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Abstract: Interaction Information (II) generalizes the univariate Shannon entropy to triplets of
variables, allowing the detection of redundant (R) or synergetic (S) interactions in dynamical
networks. Here, we calculated II from functional magnetic resonance imaging data and asked
whether R or S vary across brain regions and along lifespan. Preserved along lifespan, we found
high overlapping between the pattern of high R and the default mode network, whereas high values
of S were overlapping with different cognitive domains, such as spatial and temporal memory,
emotion processing and motor skills. Moreover, we have found a robust balance between R and S
among different age intervals, indicating informational compensatory mechanisms in brain networks.

Keywords: interaction information; synergy; redundancy; default mode network; resting state;
lifespan

1. Introduction

The use of interaction information (II) can detect redundant or synergetic interactions in dynamical
networks. Defined for a set of three variables, II measures the change in the mutual information
between any two variables after adding the third. If the change is positive, a synergetic interaction
occurs in the triplet, whereas if the change is negative, redundant interactions emerge [1,2]. Therefore,
whilst the mutual information (MI) shared between two variables is always positive or zero (for the
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case of independent variables), II can be either positive or negative, respectively, unveiling redundancy
(R) or synergy (S).

To give some specific examples, positive II (redundancy) results from common-cause structures
when two variables share the same information about the third variable [3–5]. The prototypical
example of negative II, i.e., synergy, is a set of three variables where one is the output of an XOR gate
from the other two variables, which are independent random inputs [6,7]. In the latter case only the
joint knowledge of the two inputs provides information about the target variable. It is also worth
mentioning that II has been generalized to multiplets of an arbitrary number of variables by exploiting
a suitable expansion of the MI [8] or in the scenario of Granger causality [9]; such an expansion has
subsequently been generalized to lagged interactions in [10].

The presence of synergetic effects is well-known to occur in sociological and psychological
modeling, where (very often) there are some variables that increase the prediction power on
different ones [11]. On the other hand, redundancy have been addressed before in gene regulatory
networks [12,13] and electrophysiological data in patients with epilepsy [2] or with deficit of
consciousness [14], but, the pattern of triplet interactions in functional magnetic resonance imaging
is not yet well-understood. By using a different methodology based on Granger causality
influence, the authors in [15] found that R regions occurred mainly due to voxel-contiguity and
inter-hemispheric symmetry, while S occurred mainly between non-homologous region pairs in
contra-lateral hemispheres.

The development of novel imaging techniques and in particular, advances in magnetic
resonance imaging (MRI), have enabled the reconstruction of functional brain networks, for example,
by calculating correlations between blood oxygen-level dependent time series, the so-called functional
MRI. Here, we focus on the resting state, i.e., when the subject’s brain is not involved in any
goal-oriented task, which has been shown to have a correlation structure quite robust across different
subjects [16,17]. Very important from a methodological side (also showing robustness), far away
different methods, such as seed-based correlation analysis [18], independent component analysis [19]
or partial least squares decomposition [20], have provided the same structure in the functional
correlation, a modular organization of different resting state networks (RSN). Very striking for cognitive
researchers, the different RSNs resemble the activation maps obtained when subjects perform specific
tasks, such as for instance, auditory, visual, sensory-motor or executive control [21].

From a clinical point of view, the study of the resting state is crucial and has a tremendous
impact and future, as subjects do not need to understand and memorize complex cognitive tasks
to be performed, challenging for some of the most common brain disorders. So far, the functional
connectivity patterns at rest have been shown to be altered in many different pathological conditions,
such as deficit of consciousness [22–25], schizophrenia [26,27], epilepsy [28] and Alzheimer’s
Disease [29–33].

