
entropy

Article

Quantum-Inspired Evolutionary Approach for
the Quadratic Assignment Problem

Wojciech Chmiel * and Joanna Kwiecień

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering,
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; kwiecien@agh.edu.pl
* Correspondence: wch@agh.edu.pl; Tel.: +48-126-172-812

Received: 12 August 2018; Accepted: 5 October 2018; Published: 12 October 2018
����������
�������

Abstract: The paper focuses on the opportunity of the application of the quantum-inspired
evolutionary algorithm for determining minimal costs of the assignment in the quadratic assignment
problem. The idea behind the paper is to present how the algorithm has to be adapted to this problem,
including crossover and mutation operators and introducing quantum principles in particular
procedures. The results have shown that the performance of our approach in terms of converging to
the best solutions is satisfactory. Moreover, we have presented the results of the selected parameters
of the approach on the quality of the obtained solutions.

Keywords: quadratic assignment problem; quantum-genetic algorithm; quantum computing

1. Introduction

The quadratic assignment problem (QAP) is one of the most interesting and difficult combinatorial
optimization problem. Due to its popularity, many publications have focused on the QAP problem
to search for methods that are sufficient for practical applications. Some studies have focused on
the applicability of the QAP to the solution of many various problems. There exist several problems
which are specializations of this problem, like: graph partitioning and maximum clique problem,
travelling salesman problem, graph isomorphism and graph packing problem [1]. The QAP problem
has been shown to be NP-hard [2], hence several approaches have been used to solve this problem.
Intensive studies on quadratic assignment problems produced many algorithms over the last few
decades. For a survey on these methods, see [3,4]. It should be mentioned that the performance
of the methods for solving the quadratic assignment problems depends on the complexity of the
problems. Due to the computational complexity of the QAPs, exact methods can solve relatively
small-sized instances from the QAP benchmark library (QAPLIB) with up to 30 locations. Therefore,
to obtain near-optimal solutions, various heuristic and metaheuristic approaches have been developed,
such as tabu search [5–7], simulated annealing [8,9], scatter search or swarm algorithms including
ant colony optimization [10], particle swarm optimization [11,12] and bees algorithm [13,14]. One of
the initiatives followed by many researchers is using evolutionary algorithms for solving quadratic
assignment problems [3,15–18]. Although these algorithms do not ensure obtaining optimum solutions,
they produce good results in a reasonable computation time.

In this paper we focus on the quantum-inspired evolutionary algorithm (QIEA) that draws
inspiration from evolutionary computing and quantum computing. It is worth mentioning that
the harnessing of quantum computing to the study of various problems can take two forms.
One may choose to adapt some principles of quantum computing in the classical existing approaches.
Alternatively, a quantum mechanical hardware may be sought via the studies.

Entropy 2018, 20, 781; doi:10.3390/e20100781 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-4773-9123
https://orcid.org/0000-0002-8225-7605
http://www.mdpi.com/1099-4300/20/10/781?type=check_update&version=1
http://dx.doi.org/10.3390/e20100781
http://www.mdpi.com/journal/entropy

Entropy 2018, 20, 781 2 of 19

In recent years quantum-inspired algorithms have received growing attention. Many researchers
have presented various quantum-inspired evolutionary algorithms to solve many optimization
problems with success, including image processing [19], network design problems [20,21], scheduling
problems [22–25], real and reactive power dispatch [26], parameter estimation of chaotic systems [27],
parameter selection for support vector machines [28], community detection on CUDA-enabled
GPUs [29] etc.

Below we provide a brief summary of different methods for solving QAP. In many cases,
evolutionary algorithms and their hybridizations solved different combinatorial optimization problems
quite successfully. In [30,31] a hybrid genetic algorithm and its variants for solving the quadratic
assignment problem (QAP) are studied. Benlic et al. [32] obtained very promising results using a
new variant of the memetic algorithm for QAP, where a solution created by the crossover operator
is improved using the local optimisation procedure BLS (breakout local search) or by the adaptive
mutation procedure. Lalla-Ruiz et al. [33] proposed the hybrid biased random key genetic algorithm
for the QAP problem, where the chromosomes are random key vectors. In turn, Luong et al. [34]
proposed the multi-objective gene-pool optimal mixing evolutionary algorithm (MO-GOMEA)
with the automatic selection of the algorithm parameters. The use of Sule’s Method and genetic
algorithms in a real industry application formulated as the QAP was proposed in [35]. It should be
mentioned that extensive research was carried out on developing various specific modifications of
particular components of evolutionary algorithms to increase the EA efficiency, including crossover
schemes [16,36,37] or replacement strategies of the population [25].

There are many algorithms, in which the nature inspired approach is combined with the
methods from different domains. Metlicka et al. [38] proposed the chaos driven discrete artificial
bee colony (CDABC) algorithm with the pseudo-random number generator based on the chaos
pseudo-number generators using the chaos maps. The distributed multi-agent optimization model
for QAP (MAOM-QAP) was designed by Sghir et al. [39], where the cooperating agents, such as
decision-maker, local search, crossover and perturbation agents, were included in the intensification or
diversification of the search process.

In turn, Duman et al. [40] proposed the algorithm based on the phenomenon of the migrating
birds. The algorithm explores the proportionally smaller number of neighbourhoods for solution
(birds) at the back of the V bird formation. Olivera et al. [41] proposed the population-based ant colony
optimization algorithm (P-ACO) with the original pheromone update algorithm. Hafiz et al. [42]
proposed the PSO algorithm for the QAP, which introduces the probabilistic learning process based on
the identifying beneficial assignment of the facility to a particular location. Dokeroglu et al. [43]
proposed a hyper-meta-heuristics for QAP, where well-known heuristics such as the simulated
annealing (SA), the robust tabu search (RTS), the ant colony optimization (ACO) and the breakout
local search (BLS) cooperate in the parallel.

Moreover, other approaches were tested. For example, Tasgetiren et al. [44] proposed for QAP
the variable block insertion heuristic in the single-solution version (VBIH) and in the populated
version (PVBIH). Yuan et al. in [45] studied the evolutionary multitasking of the permutation-based
combinatorial optimization problems (PCOPs) and proposed a new unified representation and the new
survivor selection procedure. The BLS-OpenMP algorithm was proposed by Aksan et al. [46]. In this
algorithm local search heuristic uses the Levenshtein distance metric for checking similarity of the new
starting points to the previously explored solution of QAP. Acan et al. [47] proposed the heuristic,
where two populations of solutions act as a short-term and a long-term memory and cooperate within
the great deluge algorithm (GDA) which is similar to the simulated annealing (SA) algorithm where
the level-based acceptance is dynamically adjusted.

Theoretical developments of quantum-inspired evolutionary algorithms and applications of their
different types are presented in [48].

Entropy 2018, 20, 781 3 of 19

Although there are studies on the individual topics of the quadratic assignment problem and
quantum-inspired evolutionary algorithms, we have found none that covers both of these two topics.
The purpose of this paper is to demonstrate that QIEA for solving QAP is possible through the correct
design of particular procedures. Therefore, we assumed that QIEA can be applied after its modification,
concerning a representation of solutions to the proper choice of crossover operators and quantum
gates. We incorporate a rich set of examples to illustrate the application of the different operators in
our approach and to show that appropriate modifications are needed to ensure the admissibility of
solutions and efficiency of our approach.

