for the values of f where the
derivative of this function is not continuous; however, the inequality in Equation (19) is always satisfied
in the canonical ensemble, since F is always globally concave. For additive systems, the heat capacity
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is a nonnegative quantity also in the microcanonical ensemble (furthermore, it coincides with that
in the canonical ensemble), since for these systems it can be proved that the microcanonical entropy
S(E,V, N) is globally concave with respect to E [27] and, as remarked in Appendix A, globally concave
functions coincide with their concave envelope. Actually, it can be proved that, for additive systems,
S(E,V, N) is globally concave also with respect to V, and, in addition, it is globally completely concave
in the (E, V) plane [27]. On the other hand, the lack of additivity can induce the lack of global concavity
in the microcanonical entropy as a function of the energy. Hence, the quantity

1 (0T 2 (9%
Cvn (aE)V,N = <aEZ>V,N 20

can be negative in the microcanonical ensemble (hereafter, we use, for simplicity, the same symbol to
represent the response functions in the different ensembles). Referring to Figure A1l in Appendix A,
we have a negative microcanonical heat capacity Cy y for a range of E values if the entropy has a
behavior similar to that of the upper curve or the middle curve; if the behavior is similar to that of
the lower curve, the heat capacity is positive except for the E value where the cusp occurs, and where
it is not defined. Note that the middle curve presents both features shown separately by the other
two curves: it has a range of E where Cy y is negative and also a point of discontinuity. In all these
cases, the microcanonical entropy does not coincide with its concave envelope; its Legendre-Fenchel
transform, i.e., the function F(B,V, N), will have at least a point g, for the given V and N values,
where its first derivative with respect to 5 is not defined (see Appendix A). Thus, also the associated
response function, the heat capacity, is not defined there. This point marks the occurrence of a first order
phase transition in the canonical ensemble. We remark that, apart from such points, the canonical heat
capacity (19) is perfectly defined and always positive. Negative heat capacities in the microcanonical
ensemble can occur since they are not forbidden by any fundamental requirement. In addition,
according to equation (19), equilibrium states with negative heat capacity cannot be realized if the
system is put in contact with an infinite thermal bath (canonical ensemble). It is therefore clear that
states associated with energy values where the entropy does not coincide with its concave envelope
have no correspondence in the canonical ensemble.

To summarize the main result, if the microcanonical entropy does not coincide with its concave
envelope with respect to E, the microcanonical and canonical ensembles are not equivalent [1,2,24-26,28].
In this case, the function F presents at least a point of discontinuous derivative with respect to g,
associated with a first order phase transition. The function F has a discontinuous derivative with respect
to § also in the limiting case where the microcanonical entropy does coincide with its concave envelope,
but the latter is a linear function of the energy in a given interval. This case has been referred to as
“partial equivalence” [29] because there is equivalence but not one-to-one: a single value of  corresponds
to a whole interval of values of the energy. This may happen also in additive systems and indeed it
happens whenever the system undergoes a discontinuous phase transition, e.g., when there is a change
of state like a liquid—gas phase transition.

It is useful to stress the physical reason that permits having a negative heat capacity in the
microcanonical ensemble, while this is not allowed in the canonical ensemble. In the microcanonical
ensemble, the energy is fixed, and it can be given a value belonging to the energy range of convexity.
In the canonical ensemble, the energy can fluctuate, and it can be easily seen that, if a system at a given
energy E in the energy range of convexity, with expected value of the temperature equal to T, is put in
contact with a heat bath at temperature T = T, it is unstable with respect to energy fluctuations, and it
will acquire an expected value of the energy where the associated temperature is also T, but that it is
located in an energy range of concavity of the microcanonical entropy. A state with an energy where
the microcanonical entropy is locally concave, but that does not belong to the range where it coincides
with its concave envelope, is metastable when put in contact with a heat bath at the corresponding
temperature T, i.e., it is stable with respect to sufficiently small energy fluctuations, but not with
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respect to general fluctuations; namely, it is not globally stable and then it cannot be defined as an
equilibrium state [1].

In the microcanonical ensemble, nonadditive systems could exhibit a convex region in the entropy
as a function of the other constraint variables, V or N, or, more generally, ranges where the entropy does
not coincide with its concave envelope with respect to one or both of these variables (while for additive
systems the entropy is globally concave with respect to V and N). For those variables, such anomalous
behavior is inherited by the canonical ensemble, since in this case both V and N are control parameters
as well, and the Legendre-Fenchel transformation does not involve them. However, we point out
the following. While “normal” behavior of the microcanonical entropy S(E, V, N) is represented by
global concavity with respect to V and N, “normal” behavior of the rescaled Helmholtz free energy
F(B,V,N) (or of the free energy F(B, V, N)) is represented by global convexity with respect to these
variables, since, in the Legendre-Fenchel transform (16), the microcanonical entropy appears with
the minus sign. Thus, in nonadditive systems where the microcanonical entropy can have ranges of
convexity in V and/or in N, correspondingly, the Helmholtz free energy will have ranges of concavity
in Vand/orin N.

Let us now turn to the grand canonical ensemble. In this ensemble, in addition to the energy,
the number of particles is also not constrained. The control parameters of this ensemble are y, T and V.

