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Abstract: The non-Fourier heat conduction phenomenon on room temperature is analyzed from
various aspects. The first one shows its experimental side, in what form it occurs, and how we
treated it. It is demonstrated that the Guyer-Krumhansl equation can be the next appropriate
extension of Fourier’s law for room-temperature phenomena in modeling of heterogeneous materials.
The second approach provides an interpretation of generalized heat conduction equations using
a simple thermo-mechanical background. Here, Fourier heat conduction is coupled to elasticity
via thermal expansion, resulting in a particular generalized heat equation for the temperature
field. Both aforementioned approaches show the size dependency of non-Fourier heat conduction.
Finally, a third approach is presented, called pseudo-temperature modeling. It is shown that
non-Fourier temperature history can be produced by mixing different solutions of Fourier’s law.
That kind of explanation indicates the interpretation of underlying heat conduction mechanics behind
non-Fourier phenomena.

Keywords: non-Fourier heat conduction; thermal expansion; heat pulse experiments;
pseudo-temperature; Guyer-Krumhansl equation

1. Introduction

The Fourier’s law [1]
q= —kVT 1)

is one of the most applicable, well-known elementary physical laws in engineering practice. Here, q is
the heat flux vector, T is absolute temperature, k is thermal conductivity. However, as all the constitutive
equations, it also has limits of validation. Phenomena that do not fit into these limits, called non-Fourier
heat conduction, appear in many different forms. Some of them occur at low temperature such as the
so-called second sound and ballistic (thermal expansion induced) propagation [2-7]. These phenomena
have been experimentally measured several times [8-11] and many generalized heat equations exist to
simulate them [12-20]. The success in low-temperature experiments resulted in the extension of this
research field to find the deviation at room temperature as well. One of the most celebrated result is
related to Mitra et al. [21,22] where the measured temperature history was very similar to a wave-like
propagation. However, these results have not been reproduced by anyone and undoubtedly demanded
for further investigation.
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In most of the room-temperature measurements, the existence of Maxwell-Cattaneo-Vernotte
(MCV) type behavior attempted to be proved [23,24]. It is this MCV equation that is used to model the
aforementioned second sound, the dissipative wave propagation form of heat [3,25,26]. The validity
of MCV equation for room-temperature behavior has not yet been justified, despite of the numerous
experiments. It is important to note that many other extensions of Fourier equation exist beyond
the MCV one, such as the Guyer-Krumhansl (GK) equation [27-32], the dual-phase-lag model [33],
and their modifications, too [7,34,35]. Some of these possess stronger physical background, some others
not [36-38]. Here we would like to emphasize that we restrict ourselves to the GK equation that shows
the simplest hierarchical arrangement of Fourier’s law and applicable for room-temperature problems.

The simplest extension of MCV equation is the GK model, which reads:

T4+ q+kVT - k*Aq =0, @)

where the coefficient 7 is called relaxation time and x? is regarded as a dissipation parameter and
the dot denotes the time derivative. This GK-type constitutive equation contains the MCV-type by
considering x> = 0 and the Fourier equation taking T = x> = 0. This feature of GK equation allows to
model both wave-like temperature history and over-diffusive one. This is more apparent when one
applies the balance equation of internal energy to eliminate q:

ch+€'q:0, (3)

with mass density p, specific heat c and volumetric source neglected, one obtains

T+ T =aAT +K>AT, (4)
with thermal diffusivity a = k/(pc). One can realize that Equation (4) contains the Fourier
heat equation

T =aAT ®)

as well as its time derivative, with different coefficients. It becomes more visible after rearranging
Equation (4):

2 .
T(T—KTAT> +T—aAT =0. ®)

when the so-called [39,40] Fourier resonance condition x¥%/T = a holds, the solutions of the Fourier
Equation (5) are covered by the solutions of (4). Meanwhile, when x> < at the wave-like behavior is
recovered, and this domain is known as under-damped region. In the opposite case (k> > at), there is
no visible wave propagation and it is called over-diffusive (or over-damped) region. We measured the
corresponding over-diffusive effect several times in various materials such as metal foams, rocks and
in a capacitor, too [39,40]. Furthermore, a similar temperature history was observed in a biological
material [38]. It is also important to note that originally the GK equation is derived from Boltzmann
equation applying phonon hydrodynamics in the background. Here, we would like to emphasize that
in non-equilibrium thermodynamics it can also be derived without assuming any phonon interaction
in the material [6,7] keeping the GK equation applicable for room-temperature heat conduction.