Moreover, to introduce the basics of the quantum computing and the quadratic assignment
problem, we have endeavoured to provide some in-depth quantum-inspired evolutionary algorithm for
solving QAPs. The organization of this paper is as follows: Section 2 provides an overview introducing
QAP, with some examples of its applications. Due to considerable importance of the quadratic
assignment problem, this section briefly describes the Koopmans–Beckmann model. Section 3 gives
more insight into the quantum-inspired evolutionary algorithms. In order to cope with the application
of this algorithm to solve the quadratic assignment problem, we present some adaptations of the
algorithm such as an appropriate representation of a solution, the crossover operators, the involvement
of a quantum gate, the mutation procedure and the local search (2-opt). In Section 4, we provide the
results of conducted experiments with respect to our approach performance on selected instances.
Much work focuses on the impact of various parameter settings. We tested the impact of the 2-opt
probability and the gate’s occurrence on the quality of the obtained solutions. The final section regards
a discussion of the results and summarizes the conclusions.

2. Quadratic Assignment Problem

The QAP problem was introduced by Koopmans and Beckmann in 1957 as a mathematical model
for the assignment of a set of economic activities to a set of locations, with taking into account the
distance and flow between the facilities and the costs of placing a facility in a specific location.

Let us now define the three non-negative matrices D = [dij]n×n, F = [fij]n×n, B = [bij]n×n for
the given set N = 1, ..., n and permutation π as the solution to the QAP problem. Thus, π(i) ∈ N
(i = 1, ..., n) corresponds to the index of the facility and the set N is the set of the location indexes to
which the facilities are assigned.

Formally, the QAP problem can be formulated as follows: given distances between locations
(matrix D), the flow (weight, number of connections) between pairs of facilities (matrix F), and the
assignment cost of the facility m to the position n (matrix B), which in most cases is omitted.
The solution of QAP (also denoted as QAP(F, D, B)) can be shown with the permutation form
π = (π(1), . . . , π(n)) of the set of n elements (facilities). The aim of solving the Koopmans–Beckmann
model is to find the permutation π∗ in the set of permutations Π, so that:

f (π∗) = min
π∈Π

f (π) (1)

where

f (π) =
n

∑
i=1

n

∑
j=1

fijdπ(i)π(j). (2)

The aim is to minimize the objective function f (π) which describes a global cost assignment of
n facilities to n locations. Π is the set of permutations on the set N. In most cases the matrix D is
symmetric (distance dij between two locations i and j is the same as between j and i). Matrix F is
symmetric if fij is regarded as connections.

As mentioned in the previous section, Sahni and Gonzales [2] proved that QAP is strongly
NP-hard by showing that the existence of a polynomial time algorithm for solving QAPs with the
entries of the coefficient matrices belonging to {0,1,2} implies the existence of a polynomial time
algorithm for an NP-hard decision problem (the Hamiltonian cycle problem).

Entropy 2018, 20, 781 4 of 19

Many researchers discussed and examined the quadratic assignment problem in respect of its
practical use. They proposed its application for solving various real problems e.g., hospital lay-out [49],
campus planning model [50], backboard wiring problem [51], and so on. Reviews on some practical
applications of QAPs can be found in [4].

3. Quantum-Inspired Evolutionary Algorithms

By combining quantum computing with an evolutionary algorithm, Han and Kim [52] proposed
the first quantum-inspired evolutionary algorithm (QIEA) with quantum coding of chromosomes and
a quantum rotation gate as a variation operator to increase obtaining better solutions. Apart from
rotation gates, more various quantum gates such as the NOT, AND, OR, NAND, Hadamard, can be
applied to modify the state of a qubit [53]. We do not discuss all the gates for changing the probabilistic
distribution of each individual. The interested reader is referred to the original literature [53]. Moreover,
a comprehensive survey of studies over quantum-inspired evolutionary algorithms is provided in [48].
In this section, firstly we briefly describe the principles of quantum computing, the difference between
the coding used for the standard and quantum algorithms, and the main components of our approach.

3.1. Principles of Quantum Computing: Quantum Bit and Quantum Gate

The quantum-inspired evolutionary algorithms use quantum bits (qubits, Q-bits) to represent
individuals, quantum gates employed to operate on the Q-bits to create the next generation (offspring)
by employing an observation process to connect the Q-bit representation with the optimization
variables. The Q-bit individual can describe a linear superposition of the basis states in a search space
probabilistically and its representation maintains the population diversity. It is represented by a vector
in the Hilbert space with the basis states |0〉 and |1〉.

Therefore, the superposition |Ψ〉 of the qubit is represented as follows:

|Ψ〉 = α |0〉+ β |1〉 , (3)

where α and β are numbers that specify the probability amplitudes of the corresponding states and
satisfy the normalization condition |α|2 + |β|2 = 1.

Hence, the values |α|2 and |β|2 give the probabilities that the Q-bit will render the ‘0’ or ‘1’ states,
respectively. Generally speaking, a qubit is the smallest unit of information and is represented by a
pair of numbers [αβ]T . If the qubit individual q is defined as a string of the n qubits, a system has n
Q-bits and expresses the 2n states as follows:

q =

[
α1 α2 α3 · · · αn

β1 β2 β3 · · · βn

]
. (4)

The ith Q-bit is updated by applying the following quantum rotation gate (Q-gate) [53]:

G(ϕ) =

[
cosϕ −sinϕ

sinϕ cosϕ

]
, (5)

where ϕ is the Q-gate rotation angle defined as:

ϕ = s(α, β)∆ϕ (6)

and s(α, β) and ∆ϕ are the direction of quantum gates rotation (the sign of ϕ) and the magnitude of
rotation angle of ϕ, respectively. The rotation Q-gate quantum operator is presented in Figure 1.

Entropy 2018, 20, 781 5 of 19

j

|1〉

a

b
|Y>

Dj

|0〉

Figure 1. Rotation Q-gate geometric interpretation.

The direction and the rotation angle are given in the look-up table (Table 1) according to [54],
where f (x) and f (b) represent the fitness of the current chromosome and the fitness of the best
individual, respectively.

Table 1. Parameters in look-up table.

x b f (x) < f (b) ∆ϕ
s(α, β)

α · β > 0 α · β < 0 α = 0 β = 0

0 0 False 0.2π 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False 0.5π 0 0 0 0
0 1 True 0 −1 +1 ±1 0
1 0 False 0.5π −1 +1 ±1 0
1 0 True 0 +1 −1 0 ±1
1 1 False 0.2π +1 −1 0 ±1
1 1 True 0 +1 −1 0 ±1

However, it should be remembered that the rotation Q-gate quantum operator has a disadvantage.
The values in the look-up table can affect the algorithm performance. Note that the rotation angle has
an effect on the convergence speed. One way to avoid this problem is to use an adaptive strategy as
was shown in [55].