The grand canonical partition function & = e~ can be written as
e—E(zx,ﬂ,V) — Z eVN/TZ(T, V, N) — Z e—th—]:(,B,V,N), (21)
N=0 N=0

where & = —/T. The rescaled grand potential £ = () is thus given by the term that dominates the
sum according to
L(w,B, V)= irl\ljf [N + F(B,V,N)], (22)

which is the Legendre-Fenchel transform of —F = —BF with respect to N. This expression (22) assures
that L(a, B, V) is always globally concave in &, and that its concavity with respect to B is inherited
from that of 7. Using Equation (16), we can also write

L(x,p,V) = inf [aN + BE — S(E,V,N)] . (23)

From this expression, we infer that, in addition, £(«, B,, V) is globally completely concave in the
plane («, B). Thus, from

N— (“) , %)
o )y
we have _ ’
(%), (2, =
o )gy o> ) gy
so that in the grand canonical ensemble
oN
MT,V = () > 0. (26)
oM )1y

Here, Mty is a response function, just as the heat capacity; it tells us that, in the grand canonical
ensemble, the number of particles increases whenever the chemical potential increases, holding T
and V constant. We can repeat here the observation made for the canonical heat capacity (19). Thus,
the positivity of Mt y in the grand canonical ensemble is valid regardless of the differentiability of
L. If L is twice-differentiable, then Mt y is continuous; otherwise, it has discontinuities, or it can
even diverge, if £ is not differentiable, for the values of y where the derivative of this function is
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not continuous; however, the inequality in Equation (26) is always satisfied in the grand canonical
ensemble since £ is always globally concave.

As a side remark, we note that this response function can be written as Mty = BN/I', where I' is
the thermodynamic factor given by [30]

1 1 /9InN
F:,B< ou )T,V. @7

In addition, for macroscopic short-range interacting systems, the usual Gibbs-Duhem equation
holds, and the function Mty can be directly related to the isothermal compressibility x7. For this kind
of systems, using n = N/V, we can write

= (), (), (), 3,
oM /)ry o/t ou )1 \oP )1

Since the Gibbs-Duhem holds in this case (& = 0), under isothermal conditions, we have
dP = ndyu. Hence, using the fact that an /9P = —n?d(1/n) /9P, xt is related to Mt according to

on Nn (oV -
MT,V — VTI (aIJ>T — _7 <aIJ>T,N — NnKT,

so that the sign of Mty and that of k7 are the same, namely, they are both positive quantities. However,
if the replica energy is different from zero, as in nonadditive systems, the signs of these response
functions are independent from each other, in general.

Concerning the issue of ensemble inequivalence, in the canonical ensemble, there is no mechanism
ensuring that for nonadditive systems the Helmholtz free energy is convex with respect to N. Therefore,
the quantity

1 9 9°F
Mry ON /1y ON2 /1y

could be negative. Again, in perfect analogy to the relation between microcanonical and canonical
ensembles, we have the following: if the rescaled Helmholtz free energy does not coincide with its
convex envelope with respect to N, then its convex Legendre-Fenchel transform —£ will have at least

a point «, for the given V and  values, where its first derivative with respect to « is not defined,
marking the occurrence of a first order phase transition. Apart from this isolated point, or points,
Mr y is perfectly defined and always positive in the grand canonical ensemble. On the other hand,
the response function Mty in the canonical ensemble can be negative, if the rescaled Helmholtz
free energy has a range where it is not locally convex with respect to N, or could have points where
it is not defined, or both; these three cases correspond to the upper, lower and middle curves in
Figure Al, respectively.

Summarizing the main result, if the rescaled Helmholtz free energy does not coincide with its
convex envelope with respect to N, the canonical and grand canonical ensembles are not equivalent.
In this case, the function £ presents at least a point of discontinuous derivative with respect to «,
associated with a first order phase transition. If an equilibrium canonical state in which the rescaled
Helmbholtz free energy does not coincide with its convex envelope with respect to N is put in contact
with a reservoir with its same chemical potential and with which it can exchange particles, then it
becomes either unstable or not globally stable.

We now consider the isothermal-isobaric ensemble, where the volume is not a control parameter;
the control parameters are N, T and P. The associated partition function A = e~Y is written as

e~ 9NAY) = / dve PV/TZ(T,V,N) = / dve V=T (BVN), (29)
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where v = P/T. Hence, the saddle-point approximation gives the rescaled Gibbs free energy G = BG as
G(N, B, 7) =inf[yV + F(B,V,N)], (30)

which is the Legendre-Fenchel transform of —F with respect to V. Moreover, using (16), we can
also write

G(N,B,y) =inf[BE +V = S(E,V,N)], (31)

from which we infer that G(N, B, ) is concave in both p and 7; moreover, it is completely concave in
the plane (B, y). In particular, using that

- d
V:(9> , (32)
97/ N
we can assert that _ 5
(@), (3),,
AN 97° ) ng
and therefore that the isothermal compressibility in the isothermal-isobaric ensemble is nonnegative,
1 [0V
=—=|= >0. 4
T V<aP>T,N_O o9