In this paper, further aspects of over-diffusive propagation are discussed. In the following sections
the size dependence of the observed over-damped phenomenon is discussed both experimentally and
theoretically. Moreover, the approach of pseudo-temperature is presented to provide one concrete
possible interpretation for non-Fourier heat conduction.
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2. Size Dependence

Our measurements reported here are performed on basalt rock samples with three different
thicknesses, 1.86, 2.75 and 3.84 mm, respectively. We have applied the same apparatus of heat pulse
experiment as described in [39,40], schematically depicted in Figure 1 below.

heterogeneous specimen

radiation shield

front face
heat
thermocouple \
pulse X
preamplifier
rear face
silver layer

opaque layer
Figure 1. Setup of our heat pulse experiment [40].

In each case, the rear-side temperature history was measured and numerically evaluated solving
the GK equation with constant coefficients, i.e., they do not depend on the temperature due to its small
change. It is also assumed that the GK equation characterizes the whole sample. We choose the GK
equation as the simplest thermodynamically consistent one that can predict signal shapes observed
in room-temperature measurements. (The heat pulse setup—a widely used one for transient heat
conduction measurements—is not capable of obtaining space dependence of temperature along the
sample but even such measurement data would be insufficient to determine an underlying partial
differential equation - any experimental data can only refute or support an equation (at some confidence
level).) The GK coefficients used below are best fits. The recorded dimensionless temperature signals
are plotted in Figures 2—4. In these figures, the dashed line shows the solution of Fourier equation
using thermal diffusivity corresponding to the initial part of temperature rising on the rear side.
The measured signal deviates from the Fourier-predicted one even when considering non-adiabatic
(cooling) boundary condition. That deviation weakens with increasing sample thickness; for the
thickest one it is hardly visible, and the prediction of Fourier’s law is almost acceptable.
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Figure 2. Data recorded for basalt rock sample with thickness of 1.86 mm. The dashed line shows the
prediction of Fourier’s law.
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Figure 3. Data recorded for basalt rock sample with thickness of 2.75 mm. The dashed line shows the
prediction of Fourier’s law.
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Figure 4. Data recorded for basalt rock sample with thickness of 3.84 mm. The dashed line shows the
prediction of Fourier’s law.

The evaluation of the thinnest sample using the GK equation is shown in Figure 5. The fitted
coefficients are summarized in Table 1. It is important to mention that MCV equation using the
presented parameters would show a wave-like propagation that is not observed in the experiments.
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Figure 5. Data recorded using the basalt with thickness of 1.86 mm. The dashed line shows the
prediction of GK equation.
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Table 1. Summarized results of fitted coefficients in Fourier and GK equations.

Thick Fourier Guyer-Krumhansl ~ Relaxation  Dissipation
Llc[mr::i?s Thermal Diffusivity Thermal Diffusivity Time Parameter
’ ap,10~°[%F] agk, 1076 [ Tl %107 ¢[m’]
1.86 0.62 0.55 0.738 0.509
2.75 0.67 0.604 0.955 0.67
3.84 0.685 0.68 0.664 0.48

Deviation from the Fourier prediction is weak but is clearly present, and has size dependent
attributes. Concerning the ratio of parameters, i.e., investigating how considerably the Fourier
resonance condition at/x* = 1 is violated, the outcome can be seen in Table 2. As analysis of
the results, it is remarkable to note the deviation of the GK fitted thermal diffusivity from the Fourier
fitted one, and that this deviation is size dependent. For the thickest sample, which can be well
described by Fourier’s law, the fitted thermal diffusivity values are practically equal, and the ratio of
parameters is very close to the Fourier resonance value 1.

Table 2. Ratio of the fitted coefficients.

Thickness Ratio of Parameters

L, [mm] ackt
1.86 0.804
2.75 0.854
3.84 0.943

The next section is devoted to a possible explanation for the emergence of a generalized heat
equation with higher time and space derivatives. All coefficients of the higher time and space
derivative terms are related to well-known material parameters. The result also features size dependent
non-Fourier deviation.