3.2. Quantum Evolution for the Quadratic Assignment Problem Algorithm

The proposed algorithm was built on the principles of the genetic algorithm and quantum
mechanics. As we know, the efficient mechanisms of genetic algorithms make them useful for different
combinatorial problems. The algorithm goes up to the pseudo-optimal solution by the population
update based on the selection, crossover and mutation operators. By combining these genetic operators,
we can implement various genetic algorithms. For surveys of the crossover operators and their
investigation within genetic algorithms for solving QAPs, see [56].

The proposed Quantum Evolutionary Algorithm for QAP problem (Q2APA) algorithm uses the
solution representation based on the qubits. It employs several types of the pseudo-genetic operators
which operate on the permutation form of the solution. Before using this operator, the qubit form of
the solution is decoded to the form of the permutation. The algorithm uses the following crossover
operators designed for the permutation solution representation: PMX (partially matched crossover),
OX (order crossover) and CX (cycle crossover).

Entropy 2018, 20, 781 6 of 19

The general structure of the Q2APA approach is illustrated in Figure 2. The implemented
procedures which use the qubit representation of the permutation are marked with the gray colour.
The main components of our approach are presented in detail in the following sections.

InitPopulation

Crossover
(PMX, OX, CX)

Mutation

QuantumGate

Local optimisation
(2-Opt)

pLO

pG

pm

1-pG

Stop ?

1-pLO

1-pm

Figure 2. Q2APA algorithm flow.

3.2.1. Algorithm Initialization and Selection

The InitPopulation procedure creates λ solutions in the form (4), where αk, βk are real values
generated randomly with the uniform distribution and k = 1, 2, ..., (log2 n + 1)n, where n denotes the
problem size. In the algorithm, the selection procedure can take two forms. One may choose to adopt
the roulette wheel method. Therefore, there will be more chromosomes that have the lower objective
function value in the new generated population. For each chromosome in the population the fitness
value f (πi) of permutation πi is given as the difference between the worst solution obtained in the
population and the value of the objective function. Alternatively, the ranking method may be sought.
The solutions in the current generation are ranked in ascending order according to the value of the
objective function. Then, based on the ranking, a function is built, the value of which determines the
probability of choosing a given solution during the selection. There are two basic variants of these
functions—the linear version and the non-linear one. In the paper, we assume that the probability of
choosing a given solution p(πi) to be a parent is based on the linear version of the ranking:

∀i ∈ {1, · · · , λ} : rank(πi) = i⇔ ∀j ∈ {1, · · · , λ} f (πi) < f (πj) (7)

Entropy 2018, 20, 781 7 of 19

p(πi) =
1
λ

(
ηmax − (ηmax − ηmin)

i− 1
λ− 1

)
(8)

where ηmax defines decrease in probability of the selection as the parent if the ranking of the solutions
decreases and ηmin = 2− ηmax, 1 ≤ ηmax ≤ 2.

3.2.2. Crossover Process

All solutions in the population are processed by the crossover operator. The set of the crossover
operators contains a special type of the operators designed to the permutation crossover, such as: PMX,
OX, CX. On the basis of the crossover of the two permutations (parents) the two valid permutations
(siblings) can be obtained [57]. The first well-known crossover that has been applied in our approach
is the PMX operator. It starts with a random choice of two crossover points in the parent permutations
(the same in both parents). Genes located in such a part of the permutations are swapped (by mapping)
between the parents. Other positions are rewritten if they are not present in the offspring permutations.
If the conflict occurs, genes are replaced with the use of a mapping relationship.

While creating new solutions, the order crossover (OX) assumes a randomly selection of two cut
points in two parent permutations and preserves the order of genes. The selected part of one parent
chromosome between these points is copied to the offspring. The unassigned positions are sequentially
supplemented and taken from the other parent in order, starting from the first gene after the second
cut point. After reaching the end of the parent permutation, one performs additional assignments
from the beginning of this parent until all genes have been considered.

During the CX operator all offspring genes are taken either from the first or second parent.
All genes found in the same positions in both parents are assigned to the child’s corresponding
locations. Starting from the first or the randomly selected location that has not be included in the
offspring yet, an element is randomly selected from both parents. Then, additional assignments are
made to avoid random assignments. The next unassigned location is processed in the same way until
all locations are included.

3.2.3. Mutation Procedure

Each solution in the population is represented by the tuple Sij = {Pij, Qij}, where Qij is the
qubit representation of the solution while Pij is the observable state of the qubit, a permutation.
The indexes i and j define the index of the population (iteration) and the index of solution in the
population, respectively. Before application of the mutation operator, the solution has to be moved
from the superposition state (Qij) to the observable state (Pij) using the ObservableState procedure (see
Algorithm 1).

Algorithm 1 ObservableState.

Require: Qij, n.
Step 1. For each k ∈ [1, ..., (log2 n + 1)n] generate uniformly value ρ ∈ [0, 1]

1. If ρ < |α|2 then qk = 1 else qk = 0 and obtain the binary string: [q1q2, · · · q(log2 n+1)n].
2. For each i ∈ [1, · · · n] translate the binary substring [qi+1qi+2 · · · qi+(log2 n+1)n] to the decimal

value and obtain the string of the decimal number Sd = [d1d2 · · · dn].

Step 2. Replace each number di in this way that the Sd takes a permutation form.
For i = 1 to n do:

1. Find the set of smallest, not marked, elements in the string Sd = [d1d2. . . dn].
2. Replace the smallest element from the left side of the string - dk, by the value i and set the value i

at the position k as marked.

Return string Sd which has a permutation form.

Entropy 2018, 20, 781 8 of 19

The mutation operator which generates a random permutation in the Hamming distance equals
2 by swapping two randomly selected elements in the permutation. It allows preventing the Q2APA
algorithm from being trapped into the local optimum. To control exploration properties of our
approach, the Q-gate operator using the quantum solution representation is used.

All the solutions generated using the Q-gate operator are improved using the 2-opt local
optimization procedure which effectively examines n(n−1)

2 + 1 neighbourhood solutions. The mutation
operator changes randomly a binary qubit value. Afterwards, this mutated solution in the qubit form
is processed by the Rotation Q-Gate operator. In this paper we propose to control the size of the
rotation angle of Q-gate. We assume that the angle ϕ is defined as a variable related to the generation
number i (Figure 2). For example, the geometric reduction of the Q-gate angle expressed as ϕ · δi can
be used, where δ < 1. In the experiment, depending on the algorithm settings, the modified or original
values from the look-up table are used (Table 1). Below, the code fragments in C# responsible for the
quantum mutation and the standard rotation gate (according to Table 1) are presented.

public class MutationOperator : IMutationOperator
{
private static MersenneTwister rand = new MersenneTwister();
public double MutationProbability { get; set; }
public MutationOperator(double probability = 0.0) {this.MutationProbability = probability;}
public ISolution Execute(IPopulation population)
{

double ifMutate;
Solution solToReturn = null;
foreach(Solution sol in population){

ifMutate = rand.NextDouble();
if(ifMutate <= this.MutationProbability){
int selectedChromosome = rand.Next(0, sol.Size - 1);

int bitsInChromosome = (int)(Math.Log(sol.Size, 2.0) + 1);
int selectedQbit = rand.Next(0, bitsInChromosome - 1);
sol[selectedChromosome][selectedQbit].ExecuteNotGate();
sol.toPermutation();
solToReturn = new Solution(sol);
break;