This is what we expect on physical grounds, since states with negative x7 cannot be stable under
volume fluctuations. For convenience, instead of the isothermal compressibility «1, we can consider
the quantity Ky y = V7 as a response function, where the subscript N is written to emphasize that it
is also computed at constant number of particles. Then, in the isothermal-isobaric ensemble

oV
_ — —_— > .
Krn (BP > . 0 (35)

The same argument made before applies. Thus, the positivity of Kt y in the isothermal-isobaric
ensemble is valid regardless of the differentiability of G. If G is twice-differentiable, then Kr y is
continuous, otherwise it has discontinuities, or it can even diverge, if G is not differentiable, for the
values of P where the derivative of this function is not continuous; however, the inequality in
Equation (35) is always satisfied in the isothermal-isobaric ensemble, since G is always globally
concave. However, in the canonical ensemble, the volume is a control parameter, i.e., it is fixed in
the equilibrium configuration. The Helmholtz free energy for nonadditive systems is not necessarily
convex with respect to V, so that states with negative isothermal compressibility or, equivalently,
negative Kty can be realized. In fact, in the canonical ensemble, we have

() () a6

Kr N V)N V2 )1y
which is not restricted to be a positive quantity. An argument analogous to that already used before
implies the following. If the rescaled Helmholtz free energy does not coincide with its convex envelope
with respect to V, then its convex Legendre-Fenchel transform —G will have at least a point 7, for the
given N and 8 values, where its first derivative with respect to <y is not defined, marking the occurrence
of a first order phase transition. Apart from this isolated point, or points, Kt y is perfectly defined and
always positive in the isothermal-isobaric ensemble. On the other hand, the response function Kt
in the canonical ensemble can be negative at points where the rescaled Helmholtz free energy is not
locally convex with respect to V, or could have points where it is not defined, or both (the three cases
represented in Figure Al).
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According to the previous discussion, we conclude that, if the rescaled Helmholtz free energy
does not coincide with its convex envelope with respect to V, the canonical and isothermal-isobaric
ensembles are not equivalent. In this case, the function G presents at least a point of discontinuous
derivative with respect to vy, associated with a first order phase transition. If an equilibrium canonical
state in which the rescaled Helmholtz free energy does not coincide with its convex envelope with
respect to V is put in contact with an environment with its same pressure, then it becomes either
unstable or not globally stable.

4. From Microcanonical Entropy to Rescaled Replica Energy

Continuing the discussion of the preceding section, here we focus on the unconstrained ensemble
and its connection with the other ensembles. Since the unconstrained ensemble describes the
thermodynamics of completely open systems, it can be seen as the opposite situation of the one
described by the microcanonical ensemble where the systems are isolated. Such an opposite situation
is reflected in the curvature properties of the thermodynamic characteristic functions. We shall see that
the characteristic function of completely open systems, the rescaled replica energy, possesses always a
very well defined concavity with respect to all its natural variables (none of them being a constraint
variable), while, as noted previously, the microcanonical entropy can be nonconcave in any of its
natural variables (all of them being constraint variables).

In the case where the energy, volume, and number of particles fluctuate, from (8), we can write

R

the unconstrained partition function Y = e™'* as a function of the microcanonical entropy, that is,

—R(a,87) _ /dE/dV i oS(EV,N)—aN—BE—V 37)
N_

Similarly to the other ensembles, the rescaled replica energy R and the replica energy & are
related by R = B&. We note that considering the set of control parameters « = —u/T, B = 1/T,
and vy = P/T is completely equivalent to considering T, P, and p. Evaluating (37) in a saddle-point
approximation, we have

R(wp,7) = inf [aN +BE+V —S(E,V,N)|, (38)

which ensures that R(«, B, ) is completely concave, implying that it is also separately concave in «, ,
and <. Therefore, in the unconstrained ensemble, we get

aN aZR
i <
(aa )IB,,}, <a”‘2)ﬁ7 0/ (39)
BE aZR
S — <
(a,B ) Y ( op* )WI’Y =0 (40)

<gz>w (9273)“!% <0. (41)

Using thata = —u/T, p = 1/T, and v = P/T, Equations (39), (40), and (41) imply that the
response functions

Mrp = (al_V) (42)
Cor = ( : )_ /T, P/T @
Kr, = (‘If) (a4)
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respectively, are nonnegative in the unconstrained ensemble. As before, there could be isolated points
where these response functions are not defined; apart from these isolated points, the response functions
are perfectly defined and are always positive.

The rescaled replica energy can be related to the rescaled grand potential via

e Rlwpr) — /dV (T, V,p)e PV/T = / AV e E@p V)=V, (45)
Using the saddle-point approximation, we then have
Ria, p,7) = inf [yV + L(a, B, V)], (46)

so that R is expressed as the Legendre—Fenchel transform of —£ = —B(Q) with respect to V. The grand
potential is not necessarily a convex function in V for nonadditive systems, so that the response
function K7, given in the grand canonical ensemble by

1 oP Q)
e (), = ()., @
M Tu T y

can be a negative quantity. If the grand potential does not coincide with its convex envelope with respect
to V, the grand canonical and unconstrained ensembles are not equivalent. As before, the response
function K7, in the grand canonical ensemble can be negative where the rescaled grand potential is
not locally convex with respect to V, or could have points where it is not defined, or both (the three
cases of Figure Al).