Here, we assess synergetic and redundant interactions along lifespan, calculating II from
functional MRI in a population of participants with an age range from 10 to 80 years. Previous studies
have addressed variations of functional connectivity along lifespan, but as a far as we know, none of
them made use of II before. It has been shown for instance that the functional connectivity generally
decreases along lifespan, specifically between anterior and posterior brain regions [34,35]. It has been
also shown that network modularity (a.k.a. network segregation) decreases as well [36], a mechanism
supporting the loss of cognitive specialization with aging. However, when looking to structural
connectivity rather than functional, not only network modularity decreases with age, but network
integration increases [37], in a counterbalanced manner ensuring network efficiency along the lifespan.
Therefore, despite previous work approaching functional connectivity variations along lifespan, the use
of II from functional MRI to approach synergetic and redundant interactions along lifespan have not
been addressed before.
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2. Methodology

2.1. Participants

Participants were recruited in the vicinity of Leuven and Hasselt (Belgium) from the general
population by advertisements on websites, announcements at meetings and provision of flyers at visits
of organizations, and public gatherings (PI: Stephan Swinnen). A sample of N = 164 healthy volunteers
(81 females) ranging in age from 10 to 80 years (mean age 44.4 years, SD 22.1 years) participated in
the study. All participants were right-handed, as verified by the Edinburgh Handedness Inventory.
None of the participants had a history of ophthalmological, neurological, psychiatric, or cardiovascular
diseases potentially influencing imaging or clinical measures. Informed consent was obtained before
testing. The study was approved by the local ethics committee for biomedical research, and was
performed in accordance with the Declaration of Helsinki.

2.2. Imaging Acquisition

Image acquisition was performed in an MRI Siemens 3T MAGNETOM Trio MRI scanner with a
12-channel matrix head coil. The anatomical data was acquired as a high-resolution T1 image with a 3D
magnetization prepared rapid acquisition gradient echo: repetition time (RT) = 2300 ms, echo time (ET)
= 2.98 ms, voxel size = 1× 1× 1.1 mm3, slice thickness = 1.1 mm, field of view = 256× 240 mm2,
160 contiguous sagittal slices covering the entire brain and brainstem.

Resting state functional data was acquired with a gradient echo-planar imaging sequence over a
10 min session using the following parameters: 200 whole-brain volumes with TR/TE = 3000/30 ms,
flip angle = 90, inter-slice gap = 0.28 mm, voxel size = 2.5 × 3 × 2.5 mm3, 80 × 80 matrix,
slice thickness = 2.8 mm, 50 oblique axial slices, interleaved in descending order.

2.3. Imaging Preprocessing

We applied resting functional MRI preprocessing similar to previous work [38–43] using FSL and
AFNI. First, slice-time was applied to the fMRI data set. Next, each volume was aligned to the middle
volume to correct for head motion artifacts. After intensity normalization, we regressed out the motion
time courses, the average cerebrospinal fluid (CSF) signal and the average white matter signal. Next, a
band pass filter was applied between 0.01 and 0.08 Hz [44]. Next, the preprocessed functional data
was spatially normalized to the MNI152 brain template, with a voxel size of 3 × 3 × 3 mm3. Next, all
voxels were spatially smoothed with a 6 mm full width at half maximum isotropic Gaussian kernel.
Finally, in addition to head motion correction, we performed scrubbing, by which time points with
frame-wise displacements > 0.5 were interpolated by a cubic spline [45]. We further removed the effect
of head motion using the global frame displacements as a noninterest covariate, as old participants
moved more than the young (when representing the mean frame-wise displacement as a function of
age provided a correlation value equal to 0.51 with p-value equal to 10−11), and this fact introduced
nuisance correlations with age.

2.4. Brain Hierarchical Atlas

The brain was divided in 2514 brain regions that we grouped into modules using the brain
hierarchical atlas (BHA), developed in [46] and applied by the authors in a traumatic injury study [47]
and in a lifespan study [48]. The BHA is available to download at [49]. A new Phyton version that was
developed during Brainhack Global 2017-Bilbao can be download at [50].

Although full details have been provided before [46], very briefly, the use of the BHA guarantees
three conditions simultaneously: (1) that the dynamics of voxels belonging to a same module is very
similar, (2) that those voxels within same module are structurally wired by white matter tracts, (3) that
modules are simultaneously functional and structural.

Here, we focus on the M = 20 module partition as was shown to be optimal based on
cross-modularity [46], and index defined as the geometric mean between the modularity of the
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structural partition, the modularity of the functional partition, and the mean Sorensen similarity
between structural and functional modules.