}
}
return solToReturn;

}
}
....

public class RotationGateOperator : IEvolutionaryOperator
{
...

public void ExecuteOriginal(IPopulation population, Solution best, double alpha)
{

double theta;
double alphaTimesBeta;
double angle = 0.0;
double sign = 0.0;
this.solSize = best.Size;
this.bitsInSol = (int)(Math.Log(this.solSize, 2.0) + 1);
Solution prevSolution = null;

foreach (Solution sol in population){

Entropy 2018, 20, 781 9 of 19

if (sol.Goal >best.Goal){
prevSolution = new Solution(sol);
for (int i = 0; i < this.solSize; i++){

for (int j = 0; j < this.bitsInSol; j++){
theta = 0.0;
alphaTimesBeta = sol[i][j].Alpha * sol[i][j].Beta;
angle = 0.0;
sign = 0.0;
if (sol[i][j].ObservedState == 1 && best[i][j].ObservedState == 0){

if (alphaTimesBeta > 0.0) sign = -1.0;
else if (alphaTimesBeta < 0.0) sign = 1.0;
else if (sol[i][j].Alpha == 0.0){

double d = rand.NextDouble();
if (d > 0.5) sign = 1;
else sign = -1.0;

}
angle = 0.5 * Math.PI;

}
else if (sol[i][j].ObservedState == 1 && best[i][j].ObservedState == 1){

if (alphaTimesBeta > 0.0) sign = 1.0;
else if (alphaTimesBeta < 0.0) sign = -1.0;
else if (sol[i][j].Beta == 0.0){

double d = rand.NextDouble();
if (d > 0.5) sign = 1.0;
else sign = -1.0;

}
angle = 0.2 * Math.PI;

}
theta = angle * sign;
if (theta != 0.0) sol[i][j].ExecuteRotationGate(theta*alpha);

}
}
sol.toPermutation();
if (sol.Goal > prevSolution.Goal) sol.BestSolution = prevSolution;

}
}

}
}

3.2.4. Detailed Q2APA Algorithm Flow

Once an initial population of quantum chromosomes is created, these are used to create a
population of permutations. It should be mentioned that each solution is evaluated to give a level of its
fitness. Upon their selection, the offspring solutions are formed by the multiple operators: crossover,
mutation, Q-gate and 2-opt. The qubit state update is performed if the solution has been subject to
changes resulting from the operation of the quantum gate operator or for this solution the occurrence
of the conditions for the mutation has been met. However, after performing a crossover operation,
the state of the qubits of the child solutions is not evaluated. Note that such an assessment (mostly in
the early iterations of the algorithm) would cause that the solutions obtained through the crossover
could lose the information obtained from the parents’ solutions. Q-bit individuals are modified by
applying the rotation Q-gate with probability pm. Then, the state of each qubit is checked in the best
solution and compared to the state of the corresponding qubit in the solution obtained by the quantum
gate. In the next step, the quantum chromosomes (the set Q′) are converted to permutations (the set Π′)

Entropy 2018, 20, 781 10 of 19

by using Algorithm 1 and they are improved using the 2-opt procedure with the probability pLO (see
Figure 2). Without the use of a quantum gate, the quantum idea of the algorithm is then manifested
only during the creation of the initial population and the mutation.

Taking into account the described procedures, our algorithm’s flow is shown in Figure 3, where b
denotes the best solution found by the Q2APA algorithm during the evaluation process of the
population, and b1,, bλ represent solutions for their two forms (the permutation and quantum),
so bi = {πi, Qi} . It is important to note that, at the beginning, the permutation forms of the solutions
are evaluated using the mutation and the crossover operators. These operators do not affect the
quantum state of the parents. On the basis of the offspring’s permutation, the quantum representation
of the solutions is created. When analyzing Figure 3, one can conclude that the solutions in the
population are randomly changed (with the predefined probability) using the quantum rotation gate
or/and the 2-opt procedure.

b

b1 b2 bk bλ

π1 π2 πk πλ

Q1 Q2 Qk Qλ

Crossover

Crossover

Gate

2-opt

Q’1

π'1

Mutation

Crossover

Mutation

Gate

Q’2

π'2

2-opt

Crossover

Gate

Q’λ

π'λ

2-opt

Gate

Q’k

π'k

2-opt

Mutation

Mutation

Figure 3. Detailed Q2APA algorithm flow.

4. Experiments and Results

The aim of the proposed experiments is to test the possibility of using the quantum representation
to improve the results obtained by the evolutionary algorithm for the QAP problem. We evaluate
the performance of the Q2APA algorithm by testing it on the well-established benchmark instances
from the QAPLIB, whose size is indicated in the instance name. Therefore, we tested it through
a number of experiments on the QAP instances with the known reference solutions. As we know,
the QAPLIB contains various instances of the QAPs, which stem from real-life problems (architecture,
computer science, etc.) and the instances generated for testing problems with the special properties.
The solution quality was taken into account to assess the performance of the algorithm. Therefore, we
conducted many runs of the Q2APA on the 37 instances of varying complexity. For each test instance,
we assume the same setting of parameters through 10 independent runs of the algorithm. For this
purpose, we obtained the relative deviation (Dev) of the best found objective value (fbest, the best value

Entropy 2018, 20, 781 11 of 19

of ten independent runs) by our approach from the best known value (fre f) reported in the QAPLIB
as follows:

Dev =
fbest − fre f

fre f
× 100% (9)

Various crossover operators, gates and 2-opt probabilities will be discussed with a view to
characterizing the results obtained from their application. As we know by choosing different values of
parameters, there are different results one can obtain. Therefore, a question is if there is any particular
value better than the others. In what follows, we will restrict attention to characterizing the best values
of the Q2APA parameters resulting from their application.

The algorithm was implemented in C# programming language using Windows 10 operating
system. The computer parameters used for calculations are presented in Table 2.

Table 2. CPU parameters.

CPU

Model Intel Core i5-6500
Cores 4
Cache 6 MB

Threads 4
Instruction Set 64 Bit
Base Frequency 3.2 GHz

4.1. Impact of Different Crossover Operators

The first series of the experiments aimed at determining the best operator in the crossover process
among the three operators: PMX, CX, OX (see Section 3.2.2). These crossover operators for creating
offspring were tested on two groups of the instances stored in the QAPLIB. It should be noted that these
experiments were conducted using other fixed parameters during all the iterations. In the experiments,
the stopping criterion was the maximum number of the iterations which equals 1000. We used the
mutation rate equalling 0.01, the probability crossover equalling 0.7, the population size equalling
350 individuals, the probability of 2-opt equalling 0.2. We applied the roulette and the ranking method
for the population selection. We have found that the Q2APA with the PMX operator and the ranking
method obtains the best results. Therefore, we recommend the choice of the PMX operator in other
instances and the next experiments.