We observe here that, if the rescaled grand potential energy does not coincide with its convex
envelope with respect to V, the grand canonical and the unconstrained ensembles are not equivalent.
In this case, the function R presents at least a point of discontinuous derivative with respect to 7,
associated with a first order phase transition. If an equilibrium grand canonical state in which the
rescaled grand potential does not coincide with its convex envelope with respect to V is put in contact
with an environment with its same pressure, then it becomes either unstable or not globally stable.

Furthermore, we can also write

e—R(tX,ﬁ,’)/) — Z A(T P N e}lN/T Z e~ Nﬁ')/ , (48)
N=0

which relates the rescaled replica energy to the rescaled Gibbs free energy, and therefore we obtain R
as the Legendre—Fenchel transform of —G = — G with respect to N,

R(a,B,7) = inf [N + G(N, B,7)]. (49)

Now, let us consider the response function Mt p in the isothermal-isobaric ensemble. The rescaled
Gibbs free energy is not necessarily convex in N for nonadditive systems, so that

o (@), (5) &
Mrp ON/rp ON? )1 p
is not restricted to be a positive quantity. The unconstrained and isothermal-isobaric ensembles are
not equivalent if the Gibbs free energy does not coincide with its convex envelope with respect to N.
The response function Mr p in the isothermal-isobaric ensemble can be negative at points where the
rescaled Gibbs free energy is not locally convex with respect to N, or could have points where it is not
defined, or both (the three cases of Figure Al).
Analogously with the previous situations, we point out here that, if the rescaled Gibbs free
energy energy does not coincide with its convex envelope with respect to N, the isothermal-isobaric
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and the unconstrained ensembles are not equivalent. In this case, the function R presents at least
a point of discontinuous derivative with respect to &, associated with a first order phase transition.
If an equilibrium isothermal-isobaric state in which the rescaled Gibbs free energy does not coincide
with its convex envelope with respect to N is put in contact with an environment with its same
chemical potential and with which it can exchange particles, then it becomes either unstable or not
globally stable.

A final remark. We have noted that the replica energy & vanishes for additive systems. This is
related to the fact that the validity of the Gibbs—Duhem equation implies that the variables (T, P, i)
cannot be taken as independent control parameters for those systems. In turn, this implies that
Y = e R is negligible in the thermodynamic limit.

5. Discussion

We have seen that ensemble inequivalence is connected with the occurrence of negative response
functions, and that these anomalous responses are in turn associated with anomalous concavity
properties of the thermodynamic functions. In detail, we note that all these response functions
concern the variation of a constraint variable (E, V or N) with respect to the respective conjugate
thermodynamic variable (T, P and p, respectively). In addition, the Legendre-Fenchel transformations
relating the various thermodynamic functions are defined by the minimization with respect one of the
constraint variables. In Figure 1, we show a simple scheme of the transformations and of the response
functions connecting the different thermodynamic potentials.

BQ(TV, 1)

<
<
2
=
<

T,

n
S(E,V,N) —=—> BF(TV,N) BE(T,P,u)
V,N KT’N MT’P

N
BG(T,P,N)

Figure 1. A schematic picture showing the connection between the thermodynamic functions through
Legendre-Fenchel transformations. For each thermodynamic function, the natural variables on which it
depends are shown. The arrows connect the starting and the arriving function of the Legendre-Fenchel
transformations. On one side of each arrow, there is the constraint variable with respect to which one
has to minimize to perform the transformation; on the other side of the arrow, there is the response
function associated with the possible ensemble inequivalence: the response function is always positive
in the arriving thermodynamic function, while it can be negative in the starting function if ensemble
inequivalence occurs. Each response function concerns the response of the constraint variable of
the corresponding Legendre—Fenchel transformation with respect to its conjugate thermodynamic
variable, while keeping constant the other two variables (shown in the subscripts) on which the arriving
functions depend on. Actually, except in the first transformation, relating S and SF, the starting function
of the other Legendre—Fenchel transformations are given by minus the indicated function (see text).
However, this is irrelevant for our general discussion.

It is interesting to note the following. The rescaled replica energy & is obtained from the
microcanonical entropy by minimizing with respect to all the constraint variables. However, while the
first minimization with respect to E produces the rescaled Helmholtz free energy BF, the following
minimizations with respect to N and V can be made in the two different orders, thus producing,
as “intermediate” thermodynamic functions, either fQ) or BG. For this reason, the scheme in Figure 1
has two routes from S to Bé&’.

We stress once more that a negative response function implies ensemble inequivalence, while the
reverse is not true: ensemble inequivalence can occur with or without a negative response function.
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We have described in each case which response function can be negative, and, referring to Figure Al,
we have cited the possible situations, clarifying that ensemble inequivalence implies the presence
of a first order phase transition in the ensemble which is the arriving one in the Legendre—Fenchel
transformation. We also note that, very often, concrete models can present all the three cases considered
in Figure A1, which occur varying the value of the parameters of the Hamiltonian. Thus, in conclusion:
ensemble inequivalence occurs each time a thermodynamic function does not coincide with its concave
or, alternatively (depending on the concrete function, see the analyses above), convex envelope with
respect to a constraint variable (also the constraint variable of interest depends on the concrete function,
see Figure 1); a negative response function can be present in these cases, but it cannot occur with
ensemble equivalence.