A simple graph of the M = 20 modules is illustrated in Figure 1, but a full graphical representation
(including axial, sagittal and coronal views) of the M = 20 modules can be found in Figures 3 and 4 in
the paper [46], together with supplementary Figures S3 and S4 and supplementary videos (one per
module) available at [46]. Moreover, a complete anatomical description for each module is provided in
Table S1 in [46] and a functional correspondence for each module can be found in Figure 6b in [46].

Figure 1. Brain Hierarchical Atlas (BHA). Available to download at [49], the BHA is used to define
M = 20 modules, that was shown to be the optimal representation for best matching between brain
structure and function. For each module, we only depict the sagittal slice that best represents the
corresponding module. For a complete description of the BHA, see the Methodology section and
reference [46].

2.5. Shannon Entropy

The Shannon entropy of a random variable X is defined as:

H(X) = −∑
x

prob(x)log prob(x), (1)

where x represents one possible state of variable X [51,52]. Equation (1) can be generalized
to two and three dimensions, respectively as H(X, Y) = −∑x ∑y prob(x, y)log prob(x, y) and
H(X, Y, Z) = −∑x ∑y ∑z prob(x, y, z)log prob(x, y, z). For base 2 logarithm (as we have done here),
the entropy is expressed in bits.

Here, X represents any time series of resting state functional dynamics.
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2.6. Interaction Information

The interaction information (II) is an extension of the Shannon entropy to triplets of variables [1].
For any triplet (X, Y, Z), the interaction information (II) is defined as

II(X, Y, Z) ≡ MI(X, Y)−MI(X, Y|Z) (2)

where MI(X, Y) = H(X, Y) − H(X) − H(Y) is the mutual information between X and Y and
MI(X, Y|Z) is the conditional mutual information between X and Y conditioned to Z (for details
see [52]).

The sign of II has important physical implications; when II is positive, the three variables (X, Y, Z)
are said to be redundant, while if II is negative, the interaction in (X, Y, Z) is synergetic.

Here, X, Y, Z represent any three time series of resting state functional dynamics.

2.7. Calculation of II

First, we made use of the BHA to define M = 20 modules (depicted in Figure 1), which maximizes
the similarity between structural and functional modules (see above). Each module was used as a
mask to extract the time series of the voxels belonging to it (in the 3 × 3 × 3 mm3 MNI template, on
average, about 125 time series belong to a given module). Next, we built representative time series
for each module by averaging over all the time series within it. Therefore, the brain dynamics was
reduced to M = 20 time series, each per module.

For calculation of II, we used triplets (X, Y, Z) of module time series and applied Equations (2),
estimating MI(X, Y) and MI(X, Y|Z) using the Gaussian copula approach recently derived in [53].
In particular, we made use of the functions cmi_ggg.m and mi_gg.m; available at [54]

Important to remark is that because the copula entropy does not depend on the marginal
distributions of the original variables, the authors in [53] transformed the marginals to be standard
Gaussian variables, and therefore, the MI was exactly calculated under the Gaussian assumption.

2.8. Per Module R and S

Values of R per brain module were obtained by summing (for a fixed module m) over all pairs
such that II was positive, i.e.,

Rm ≡
1
N+ ∑

y
∑
z

II+(X = m, Y, Z), (3)

where II+ represent any positive value of II andN+ the total number of positive elements. Analogously,
the per module S was defined as:

Sm ≡
1
N− ∑

y
∑
z

∣∣II−(X = m, Y, Z)
∣∣ , (4)

where II− represent any negative value of II, N− the total number of negative elements and | · · · |
absolute value.

For the calculation of both Rm and Sm we only considered triplets in which the three variables are
distinct from each other, i.e., satisfying that y 6= m, y 6= z and z 6= y.

Normalized values of R and S were calculated by dividing each value by its maximum.