4.2. Impact of 2-opt Probability

Furthermore, we investigated what value of the 2-opt’ probability was correct. In the tests,
we assumed the following fixed parameters: the maximum number of iterations = 10,000, the mutation
rate equalling 0.01, the probability crossover (PMX) equalling 0.7, the gate’s probability equalling 0.7,
the population size equalling 350 individuals. To determine the best value of the probability of the
2-opt procedure we conducted many experiments to assess the performance of the Q2APA algorithm.
We used the BUR26 problems taken from the QAPLIB library to verify the impact of this parameter
on the results of the Q2APA algorithm. The relative deviations (Dev) of the found solutions from the
reference solutions for the different values of the 2-opt probability (pLO) are summarized in Table 3.
On the basis of these experiments, it should be noted that for instances BUR26, the best probability
value is 0.4.

Table 3. Selected results.

pLO 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Dev 1.053777 1.044784 0.932192 0.867456 0.728421 0.893458 0.91159 0.961345

Entropy 2018, 20, 781 12 of 19

4.3. Impact of Gate’s Probability

During experiments we were interested in testing several values of the gate’s probability and
finding the best one. Therefore, only this parameter varies while the others are fixed. In the experiments,
each run of the Q2APA was terminated after 10,000 iterations. We used the mutation rate equalling 0.01,
the probability crossover equalling 0.7, the population size equalling 350 individuals, the probability
of the 2-opt equalling 0.4, and the ranking method for the population selection. The results of the
Q2APA for all the considered instances (over the 10 consecutive runs for each instance), relating to
the different values of the gate’s probability are presented in Figure 4. One can see that increasing
probability of the gate’s occurrence (the value of the horizontal axis) can reduce Dev results.

0 0.2 0.4 0.6 0.8 1 1.2
13

14

15

16

17

18

16.5

17.9

17.1

18.4

17.0

15.5

15.2 15.1 15.2

13.4

pGates

D
ev

Figure 4. Influence of gate’s probability.

Table 4. Selected results of 37 test instances.

Instance fre f fbestinit fbest fbestavr Iter Iterav Tavr Dev[%]

BUR26A 5426670 5635476 5463327 5487776 3041 4451 77880 0.67
BUR26B 3817852 3983271 3856650 3861719 2221 3413 74712 1.01
BUR26C 5426795 5688890 5464668 5494245 3289 6847 77616 0.69
BUR26D 3821225 4021377 3860910 3873609 1963 3845 79332 1.03
BUR26E 5386879 5674734 5434198 5457173 821 5343 83952 0.87
BUR26F 3782044 3981808 3816849 3833165 618 5080 72468 0.92
BUR26G 10117172 10448706 10246167 10272730 168 1652 78408 1.27
BUR26H 7098658 7474339 7177185 7200100 755 3165 90288 1.10
CHR22A 6156 9442 7610 7643 3179 5976 54516 23.61
CHR22B 6194 10124 7486 7650 199 1719 58476 20.85
ESC32A 130 314 216 227.5 429 4427 95700 66.15
ESC32B 160 352 224 255 5038 6767 116952 40.00
ESC32C 642 818 642 645.5 1768 5691 111012 0.00
ESC32D 200 294 220 222.5 2949 6301 101640 10.00

Entropy 2018, 20, 781 13 of 19

Table 4. Cont.

Instance fre f fbestinit fbest fbestavr Iter Iterav Tavr Dev[%]

ESC32E 2 6 2 2 1 5 9824 0.00
ESC32F 2 10 2 2 1 2 101112 0.00
ESC32G 6 18 6 6 6 39 113520 0.00
ESC32H 438 586 464 478.5 1919 5170 92532 5.93
ESC64A 116 228 142 148 7804 8837 216876 22.41
KRA30A 88900 121740 103150 104897.5 2758 4957 102432 16.02
KRA30B 91420 123640 103640 107377.5 2440 6106 109956 13.36
LIPA30A 13178 13679 13570 13574.5 2559 5383 101904 2.97
LIPA30B 151426 189936 181552 183420.3 3021 6931 95304 19.89
LIPA40A 31538 32551 32309 32327.25 1448 3734 108768 2.44
LIPA40B 476581 605311 585031 591119 186 4934 111540 22.75
LIPA50A 62093 63692 63477 63505.75 2221 3869 130416 2.22
LIPA50B 1210244 1531788 1498885 1504987 1404 5586 155364 23.84
LIPA60A 107218 109696 109370 109401.5 6159 6484 189024 2.00
LIPA60B 2520135 3209806 3170192 3173960 1347 5068 212520 25.79
SKO42 15812 18968 18070 18108.5 3127 6995 121968 14.28
SKO49 23386 27942 26672 26720.5 58 3075 151404 14.05
SKO56 34458 40586 39146 39313.5 2939 5513 169224 13.60
STE36A 9526 17274 12872 13915 1280 5315 114048 35.12
STE36B 15852 54246 28996 33159.5 3449 6034 114312 82.91
STE36C 8239110 14268786 11293534 11529941 5108 6986 105072 37.07
THO30 149936 192394 173998 175704 1279 4294 80916 16.04
THO40 240516 312066 285288 290608 1240 6486 112860 18.61

Avr 15.12

Table 4 shows the selected results for one value of the gate’s probability (0.8). The table is
organized as follows: the first column contains the instance’s name, the second column contains
reference solutions, the third column presents the best initial solution. Two next columns fbest and
fbestavr display the best solution and the average solution of the 10 independent runs found by the
Q2APA. The iterations with the best solution and the average number of the iterations are given in the
sixth and seventh columns. Tavr defines the average execution time in milliseconds of the 10 runs of
the algorithm. The last column contains the information on the relative deviation.

On the basis of the relative deviations of the solutions obtained (Table 4), it should be noted that
for the four test instances (from the ESC* group) the Q2APA finds the reference solutions. In three cases
(ESC32E, ESC32F, ESC32G), the reference solution was found through all the runs of the algorithm in
the small numbers of the iterations. Note for the ESC32E and the EC32F that the optimal solutions were
found in the first iteration. In the case of instances from the BUR* and LIPA*A groups the solutions are
close to the best known solutions. For the analysed instances, the mean value of Dev (Devav) equals
15.12%. It leads to the conclusion that the results obtained with these fixed settings of the parameters
for all instances are not good enough.

4.4. Best Results

In this section, the best results obtained to gain the overview on differences in the performance
between the different parameter settings in the Q2APA algorithm were presented. These values can
be vital to affect the convergence. For example, the experiments in the previous section indicated the
influence of the probability of the gate’s occurrence on the obtained solutions. Therefore, the different
values of this parameter and the crossover probabilities through the experiments were used. All the
experiments conducted in the context of the effect of the various crossover probabilities and the
probability of the gate’s occurrence are summarized in Table 5.

Entropy 2018, 20, 781 14 of 19

Table 5. Best results of 37 test instances.