In principle, one may wonder about the following point. Is it possible that an ensemble
corresponding to a thermodynamic function that is the starting one in a Legendre—Fenchel
transformation is not equivalent to the ensemble corresponding to the arriving function, but, at the
same time, it is equivalent to the ensemble corresponding to a successive function of the scheme?
For more clarity and, as an example, referring to Figure 1: is it possible that the microcanonical
ensemble, corresponding to S, is not equivalent to the canonical ensemble, corresponding to SF, but it
is equivalent either to the grand canonical ensemble, corresponding to B(), or the isothermal-isobaric
ensemble, corresponding to BG? This situation is not possible and it can be seen in the following way.
Suppose that the microcanonical ensemble is equivalent to the grand canonical ensemble. This means
that Equation (23) can be inverted, obtaining

S(E,V,N) = inf [N + BE — L(v, B, V)], (51)

i.e., the microcanonical entropy S(E, V, N) coincides with its concave envelope with respect to the
double Legendre-Fenchel transformation in the (E, N) plane. This implies that S(E, V, N) is globally
concave in the (E, N) plane, but then it is a fortiori globally concave with respect to E, and it coincides
with its concave envelope with respect to E. In turn, this implies that the microcanonical and the
canonical ensembles are equivalent. Then, if the microcanonical ensemble is not equivalent to the
canonical ensemble, it is not equivalent also to the grand canonical ensemble.

The same procedure can be used if one assumes that the microcanonical ensemble is equivalent to
the isothermal-isobaric ensemble. Then, Equation (31) can be inverted to have

S(E,V,N) = }3an [BE+yV —G(N,B,7)], (52)

i.e., the microcanonical entropy coincides with its concave envelope with respect to the double
Legendre-Fenchel transformation in the (E, V) plane. This implies that S(E, V, N is globally concave
in the (E, V) plane; however, then, as before, it is a fortiori globally concave with respect to E and the
microcanonical and canonical ensembles are equivalent. Then, if the microcanonical ensemble is not
equivalent to the canonical ensemble, it is not equivalent also to the isothermal-isobaric ensemble.

The above derivations are valid regardless of the differentiability of the thermodynamic functions.
It is instructive to also give an alternative derivation based on partial derivatives, which shows that
the heat capacity at constant V and N is positive in both the grand canonical and isothermal-isobaric
ensemble. This is not completely trivial, since (B, V, N) are not the control parameters of either of these
two ensembles. In Appendix B, we present this derivation.

In an analogous way;, if the canonical ensemble is not equivalent to, e.g., the grand canonical
ensemble, then it is not equivalent also to the unconstrained ensemble. On the contrary, it may happen
that canonical and grand canonical ensembles are equivalent, but they are both not equivalent to the
unconstrained ensemble (see Reference [22] for a concrete example).

In this paper, we have presented a general discussion, without reference to any specific model.
Although the results are valid regardless of the differentiability of the thermodynamic functions, as a
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matter of fact, the most interesting situations arise when we have points where the differentiability
does not hold, i.e., when we are dealing with first-order phase transitions. In fact, if neither of the two
ensembles connected by a Legendre—Fenchel transformation has a first order phase transition, but at
most a continuous transition, then the two ensembles are equivalent.

The results here discussed have the consequence that with ensemble inequivalence the phase
transitions are located, generally, in different points of the thermodynamic phase diagram for
nonadditive systems. From the general results, one can also prove that, in many cases, it is possible
to obtain the response function in the “higher” ensemble from that in the “lower” ensemble
(where “higher” means that, in the scheme of Figure 1, it is on the right of the “smaller” and connected
by one or more arrows) by invoking the Maxwell construction. For example, if one computes the
function T(E) (at constant V and N) in the microcanonical ensemble and then obtains the specific
heat Cy , then the analogous curve and the specific heat in the canonical ensemble are obtained by
applying the Maxwell construction in the neighborhood of the regions where the microcanonical Cy y
is negative.

In any case, we believe that a general and simple scheme like the one given in this paper can be
useful as a reference material when dealing with concrete nonadditive systems.
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Appendix A. Legendre-Fenchel Transformation, Concave and Convex Functions

In this appendix, we recall, without proof, some relations between concave functions and the
Legendre—Fenchel transformation. A function f(x) is said to be concave if the relation

flexy+ (1 —c)xz) > cf(x1) + (1 —c)f(x2) (A1)

holds for any 0 < ¢ < 1. If this occurs for any (x1, x7) in the range of definition of f, the function is
said to be globally concave; if the relation is satisfied only for x; and x; belonging to a sufficiently
small neighborhood of a point x, then f is said to be locally concave in x. From the practical point of
view, the graph of f between x; and x; lies above the straight line connecting f(x1) and f(xp). If f
is twice differentiable, then its second derivative is nonpositive in a point of local concavity and it is
nonpositive in the whole range of definition for a globally concave function.