3. Seeming Non-Fourier Heat Conduction Induced by Elasticity Coupled via Thermal Expansion

While, in general, one does not have a direct physical interpretation of the phenomenon that leads
to, at the phenomenological level, non-Fourier heat conduction here follows a case where we do know
this background phenomenon. Namely, in case of heat conduction in solids, a plausible possibility
is provided by an interplay between elasticity and thermal expansion. Namely, without thermal
expansion, elasticity—a tensorial behavior—is not coupled to Fourier heat conduction—a vectorial
one—in isotropic materials. However, with nonzero thermal expansion, strains and displacements
must be in accord both with what elastic mechanics dictates and with what position dependent
temperature imposes. The coupled set of equations of Fourier heat conduction, of elastic mechanics
and of kinematic relationships, after eliminating the kinematic and mechanical quantities, leads to
an equation for temperature only that contains higher derivative corrections to Fourier’s equation.
It is important to check how remarkable these corrections are. In the following section we present this
derivation and investigation.

The Basic Equations

In all respects involved, we choose the simplest assumptions: the small-strain regime,
a Hooke-elastic homogeneous and isotropic solid material, with constant thermal expansion coefficient,
essentially being at rest with respect to an inertial reference frame. Kinematic, mechanical and
thermodynamical quantities and their relationships are considered along the approach detailed
in [41-43].
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The Hooke-elastic homogeneous and isotropic material model states, at any position r,
the constitutive relationship

cd=EiDY, o5 = EDS, Ed =2G, E*=3K, 7)

o = E9DY 4 E°D° = E9D + (ES - Ed) DS ®)

between stress tensor ¢ and elastic deformedness tensor D (which, in many cases, coincides with the
strain tensor), where 9 and ® denote the deviatoric (traceless) and spherical (proportional to the unit
tensor 1) parts, i.e.,

1
D = 3 (rD) 1, D4 =D - Ds; hence, e.g., 1°=1, 19 =o. )
Stress induces a time derivative in the velocity field v of the solid medium, according to
the equation

ov = oV (10)

with mass density ¢ being constant in the in the small-strain regime; hereafter % and V denote
derivative of the function standing to the left and to the right, respectively, to display the tensorial
order (tensorial index order) properly for vector/tensor valued functions. For the velocity gradient L
and its symmetric part, one has

L=veoV, al¥"=tL=v.V, (LY = % (trL™)1 = % (vﬁ) 1, (11)
(Lsymﬁ) V= %aiaj(aivj +9j01) = %[A(%.v) + A(%.v)] - A(v.§), (12)
(L~%)-§:A(v-€), (13)

where the Einstein summation convention for indices has also been applied. Again, using this
convention, and the Kronecker delta notation, to any scalar field f,

0; (féij) = 6ij0;f = aif, (f1)- V= %f (14)

follow, which are also to be used below.
The small-deformedness relationship among the kinematic quantities, with linear thermal
expansion coefficient « considered constant, and absolute temperature T, is

LY™ =D +aT1. (15)
For specific internal energy e,
_ Esa . K 2] E 2
e =T+ = THD +ea, eel—zgtr{(D) —i-%tr[(D) } (16)

its balance,

—

o¢ =tr(cL)—q-V, (17)
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after subtracting the contribution ¢é.] coming from specific elastic energy e, and the corresponding
elastic part tr (¢D) of the mechanical power tr (oL), is

0(e—eq) = ocT + ESaTotrD® = — q~%, with q = —k%T, (18)

where c is specific heat corresponding to constant zero stress (or pressure), temperature has been
approximated in one term of (18) by an initial homogeneous absolute temperature value Tj to stay in
accord with the linear (small-strain) approximation, and heat flux q follows the Fourier heat conduction
constitutive relationship with thermal conductivity k also treated as a constant.

The Derivation

The strategy is to eliminate ¢ in favor of (with the aid of) D, then D is eliminated in favor of LsY™,
after which we can realize that both from the mechanical direction and from the thermal one we obtain
relationship between v -V and T, which, eliminating v - V, yields an equation for T only.

Starting with the thermal side,

ocT + ESaTy tr (L™ — aT1)° = ocT + E*aTy (v : %) — ESa®’TyT -3 =

= (gc— 3E%2Ty ) T + ESaTy(v- V), (19)
T

E*uTy(v- %) — kAT — 7, T. 20)

Meanwhile, from the mechanical direction, aiming at being in tune with (20):

— 1 — —
Esszo v-V :ESDCTO* c-V) V=
(v-7) = Bty (&)

:%{[Edb+(ES—Ed)DS}-%}-§=

0
_ESZTO{{Ed(Lsym_aTl)_'_
+ (B - ) (Lo - aT1)‘°} -%} V=
_ EaTo f[rdpsym _ pd, g s_pd) 1(o o)
== {[EL Eoch—i—(E E)B(VV)l