Instance fre f fbest Dev[%] DevGA DevGASA Instance fre f fbest Dev[%] DevGA DevGASA

BUR26A 5426670 5458907 0.59 0.00000 0.00000 KRA30A 88900 90200 1.46 0.00000 0.00000
BUR26B 3817852 3856650 1.01 0.00000 0.00000 KRA30B 91420 103640 13.36 0.00000 0.00000
BUR26C 5426795 5464668 0.69 0.00010 0.00010 LIPA30A 13178 13570 2.97 0.00000 0.00000
BUR26D 3821225 3860910 1.03 0.00080 0.00010 LIPA30B 151426 181552 19.89 0.00000 0.00000
BUR26E 5386879 5386954 0.01 0.00002 0.00002 LIPA40A 31538 32309 2.44 0.00000 0.00000
BUR26F 3782044 3816849 0.92 0.00000 0.00000 LIPA40B 476581 497926 4.47 0.00000 0.00000
BUR26G 10117172 10246167 1.27 0.00030 0.00230 LIPA50A 62093 62866 1.24 0.00000 0.95180
BUR26H 7098658 7177185 1.10 0.00000 0.00000 LIPA50B 1210244 1344530 11.09 0.00000 0.00000
CHR22A 6156 6290 2.17 0.32490 0.00000 LIPA60A 107218 109370 2.00 0.76110 0.79931
CHR22B 6194 7486 20.85 2.71230 1.32390 LIPA60B 2520135 2980033 18.24 0.00020 0.00020
ESC32A 130 134 3.07 3.07690 3.07690 SKO42 15812 18070 14.28 0.00000 0.10119
ESC32B 160 168 5.00 5.00000 5.00000 SKO49 23386 26672 14.05 0.24800 0.11970
ESC32C 642 642 0.00 0.00000 0.00000 SKO56 34458 39146 13.60 0.29600 0.20900
ESC32D 200 220 10.00 0.00000 0.00000 STE36A 9526 9800 2.87 0.25190 0.00000
ESC32E 2 2 0.00 0.00000 0.00000 STE36B 15852 16424 3.60 0.80750 0.00000
ESC32F 2 2 0.00 0.00000 0.00000 STE36C 8239110 8419654 2.19 0.00000 0.19970
ESC32G 6 6 0.00 0.00000 0.00000 THO30 149936 173998 16.04 0.22940 0.29480
ESC32H 438 464 5.93 0.00000 0.00000 THO40 240516 285288 18.61 0.17380 0.16050
ESC64A 116 142 22.4 0.00000 0.00000
Devavr 6.45 0.37 0.32

Implementation of the variable parameter settings in the Q2APA algorithm improves its efficiency,
but does not guarantee that the well-known reference solutions will be reached. It should be noted that
for the 13 instances we obtained better results (cf. Table 4). For all the analysed instances, the mean
value of Dev does not exceed 6.45%.

The selected course of the optimization process for the Q2APA algorithm for the BUR26A instance
is illustrated in Figure 5. It shows the dependency between the objective function value for the best
solution and the iteration number. The algorithm during optimization process improves the objective
function value, no doubt.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iter

5.45

5.5

5.55

5.6

5.65

5.7

5.75
106

Figure 5. Best run of Q2APA for BUR26A (gate’s probability equals 0.7).

Entropy 2018, 20, 781 15 of 19

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iter

5.55

5.6

5.65

5.7

5.75

5.8

5.85

5.9

5.95

6
106

Figure 6. Selected percentiles for BUR26A (gate’s probability equals 0.7).

5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4

106

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 7. Probability mass function for BUR26A, for iteration I = 100 and I = 10,000 (gate’s probability
equals 0.7).

Figure 6 shows the values of the median and the 5th, 25th, and 75th percentiles for the iterations.
One can see a clear drop in all the values in the subsequent iterations. It should be noted that the
variability of the results obtained is inevitable, because Q2APA is a stochastic algorithm.

Figure 7 shows how the probability distribution (the probability mass function PMF) changed
during the optimization process. In both cases (I = 100, I = 10,000) the optimization process starts

Entropy 2018, 20, 781 16 of 19

with the normal distribution with the mean value about 5.9× 106. In the subsequent iterations the
maximum of the PMF grows and moves towards the smaller values of the objective function, keeping
the population relatively diverse.

The results obtained by the Q2APA algorithm are compared with the results obtained by the two
other algorithms: the standard genetic algorithm (GA) and the genetic algorithm which cooperates with
the simulation annealing algorithm (GASA) [58] for the same set of the QAP problem instances (see
Table 5). The results of the Q2APA are much worse because the number of iterations executed by the
GA and GASA is higher (from two to six times) than the number of iterations executed by the Q2APA
in our experiments. As we mentioned, we tested the possibility of using the quantum representation
in the construction of the approximation algorithms. It seems that the quantum representation can be
successfully used in the scenarios where the effective exploration of the search space is required.

5. Conclusions

This paper proposed the Q2APA, the purpose of which was to solve the quadratic assignment
problem using the quantum paradigm. We merely present a study about the quality of the obtained
solutions with our adaptations. It should be mentioned that many valuable results were obtained
with experiments involving various settings of the algorithm control parameters. Beside these, we
involved the 2-opt for modification of solutions. It should be mentioned that the experiments were
conducted to determine how the particular control parameter values influenced the performance of
the implemented algorithm. As we know, a big value of the rotation angle can lead to premature
convergence. In contrast, a small value can increase the chance of finding a better solution, but the
convergence time increases.

Our experiments show that selecting the parameters’ values can influence the results. The results
might be better in the case of using their optimal settings, so we plan to take into account methods
for parameter control and tunning. The implemented method does not include entropy that provides
information regarding the spread of the solutions’ values of objective function. Therefore, entropy
adapted for use in combinatorial optimization problems including the QAP could improve diversity
population, especially at later stage of the algorithm. The future research will be devoted to combining
various local search procedures with the described framework. Moreover, one possibility for future
work is the performance of GPU implementation for the described algorithm and using a larger
number of the QAP instances with bigger size in tests.

Author Contributions: The concept of the proposed algorithm with modifications was designed by both authors.
The Q2APA was implemented by W.C. All sections and experiments were conceived, performed and described by
both authors. Authors have read and approved the paper.

Funding: This research was funded by the statutory research of AGH University of Science and Technology
(No. 11.11.120.396).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Burkard, R.; Dell’Amico, M.; Martello, S. Assignment Problems; SIAM Society for Industrial and Applied
Mathematics: Philadelphia, PA, USA, 2009.

2. Sahni, S.; Gonzalez, T. P-complete approximation problems. J. ACM 1976, 23, 555–565. [CrossRef]
3. Drezner, Z. The quadratic assignment problem. In Location Science; Laporte, G., Nickel, S., Saldanha da Gama,

F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 345–363. [CrossRef]
4. Loiola, E.M.; De Abreu, N.M.M.; Boaventura-Netto, P.O.; Hahn, P.; Querido, T. A survey for the quadratic

assignment problem. Eur. J. Oper. Res. 2007, 176, 657–690. [CrossRef]
5. Misevicius, A. A tabu search algorithm for the quadratic assignment problem. Comput. Optim. Appl. 2005,

30, 95–111. [CrossRef]
6. Battiti, R.; Tecchiolli, G. Simulated annealing and tabu search in the long run: A comparison on {QAP} tasks.