2.9. Statistical Analysis

To study the effect of age on the variables R, S and the ratio R/S along lifespan, we divided the
entire population of N = 164 in 4 different intervals: I1 (10–20 years old, N1 = 30), I2 (20–40 years old,
N2 = 46), I3 (40–60 years old, N3 = 29) and I4 (60–80 years old, N4 = 59).
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Group comparison of variables R, S and the ratio R/S was performed following four stages: First,
to eliminate statistical dependencies between values corresponding to different brain modules, for each
participant we averaged over all brain modules R, S and R/S. Second, we performed a Kruskal-Wallis
test between the values corresponding to the different age intervals. Third, we performed a Wilcoxon
rank sum test as a post-hoc analysis between all pairs of comparisons. Fourth and last, we applied a
Bonferroni correction by building a significance threshold equal to 0.05/6 = 0.0083 as we had four age
intervals, and this provided six pairwise comparisons.

Validation of the Gaussian assumption for these variables R, S and the ratio R/S was assessed
by a Shapiro-Wilk test together with a graphical manner such as a normal probability plot (shown in
Figure S1).

All the statistical analyses were performed in MATLAB (version R2017a, MathWorks Inc., Natick,
MA, USA).

2.10. Mask of the Resting State Networks

Following [55], we created a mask for the different resting state networks by defining voxels such
that their z-score value satisfied z < −3 or z > 3. In particular, we built masks for the default mode,
cerebellum, executive control, frontoparietal, sensorimotor and visual resting state networks.

These masks were used to calculate the percentage of overlap between brain maps of R, S and R/S
with the different functional resting state networks. Notice that, as these networks are overlapping
each other, no normalization exist in these percentages.

3. Results

M = 20 modules of the BHA were used as regions of interest (Figure 1). We calculated II for all
possible triplets. Redundancy and synergy were assessed using Equations (3) and (4). Lifespan was
assessed defining four different intervals of age: I1 (10–20 years), I2 (20–40 years), I3 (40–60 years) and
I4 (60–80 years).

Values of R in bits are represented in Figure 2. Panel a shows the values of R per each of the
M = 20 modules, at different age intervals. Along lifespan, the average R over all brain modules
showed differences between groups (Kruskal-Wallis test, p-value of p = 0.01). The non-parametric
test was necessary as the average value of R over all brain modules was non-Gaussian for all age
intervals (Figure S1). Post-hoc analyses (Figure 2b) between all pairs of groups revealed that only
the comparison I3 vs. I4 was significant different after Bonferroni correction (Wilcoxon rank sum test,
p = 0.006).

Brain maps of normalized R values per module are represented in Figure 2c. Highest values were
found in modules 3, 9 and 16, that bilaterally are located in cerebellum, precuneus, posterior cingulate,
superior and middle temporal gyrus, paracentral lobule, precentral gyrus, superior frontal and parietal
gyrus and insula. The function associated with these high redundant areas is a superposition of three
important resting state networks, namely, default mode, sensory-motor and auditory networks.

Values of S in bits are represented in Figure 3. Panel a shows the values of S per each of the
modules at different age intervals. Along lifespan, the average S over all brain modules showed
differences between groups (Kruskal-Wallis test, p = 0.002). Post-hoc analyses (Figure 3b) between all
pairs of groups revealed that synergy was different for the comparisons I1 vs. I4 (Wilcoxon rank sum,
p = 0.0006) and I2 vs. I4 (Wilcoxon rank sum, p = 0.006).
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Figure 2. Variations of redundancy (R) per brain module and along lifespan. (a) For each module,
values of R are represented in 4 different age intervals: blue (10–20 years old), purple (20–40), red (40–60)
and magenta (60–80). Dark central lines represent average values across participants and shaded areas
represent ± the standard error of the mean, calculated as the standard deviation of all values in the
group divided by the square root of the group size; (b) Violin plots of R averaging over all brain
modules within age interval. Mean ± standard deviation (no median) is also represented within each
violin. The means of the different groups have been connected by a thin solid black line just to easily
see the tendency of variations across age groups. * represents statistical significant differences after
Bonferroni correction; (c) Brain maps of normalized R averaging over all age intervals with a threshold
value of 0.7.
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Figure 3. Variations of synergy (S) per brain module and along lifespan. (a) For each module, values of
S are represented in 4 different age ranges, blue (10–20 years old), purple (20–40), red (40–60) and
magenta (60–80). Dark central lines represent average values across participants and shaded areas
represent ± the standard error of the mean, calculated as the standard deviation of all values in the
group divided by the square root of the group size; (b) Violin plots of R averaging over all brain
modules within age interval. Mean ± standard deviation (no median) is also represented within each
violin. The means of the different groups have been connected by a thin solid black line just to easily
see the tendency of variations across age groups. * represents statistical significant differences after
Bonferroni correction; (c) Brain maps of normalized R averaging over all age intervals with a threshold
value of 0.7.