—(ES—Ed)thl} -%}-%:

— EzéTo [EdA(v-%) + ES3EdA(V-%) —E%AT] =

s s d « .
:ElXTO E +2E A(VV)—ESIXAT‘| —
0 3
_ ES4+2EY = (E2)?Ty , .
s d S.\2
= E—;i A (kAT — 7 T) — mAT, in parallel,
Q Q
e

= (kAT =1 T) =kAT =T [cf. (20)] (21)
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(where ¢ is the longitudinal elastic wave propagation velocity); hence, summarizing the final result in
two equivalent forms,

S,)2
(T —kAT)" = 3A (T —kAT) + (E"‘Q)TOM, @)
. Sy)2
7 (T - ﬁAT) = kA, (T - c%AT) + (E“Q)TOAT. (23)

The first form here tells us that we have here the wave equation of a heat conduction equation,
the last term on the r.h.s. somewhat detuning the heat conduction equation of the r.h.s. with respect to
the one on the Lh.s. (the underlined coefficient is the one becoming modified when its term is melted
together with the last term). In the meantime, the second form shows the heat conduction equation of
a wave equation, the last term on the r.h.s. detuning the underlined coefficient.

Both forms show that coupling, after elimination, leads to a hierarchy of equations, with an
amount of detuning that is induced by the coupling—for similar further examples, see [44].

We close this section by rewriting the final result in a form that enables to estimate the contribution
of thermal expansion coupled elasticity to heat conduction:

s )2
12 (mT—kAT) = A [(71 + (E“)ZTO) T—kAT} , (24)
Ci Qcj
ie.,
1, . . 6EYESA’Ty \ -
S (T —kAT) =A -~ ———— 2 |T—kAT|. 25
2 (1 ) Kec EsHEdJ) ] (25)
T2

One message here is that, thermal expansion coupled elasticity modifies the thermal diffusivity
a = k/(oc) to an effective one a, = k/y, = (0c/7,) - a (see the heat conduction on the r.h.s.). For metals,
this means a few percent shift (1% for steel and copper, and 6% for aluminum) at room temperature.
The other is that, for a length scale (e.g., characteristic sample size) ¢ and the corresponding
Fourier time scale £2/a, the rh.s. is, to a (very) rough estimate, 1//¢? times a heat conduction equation
while the Lh.s. is (similarly roughly)
1 1
— (26)
(2/a)? o
times the (nearly) same heat conduction equation (a one with a; = k/;). In other words, the Lh.s.
provides a contribution to the r.h.s. via a dimensionless factor

= —. 27)

This dimensionless factor is about 1071° to 10~!3 for metals, 10~!* for rocks and 10~1° for plastics
with ¢ = 3mm, a typical size for flash experiments. Therefore, the effect of the Lh.s. appears to be
negligible with respect to the r.h.s.
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It is important to point out that the first phenomenon—the emergence of effective thermal
diffusivity—would remain unnoticed in the analogous one space dimensional calculation:

c=ED, 00 = ¢, L=7 =D +aT, (28)
g=—kT', e=cT+ Brpifpe = (29)
¢ 20
% [(Qc — Ea®Ty)T — kT”} = [ocT — kT"])" (30)

[no detuning of gc on the r.h.s.]. It is revealed only in the full 3D treatment, which reveals possible
pitfalls of 1D considerations in general as well.

As conclusion of this section, thermal expansion coupled elasticity may introduce a few percent
effect (a material dependent but sample size independent value) in determining thermal diffusivity
from flash experiments or other transient processes (while its other consequences may be negligible).

4. Pseudo-Temperature Approach

The experimental results serve to check whether a certain theory used for describing the observed
phenomenon is acceptable or not. The heat pulse (flash) experiment results may show various
temperature histories. Generally, the flash measurement results are according to the Fourier theory.
In some cases, as reported in [39,40] the temperature histories show “irregular” characteristics,
especially these histories could be described by the help of various non-Fourier models [7,34,45,46].
Some kind of non-Fourier behavior could be constructed as it is shown in the following. This is only
an illustration how two parallel Fourier mechanisms could result a non-Fourier-like temperature
history. The idea is strongly motivated by the hierarchy of Fourier equations in the GK model [44] as
mentioned previously; however, their interaction is not described in detail.