Comput. Math. Appl. 1994, 28, 1–8. [CrossRef]

http://dx.doi.org/10.1145/321958.321975
http://dx.doi.org/10.1007/978-3-319-13111-5_13
http://dx.doi.org/10.1016/j.ejor.2005.09.032
http://dx.doi.org/10.1007/s10589-005-4562-x
http://dx.doi.org/10.1016/0898-1221(94)00147-2

Entropy 2018, 20, 781 17 of 19

7. Drezner, Z. The extended concentric tabu for the quadratic assignment problem. Eur. J. Oper. Res. 2005,
160, 416–422. [CrossRef]

8. Wilhelm, M.R.; Ward, T.L. Solving quadratic assignment problems by ‘Simulated Annealing’. IIE Trans. 1987,
19, 107–119. [CrossRef]

9. Misevičius, A. A modified simulated annealing algorithm for the quadratic assignment problem. Informatica
2003, 14, 497–514.

10. Dorigo, M.; Di Caro, G.; Gambardella, L.M. Ant algorithms for discrete optimization. Artif. Life 1999,
5, 137–172. [CrossRef] [PubMed]

11. Lv, C.; Zhao, H.; Yang, X. Particle swarm optimization algorithm for quadratic assignment problem.
In Proceedings of the 2011 International Conference on Computer Science and Network Technology
(ICCSNT), Harbin, China, 24–26 December 2011; Volume 3, pp. 1728–1731.

12. Liu, H.; Abraham, A.; Zhang, J. A particle swarm approach to quadratic assignment problems.
In Soft Computing in Industrial Applications; Saad, A., Dahal, K., Sarfraz, M., Roy, R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 213–222.

13. Chmiel, W.; Szwed, P. Bees algorithm for the quadratic assignment problem on CUDA platform.
In Man–Machine Interactions 4; Springer: Berlin/Heidelberg, Germany, 2016; Volume. 391, pp. 615–625.

14. Chmiel, W.; Kadłuczka, P.; Kwiecień, J.; Filipowicz, B. A comparison of nature inspired algorithms for the
quadratic assignment problem. Bull. Pol. Acad. Sci.-Tech. 2017, 65, 513–522. [CrossRef]

15. Tate, D.M.; Smith, A.E. A genetic approach to the quadratic assignment problem. Comput. Oper. Res. 1995,
22, 73–83. [CrossRef]

16. Drezner, Z. A new genetic algorithm for the quadratic assignment problem. INFORMS J. Comput. 2003,
15, 320–330. [CrossRef]

17. Drezner, Z. Compounded genetic algorithms for the quadratic assignment problem. Oper. Res. Lett. 2005,
33, 475–480. [CrossRef]

18. Drezner, Z. Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment
problem. Comput. Oper. Res. 2008, 35, 717–736. [CrossRef]

19. Talbi, H.; Batouche, M.; Draa, A. A quantum-inspired evolutionary algorithm for multiobjective image
segmentation. Int. J. Math. Phys. Eng. Sci. 2007, 1, 109–114.

20. Lin, D.Y.; Waller, S. A quantum-inspired genetic algorithm for dynamic continuous network design problem.
Transp. Lett. 2009, 1, 81–93. [CrossRef]

21. Xing, H.; Ji, Y.; Bai, L.; Liu, X.; Qu, Z.; Wang, X. An adaptive-evolution-based quantum-inspired evolutionary
algorithm for QoS multicasting in IP/DWDM networks. Comput. Commun. 2009, 32, 1086–1094. [CrossRef]

22. Wang, L.; Wu, H.; Tang, F.; Zheng, D.Z. A hybrid quantum-inspired genetic algorithm for flow shop
scheduling. In Advances in Intelligent Computing; Huang, D.S., Zhang, X.P., Huang, G.B., Eds.; Springer:
Berlin, Germany, 2005; pp. 636–644.

23. Li, B.B.; Wang, L. A hybrid quantum-inspired genetic algorithm for multi-objective scheduling. In ICIC
Intelligent Computing; Springer: Berlin, Germany, 2006; pp. 511–522.

24. Gu, J.; Gu, M.; Cao, C.; Gu, X. A novel competitive co-evolutionary quantum genetic algorithm for stochastic
job shop scheduling problem. Comput. Oper. Res. 2010, 37, 927–937. [CrossRef]

25. Wu, X.; Wu, S. An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling
problem. J. Intell. Manuf. 2017, 28, 1441–1457. [CrossRef]

26. Vlachogiannis, J.G.; Lee, K.Y. Quantum-inspired evolutionary algorithm for real and reactive power dispatch.
IEEE Trans. Power Syst. 2008, 23, 1627–1636. [CrossRef]

27. Wang, L.; Li, L.P. An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of
chaotic systems. Expert Syst. Appl. 2010, 37, 1279–1285. [CrossRef]

28. Luo, Z.; Wang, P.; Li, Y.; Zhang, W.; Tang, W.; Xiang, M. Quantum-inspired evolutionary tuning of SVM
parameters. Prog. Nat. Sci. 2008, 18, 475–480. [CrossRef]

29. Gupta, S.; Mittal, S.; Gupta, T.; Singhal, I.; Khatri, B.; Gupta, A.; Kumar, N. Parallel quantum-inspired
evolutionary algorithms for community detection in social networks. Appl. Soft Comput. 2017, 61, 331–353.
[CrossRef]

30. Misevičius, A.; Rubliauskas, D. Testing of hybrid genetic algorithms for structured quadratic assignment
problems. Informatica 2009, 20, 255–272.

http://dx.doi.org/10.1016/S0377-2217(03)00438-7
http://dx.doi.org/10.1080/07408178708975376
http://dx.doi.org/10.1162/106454699568728
http://www.ncbi.nlm.nih.gov/pubmed/10633574
http://dx.doi.org/10.1515/bpasts-2017-0056
http://dx.doi.org/10.1016/0305-0548(93)E0020-T
http://dx.doi.org/10.1287/ijoc.15.3.320.16076
http://dx.doi.org/10.1016/j.orl.2004.11.001
http://dx.doi.org/10.1016/j.cor.2006.05.004
http://dx.doi.org/10.3328/TL.2009.01.01.81-93
http://dx.doi.org/10.1016/j.comcom.2008.12.036
http://dx.doi.org/10.1016/j.cor.2009.07.002
http://dx.doi.org/10.1007/s10845-015-1060-6
http://dx.doi.org/10.1109/TPWRS.2008.2004743
http://dx.doi.org/10.1016/j.eswa.2009.06.013
http://dx.doi.org/10.1016/j.pnsc.2007.11.012
http://dx.doi.org/10.1016/j.asoc.2017.07.035

Entropy 2018, 20, 781 18 of 19

31. Misevicius, A.; Guogis, E. Computational study of four genetic algorithm variants for solving the quadratic
assignment problem. In Information and Software Technologies; Skersys, T., Butleris, R., Butkiene, R., Eds.;
Springer: Berlin, Germany, 2012; pp. 24–37.