The Legendre-Fenchel transform g(z) of f(x) is defined by

8(z) = inf [zx — f(x)] . (A2)

It is easy to show that g(z) is globally concave. By applying the Legendre—Fenchel transformation
to g(z) (loosely speaking, by inverting the transformation), we obtain the following function of x:

£ () = inf vz~ ()], (A3)

where we have adopted a common notation for functions obtained by applying twice the
transformation. The function f**(x) is called the concave envelope of f(x). Being defined by a
Legendre—Fenchel transformation, f**(x) is globally concave. If the starting function f(x) is globally
concave, then f**(x) coincides with it; otherwise, it is the smallest globally concave function which is
larger than f(x) (where f; (x) smaller than f;(x) here means that f1(x) < f>(x) for any x in the range of
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definition). In Figure A1, we show three examples of functions that are not globally concave and thus
do not coincide with their concave envelope. In the upper curve, the function is twice differentiable,
while, in the other two curves, the first derivative has a point of discontinuity. Apart from the point
of discontinuity, the lower curve always has a negative second derivative (i.e., it is locally concave),
while the middle curve, like the upper one, has a range where the second derivative is positive.
It should be noted that the range where f**(x) and f(x) do not coincide is larger than the range
where f(x) is not locally concave. The following important result can be proved. Whenever the
concave envelope f**(x) does not coincide with f(x) (e.g., in all cases represented in Figure Al),
the Legendre—Fenchel transform g(z) has at least a point where its first derivative is discontinuous.
Equivalently, if g(z) is differentiable, in particular if furthermore it is twice differentiable, then the
concave envelope f**(x) coincides with f(x), i.e., f(x) is globally concave.

f(x)

Figure A1l. A representative plot showing three situations often occurring in the study of nonadditive
systems. We can think of x as a constraint variable, e.g., E, and f as a thermodynamic function, e.g.,
S. The three curves in solid lines show functions that are not globally concave; the upper curve is
twice differentiable, while the other two curves have a discontinuous derivative at the point of the
cusp, marked by a diamond. The upper and the middle curves are locally concave outside the x
range between the two crosses, where their second derivative is negative, while in the range between
the crosses their second derivative is positive. On the contrary, the lower curve is locally concave
everywhere except at the point of discontinuity of its first derivative, since the second derivative is
always negative except at that point. The dashed lines define the concave envelope of each function;
more precisely, the concave envelope f**(x) is equal to the dashed line in the x range where this line is
defined, while it is equal to f(x) outside this range. Note that the range where f**(x) does not coincide
with f(x) is larger than that where the function is not locally concave. The dots marking the ends of
the dashed lines are just for visual clarity.

Let us now consider a function of two variables, f(x,y). It can be concave (locally or globally) as
a function of x for a given y, and/or as a function of y for a given x. If it is concave in both variables
and twice differentiable, we have (adopting the usual notation for derivatives) fyy < 0and f,;, < 0.
Concavity with respect to each of the two variables is necessary, but not sufficient to make f completely
concave (or in other words concave in the plane (x,y)); complete concavity is defined by

flexi 4+ (1 —=c)xg,cyr + (1 =)y2) > cf (x1,y1) + (1 =) f(x2,y2) (A4)
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for any 0 < ¢ < 1. For twice differentiable functions, to have complete concavity, we must also have
frxfyy — ffy > 0. The Legendre—Fenchel transform with respect to x

8(zy) = infzx — f(x,y)] (A5)
is globally concave with respect to z, while the Legendre-Fenchel tranform with respect to y
glx,w) = inflwy — f(x,y)] (A6)
is globally concave with respect to w. On the other hand, the double Legendre-Fenchel transform
8z w) = inflzx +wy — f(x,y)] (A7)

is globally and completely concave in the (z, w) plane. These definitions and properties for functions
of two variables can be readily extended, with obvious modifications, to functions of more than
two variables.

The above properties have the analogous ones by defining a transformation similar to (A2),
but with a supremum instead of an infimum, i.e.,

gc(z) = sup [zx — f(x)]. (A8)

Let us call this transformation, just to distinguish it from the previous one, the convex
Legendre—Fenchel transformation; accordingly, we have put a subscript to g(z). We can also define
convex functions which satisfy an inequality similar to (A1), but where the left-hand side is smaller
than or equal to the righ hand side [the graph of f between x; and x; lies below the straight line
connecting f(x1) and f(x;)], namely,

flexi+ (1 —=0c)x) <cf(x1) + (1—c)f(x2). (A9)

Then, it can be proved that the convex Legendre-Fenchel transformation gives rise to globally
convex functions [26]. Analogously with the previous case, we can define the convex envelope of

f(x) by
¢ (x) = sup [xz — ge(2)] - (A10)
4
It follows that, if f(x) is globally convex, then f*(x) and f(x) coincide.
In the main text, we find Legendre-Fenchel transformations in which the transformed function is
not f(x), but —f(x), as in

g(z) = inf [zx + f(x)] . (A11)

This can also be written as
—8(z) =sup[—zx — f(x)] . (A12)
X

Thus, —g(z) is the convex Legendre-Fenchel transform of f(x) (the fact that there appears —zx
instead of zx is irrelevant), namely, g(z) = —gc(z). If —f(x) coincides with its concave envelope,
that is, if

— f(x) = inflxz—g(2)], (A13)

then f(x) coincides with its convex envelope, since the last expression can also be written as

f(x) = sup [—xz — gc(2)].- (A14)

z
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This conclusion can be easily inferred in a visual manner. In fact, it is trivial to see, e.g., that if
f(x) is twice differentiable and its second derivative is negative (positive) definite, then the second
derivative of —f(x) is positive (negative) definite. In the main text, we thus refer to global convexity
for thermodynamic functions f(x) where the Legendre-Fenchel transformation involves — f(x).