The sample that we investigate now is only a hypothetic one, we may call it as a “pseudo-matter”.
We consider in the following that the pseudo-matter formed by parallel material strips is wide enough
that the interface effects might be neglected, i.e., they are like insulated parallel channels. We also
consider that only the thermal conductivities are different, and the strips have the same mass density
and specific heat. During the flash experiment after the front side energy input, a simple temperature
equalization process happens in the sample in case of adiabatic boundary conditions. Since the flash
method is widely developed, the effects of the real measurement conditions (heat losses, heat gain,
finite pulse time, etc.) are well treated in the literature.

Figure 6 shows two temperature histories with thermal diffusivities of different magnitude,
both are the solution of Fourier heat equation.

0.8 doparan T _
o L
306 e ]
o -7
[) e
2 .
$0.4F L |
'_ 4
,/
0.2_ /, .
,/
O L’/, 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 45
Time [s]

Figure 6. Rear-side temperature history; solid line: a = 10~ m?/s, dashed line: a = 2.5-10~7 m?/s,
L =2mm.
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The mathematical formula that expresses the temperature history of the rear side in the adiabatic
case is [47]:
[e0]

V(E=1,Fo) =1+2 ) (—1)me"(m*7Fo), (31)

m=1

where v is the dimensionless temperature, i.e., v = TE;TOTO , where Tj is the initial temperature and

Tmax is the asymptotic temperature corresponding to equilibrium with adiabatic boundary conditions,
& is the normalized spatial coordinate (& = 1 corresponds to the rear-side) and Fo = a - t/(L?) stands
for the Fourier number (dimensionless time variable). This is an infinite series with property of slow
convergence for short initial time intervals. An alternative formula derived using the Laplace theorem
to obtain faster convergence for Fo < 1 [48]:

2

p(FO): Ze_ iF (32)

wherein p is the Laplace transform of v. In the further analysis we use Equation (32) to calculate the
rear-side temperature history.

So far, we described two parallel heat-conducting layers without direct interaction among them;
however, let us suppose that they can change energy only at their rear side through a very thin layer
with excellent conduction properties. Eventually, that models the role of the silver layer used in our
experiments to close the thermocouple circuit and assure that we measure the temperature of that
layer instead of any internal one from the material. Actually, the silver layer averages the rear-side
temperature histories of the parallel strips. We considered the mixing of temperature histories using
the formula:

p(Fo) = Opq(a = 10~ °m?/s, Foq) + (1 — O)pa(a=25- 10~7 m?/s, Fos), (33)

that is, taking the convex combination of different solutions of Fourier heat Equation (5). Figure 7
shows a few possible cases of mixing.

IS o
» ™

Temperature
o
S

0.2

Time [s]

Figure 7. Rear-side temperature histories.

5. Outlook and Summary

This pseudo-material virtual experiment is only to demonstrate that there might be several
effects causing non-Fourier behavior of the registered temperature data. Here, the assumed mixing of
“Fourier-temperatures” is analogous with the GK equation in sense of the hierarchy of Fourier equation:
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dual heat-conducting channels are present and interact with each other. However, the GK equation is
more general, there is no need to assume some mechanism to derive the constitutive equation.

Comparing Equations (6) to (25), the hierarchy of Fourier equation appears in a different way.
While (6) contains the zeroth and first order time derivatives of Fourier equation, the (25) instead
contains its second order time and spaces derivatives. Recalling that Equation (25)

1, . - 6E9E%a’Ty \ -
I \ )

72

is derived using the assumption that thermal expansion is present beside heat conduction, it becomes
obvious to compare it to a ballistic (i.e., thermal expansion induced) heat conduction model. Let us
consider such model from [7]:

noT+ (m+ )T+ T =aAT+ (k* +an)AT, (35)

where 7; and T, are relaxation times. Equation (35) have been tested on experiments, too [16].
Eventually, the GK equation is extended with a third order time derivative and the coefficients
are modified by presence of 7,. On contrary to Equation (34), it does not contain any fourth order
derivative. Actually, the existing hierarchy of Fourier equation is extended, instead of T and x? the
terms (71 + ) and (x2 + a1, ) appear within (35).

Although it is still not clear exactly what leads to over-diffusive heat conduction, the presented
possible interpretations and approaches can be helpful to understand the underlying mechanism. It is
not the first time to experimentally measure the over-diffusive propagation, but it is to consider its
size dependence. The simplest thermo-mechanical coupling predicts size dependence of material
coefficients that can be relevant in certain cases. All three approaches lead to a system of partial
differential equations, which can be called hierarchical.
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