32. Benlic, U.; Hao, J.K. Memetic search for the quadratic assignment problem. Expert Syst. Appl. 2015,
42, 584–595. [CrossRef]

33. Lalla-Ruiz, E.; Expósito-Izquierdo, C.; Melián-Batista, B.; Moreno-Vega, J.M. A hybrid biased random key
genetic algorithm for the quadratic assignment problem. Inf. Process. Lett. 2016, 116, 513–520. [CrossRef]

34. Luong, N.H.; Poutré, H.L.; Bosman, P.A. Multi-objective Gene-pool optimal mixing evolutionary algorithm
with the interleaved multi-start scheme. Swarm Evol. Comput. 2018, 40, 238–254. [CrossRef]

35. Atencio, F.; Neira, D. A sule’s method initiated genetic algorithm for solving QAP formulation in facility
layout design: A real world application. J. Theor. Appl. Inf. Technol. 2016, 84, 157–196.

36. Ahuja, R.K.; Orlin, J.B.; Tiwari, A. A greedy genetic algorithm for the quadratic assignment problem.
Comput. Oper. Res. 2000, 27, 917–934. [CrossRef]

37. Tosun, U. A new recombination operator for the genetic algorithm solution of the quadratic assignment
problem. Procedia Comput. Sci. 2014, 32, 29–36. [CrossRef]

38. Metlicka, M.; Davendra, D. Chaos driven discrete artificial bee algorithm for location and assignment
optimisation problems. Swarm Evol. Comput. 2015, 25, 15–28. [CrossRef]

39. Sghir, I.; Hao, J.K.; Jaafar, I.B.; Ghedira, K. A multi-agent based optimization method applied to the quadratic
assignment problem. Expert Syst. Appl. 2015, 42, 9252–9262. [CrossRef]

40. Duman, E.; Uysal, M.; Alkaya, A.F. Migrating birds optimization: A new metaheuristic approach and its
performance on quadratic assignment problem. Inf. Sci. 2012, 217, 65–77. [CrossRef]

41. Oliveira, S.; Hussin, M.S.; Roli, A.; Dorigo, M.; Stützle, T. Analysis of the population-based ant colony
optimization algorithm for the TSP and the QAP. In Proceedings of the 2017 IEEE Congress on Evolutionary
Computation (CEC), San Sebastian, Spain, 5–8 June 2017; pp. 1734–1741.

42. Hafiz, F.; Abdennour, A. Particle swarm algorithm variants for the quadratic assignment problems—
A probabilistic learning approach. Expert Syst. Appl. 2016, 44, 413–431. [CrossRef]

43. Dokeroglu, T.; Cosar, A. A novel multistart hyper-heuristic algorithm on the grid for the quadratic assignment
problem. Eng. Appl. Artif. Intell. 2016, 52, 10–25. [CrossRef]

44. Tasgetiren, M.F.; Pan, Q.K.; Ozturkoglu, Y.; Cotur, O.K. Variable block insertion heuristic for the quadratic
assignment problem. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC),
San Sebastian, Spain, 5–8 June 2017; pp. 1765–1770.

45. Yuan, Y.; Ong, Y.S.; Gupta, A.; Tan, P.S.; Xu, H. Evolutionary multitasking in permutation-based combinatorial
optimization problems: Realization with TSP, QAP, LOP, and JSP. In Proceedings of the 2016 IEEE Region
10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 3157–3164.

46. Aksan, Y.; Dokeroglu, T.; Cosar, A. A stagnation-aware cooperative parallel breakout local search algorithm
for the quadratic assignment problem. Comput. Ind. Eng. 2017, 103, 105–115. [CrossRef]

47. Acan, A.; Ünveren, A. A great deluge and tabu search hybrid with two-stage memory support for quadratic
assignment problem. Appl. Soft Comput. 2015, 36, 185–203. [CrossRef]

48. Zhang, G. Quantum-inspired evolutionary algorithms: A survey and empirical study. J. Heuristics 2011,
17, 303–351. [CrossRef]

49. Elshafei, A.N. Hospital layout as a quadratic assignment problem. J. Oper. Res. Soc. 1977, 28, 167–179.
[CrossRef]

50. Dickey, J.; Hopkins, J. Campus building arrangement using topaz. Transp. Res. 1972, 6, 59–68. [CrossRef]
51. Duman, E.; Or, I. The quadratic assignment problem in the context of the printed circuit board assembly

process. Comput. Oper. Res. 2007, 34, 163–179. [CrossRef]
52. Han, K.H.; Kim, J.H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization.

IEEE Trans. Evol. Comput. 2002, 6, 580–593. [CrossRef]
53. Hey, T. Quantum computing: An introduction. Comput. Control Eng. J. 1999, 10, 105–112. [CrossRef]
54. Gu, J.; Gu, X.; Gu, M. A novel parallel quantum genetic algorithm for stochastic job shop scheduling.

J. Math. Anal. Appl. 2009, 355, 63–81. [CrossRef]
55. Lahoz-Beltra, R. Quantum genetic algorithms for computer scientists. Computers 2016, 5, 24. [CrossRef]
56. Misevićius, A.; Kilda, B. Comparison of crossover operators for the quadratic assignment problem.

Inf. Technol. Control 2005, 34, 109–119.

http://dx.doi.org/10.1016/j.eswa.2014.08.011
http://dx.doi.org/10.1016/j.ipl.2016.03.002
http://dx.doi.org/10.1016/j.swevo.2018.02.005
http://dx.doi.org/10.1016/S0305-0548(99)00067-2
http://dx.doi.org/10.1016/j.procs.2014.05.394
http://dx.doi.org/10.1016/j.swevo.2015.03.002
http://dx.doi.org/10.1016/j.eswa.2015.07.070
http://dx.doi.org/10.1016/j.ins.2012.06.032
http://dx.doi.org/10.1016/j.eswa.2015.09.032
http://dx.doi.org/10.1016/j.engappai.2016.02.004
http://dx.doi.org/10.1016/j.cie.2016.11.023
http://dx.doi.org/10.1016/j.asoc.2015.06.061
http://dx.doi.org/10.1007/s10732-010-9136-0
http://dx.doi.org/10.1057/jors.1977.29
http://dx.doi.org/10.1016/0041-1647(72)90111-6
http://dx.doi.org/10.1016/j.cor.2005.05.004
http://dx.doi.org/10.1109/TEVC.2002.804320
http://dx.doi.org/10.1049/cce:19990303
http://dx.doi.org/10.1016/j.jmaa.2008.12.065
http://dx.doi.org/10.3390/computers5040024

Entropy 2018, 20, 781 19 of 19

57. Chmiel, W.; Kadłuczka, P.; Packanik, G. Performance of swarm algorithms for permutation problems.
Automatyka 2009, 15, 117–126.

58. Chmiel, W.; Kadluczka, P. A multi-phase diversification method of population in the evolutionary algorithm.
In Proceedings of the XVI National Conference on Discrete Process Automation, Zakopane, Poland,
24–27 September 2008; Volume 151, pp. 195–202.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Quadratic Assignment Problem
	Quantum-Inspired Evolutionary Algorithms
	Principles of Quantum Computing: Quantum Bit and Quantum Gate
	Quantum Evolution for the Quadratic Assignment Problem Algorithm
	Algorithm Initialization and Selection
	Crossover Process
	Mutation Procedure
	Detailed Q2APA Algorithm Flow

	Experiments and Results
	Impact of Different Crossover Operators
	Impact of 2-opt Probability
	Impact of Gate’s Probability
	Best Results

	Conclusions
	References