Appendix B. Heat Capacity in the Grand Canonical and the Isothermal-Isobaric Ensembles

Here, we show that the response function Cy y is positive not only in the canonical ensemble,
but also in the grand canonical ensemble and in the isothermal-isobaric ensemble. In this Appendix,
we assume that the thermodynamic functions are twice differentiable. Thus, we show that, if the
microcanonical ensemble is not equivalent to the canonical ensemble, i.e., if Cy y is negative in the
microcanonical ensemble, then this ensemble is not equivalent also to the grand canonical and the
isothermal-isobaric ensembles. Summarizing, we want to see that the quantity

oE ) 2
33 =—p°Cvn (A15)
(aﬁ VN

is negative in both the grand canonical and the isothermal-isobaric ensembles. This is not completely
trivial, since (B, V, N) are not the control parameters of either of the two ensembles. We proceed as
follows. Beginning with the grand canonical ensemble, we start from the relations

N o= - (m)w. (a17)

Then, we have to compute the second partial derivative of f() with respect to  while keeping
constant its first partial derivative with respect to (By). Without showing the passages, we state the
result. One obtains

(8E> B <a2(ﬁ0) -
Blvn [ 9(Bp)? )ﬁ,V‘|
l(az(ﬁﬂ)) (32(!30)) _ (82(ﬁ0) )2] (A18)
op? BV o(Bu)? BV opo(Bu) ) v |
We have noted in Section 3 that () is completely concave in the (B, B) plane. This implies that
the quantity in square brackets in the second line of the expression is positive, while that in the first

line is negative. Therefore, we obtain a negative quantity. For the isothermal-isobaric ensemble, we can
proceed in an analogous way. Now, we start from the relations

= (5 )

(WG))M. (A20)

<

I(BP)
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Then, we have to compute the second partial derivative of BG with respect to  while keeping

constant its first partial derivative with respect to (fP). The result is now

()~ [,
2 2 2 2
35 Gi5) o~ (570,

We have also noted in Section 3 that BG is completely concave in the (BP, ) plane. This implies

. (A21)

that the quantity in square brackets in the second line of the expression is positive, while that in the
first line is negative. Therefore, we again obtain a negative quantity.

References

1.

10.
11.

12.

13.

14.

15.

16.
17.

18.

19.

20.
21.

22.

Campa, A.; Dauxois,T.; Fanelli, D.; Ruffo, S. Physics of Long-Range Interacting Systems; Oxford University Press:
Oxford, UK, 2014.

Campa, A.; Dauxois, T.; Ruffo, S. Statistical mechanics and dynamics of solvable models with long-range
interactions. Phys. Rep. 2009, 480, 57-159. [CrossRef]

Hill, T.L. Thermodynamics of Small Systems, Parts I and II; Dover: New York, NY, USA, 2013.

Hill, T.L.; Chamberlin, R.V. Extension of the thermodynamics of small systems to open metastable states:
An example. Proc. Nat. Acad. Sci. USA 1998, 95, 12779-12782. [CrossRef] [PubMed]

Hill, T.L. A different approach to nanothermodynamics. Nano Lett. 2001, 1, 273-275. [CrossRef]

Hill, T.L.; Chamberlin, R.V. Fluctuations in energy in completely open small systems. Nano Lett. 2001, 2,
609-613. [CrossRef]

Antonov, V.A. Most probable phase distribution in spherical star systems and conditions for its existence.
Vest. Leningr. Gos. Univ. 1962, 7, 135; translation: IAU Symposia 1985, 113, 525-540.

Lynden-Bell, D.; Wood, R. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant
structure for stellar systems. Mon. Not. R. Astr. Soc. 1968, 138, 495-525. [CrossRef]

Thirring, W. Systems with Negative Specific Heat. Z. Phys. 1970, 235, 339-352. [CrossRef]

Padmanabhan, T. Statistical mechanics of gravitating systems. Phys. Rep. 1990, 188, 285-362. [CrossRef]
Lynden-Bell, D. Negative specific heat in astronomy, physics and chemistry. Physica A 1999, 263, 293-304.
[CrossRef]

Chavanis, P-H. Gravitational instability of finite isothermal spheres. Astron. Astrophys. 2002, 381, 340-356.
[CrossRef]

Chavanis, P.-H. Phase transitions in self-gravitating systems. Int. ]. Mod. Phys. B 2006, 20 3113-3198.
[CrossRef]

Campa, A.; Casetti, L.; Latella, I.; Pérez-Madrid, A.; Ruffo, S. Phase transitions in Thirring’s model.
J. Stat. Mech. 2016, 073205. [CrossRef]

Kiessling, M.K.H.; Neukirch, T. Negative specific heat of a magnetically self-confined plasma torus. Proc. Natl.
Acad. Sci. USA 2003, 100, 1510-1514. [CrossRef] [PubMed]

Nicholson, D.R. Introduction to Plasma Theory; Wiley: New York, NY, USA, 1983.

Chavanis, P.H.; Sommeria, J. Statistical mechanics of the shallow water system. Phys. Rev. E 2002, 65, 026302.
[CrossRef] [PubMed]

Robert, R.; Sommeria, J. Statistical equilibrium states for two-dimensional flows. J. Fluid. Mech. 1991, 229,
291-310. [CrossRef]

Latella, I.; Pérez-Madrid, A.; Campa, A.; Casetti, L.; Ruffo, S. Thermodynamics of nonadditive systems.
Phys. Rev. Lett. 2015, 114, 230601. [CrossRef] [PubMed]

Gibbs, ].W. Elementary Principles in Statistical Mechanics; Charles Scribner’s Sons: New York, NY, USA, 1902.
Latella, I.; Pérez-Madrid, A. Local thermodynamics and the generalized Gibbs-Duhem equation in systems
with long-range interactions. Phys. Rev. E 2013, 88, 042135. [CrossRef] [PubMed]

Latella, I.; Pérez-Madrid, A.; Campa, A.; Casetti, L.; Ruffo, S. Long-range interacting systems in the
unconstrained ensemble. Phys. Rev. E 2017, 95, 012140. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.physrep.2009.07.001
http://dx.doi.org/10.1073/pnas.95.22.12779
http://www.ncbi.nlm.nih.gov/pubmed/9788990
http://dx.doi.org/10.1021/nl010027w
http://dx.doi.org/10.1021/nl020295+
http://dx.doi.org/10.1093/mnras/138.4.495
http://dx.doi.org/10.1007/BF01403177
http://dx.doi.org/10.1016/0370-1573(90)90051-3
http://dx.doi.org/10.1016/S0378-4371(98)00518-4
http://dx.doi.org/10.1051/0004-6361:20011438
http://dx.doi.org/10.1142/S0217979206035400
http://dx.doi.org/10.1088/1742-5468/2016/07/073205
http://dx.doi.org/10.1073/pnas.252779099
http://www.ncbi.nlm.nih.gov/pubmed/12576553
http://dx.doi.org/10.1103/PhysRevE.65.026302
http://www.ncbi.nlm.nih.gov/pubmed/11863648
http://dx.doi.org/10.1017/S0022112091003038
http://dx.doi.org/10.1103/PhysRevLett.114.230601
http://www.ncbi.nlm.nih.gov/pubmed/26196786
http://dx.doi.org/10.1103/PhysRevE.88.042135
http://www.ncbi.nlm.nih.gov/pubmed/24229143
http://dx.doi.org/10.1103/PhysRevE.95.012140
http://www.ncbi.nlm.nih.gov/pubmed/28208311

Entropy 2018, 20, 907 19 of 19

23.

24.

25.

26.

27.

28.

29.

30.

Latella, I. Statistical Thermodynamics of Long-Range Interacting Systems and Near-Field Thermal Radiation.
Ph.D. Thesis, University of Barcelona, Barcelona, Spain, 27 June 2016.

Ellis, R.S.; Haven, K.; Turkington, B. Large deviation principles and complete equivalence and nonequivalence
results for pure and mixed ensembles. |. Stat. Phys. 2000, 101, 999-1064. [CrossRef]

Touchette, H.; Ellis, R.S.; Turkington, B. An introduction to the thermodynamic and macrostate levels of
nonequivalent ensembles. Phys. A 2004, 340, 138-146. [CrossRef]

Touchette, H. The large deviation approach to statistical mechanics. Phys. Rep. 2009, 478, 1-69. [CrossRef]
Ruelle, D. Statistical Mechanics: Rigorous Results; W. A. Benjamin, Inc.: New York, NY, USA, 1969.

Bouchet, E; Barré, J. Classification of phase transitions and ensemble inequivalence, in systems with long
range interactions. . Stat. Phys. 2005, 118, 1073-1105. [CrossRef]

Casetti, L.; Kastner, M. Partial equivalence of statistical ensembles and kinetic energy. Phys. A 2007, 384,
318-334. [CrossRef]

Schnell, S.K.; Vlugt, T.].; Simon, ].M.; Bedeaux, D.; Kjelstrup, S. Thermodynamics of small systems embedded
in a reservoir: A detailed analysis of finite size effects. Mol. Phys. 2012, 110, 1069-1079. [CrossRef]

® (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1023/A:1026446225804
http://dx.doi.org/10.1016/j.physa.2004.03.088
http://dx.doi.org/10.1016/j.physrep.2009.05.002
http://dx.doi.org/10.1007/s10955-004-2059-0
http://dx.doi.org/10.1016/j.physa.2007.05.043
http://dx.doi.org/10.1080/00268976.2011.637524
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Thermodynamics, Replica Energy, Statistical Ensembles
	Response Functions and Ensemble Inequivalence
	From Microcanonical Entropy to Rescaled Replica Energy
	Discussion
	Legendre–Fenchel Transformation, Concave and Convex Functions
	Heat Capacity in the Grand Canonical and the Isothermal-Isobaric Ensembles
	References