Brain maps of normalized S values per module are represented in Figure 3c. Highest values were
found in modules 3, 8 and 18, that bilaterally are located in hippocampus, amygdala, entorhinal cortex,
fusiform, temporal pole, inferior temporal gyrus, caudate and putamen. These areas are associated
with different cognitive domains, such as spatial and temporal memory, emotion processing and
motor skills.

Figure 4 shows brain maps of normalized R together with the ones for 1−S. Values with
highest 1−S were found in modules 3, 9 and 10, bilaterally located in the anterior cingulate, inferior
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parietal and frontal gyrus, orbital gyrus, pars opercularis, pars orbitalis, pars triangularis, paracentral
lobule, precentral gyrus, postcentral gyrus, precuneus, superior temporal gyrus, insula, cerebellum,
posterior cingulate, inferior parietal gyrus, superior frontal gyrus. When comparing the brain maps of
R and 1−S one can see how 1−S (but not R) incorporates the frontal pole, increasing the overlapping
with the default mode network (DMN) from 50.32% for R (Figure 4a) to 66.95% for 1−S (Figure 4b).

Figure 4. Normalized values of R and 1−S across brain regions reveals a key redundant role of the
default mode network. (a) Brain maps of normalized R averaged over age intervals showed an overlap
of 50.32% with the default mode network (depicted in black); (b) Plotting similar brain maps for
1−S increased the overlap with the default mode network up to 66.94%. Notice that 1−S but not R
incorporated the frontal pole into the brain map, what caused to increase the matching with the default
mode network.

We have found that the amount of R is somehow compensated by S, and this occurred for all
brain modules and along lifespan (mean over all R/S values = 0.98, standard deviation = 0.16). This is
illustrated in Figure 5a. Indeed, although both R and S showed differences along lifespan, the ratio
R/S did not (Kruskal-Wallis test, p = 0.08). Post-hoc pairwise comparisons did not show either any
significant comparison (Figure 5b), indicating a robust balance between R and S along lifespan.
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Figure 5. A balanced ratio R/S along lifespan suggests compensatory mechanisms between redundancy
and synergy; (a) For each module, values of the ratio R/S are represented in 4 different age ranges,
blue (10–20 years old), purple (20–40), red (40–60) and magenta (60–80). Three dashed lines delimit
three regimes: 1. Infra-unbalanced, with values of R/S smaller than the mean minus one multiplied
by the standard deviation (colored with light grey rectangle); 2. Supra-unbalanced, with values of
R/S bigger than the mean plus one multiplied by the standard deviation (light red rectangle); and
3. Balanced, elsewhere (light yellow rectangle). Modules 9 and 10 corresponding to the default
mode network are highly supra-unbalanced. Modules 5 and 8 corresponding to the fronto-parietal
network are infra-unbalanced; (b) Violin plots of R/S averaging over all brain modules for each age
interval. Mean ± standard deviation (no median) is also represented within each violin. The means
of the different groups have been connected by a thin solid black line just to easily see the tendency
of variations across age groups. No statistical differences occurred in any group comparison after
Bonferroni correction, indicating a robust balance between R and S along lifespan.

Despite the effective balance between R and S (captured by the ratio R/S close to 1), however,
some brain areas went beyond the balanced regime, either to values of R much bigger or much smaller
than S. To understand what brain regions correspond to each situation, we defined brain maps of
infra-unbalanced R/S by looking to the brain areas with ratio R/S smaller than the mean minus one
multiplied by the standard deviation. Similarly, supra-unbalanced brain maps were determined by
looking to the ratio values bigger than the mean plus one multiplied by the standard deviation.
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Balanced areas corresponded to all the other situations of R/S. Table 1 shows the overlapping
of the three classes of brain maps (infra-unbalanced, supra-unbalanced and balanced) with the
most important resting state networks: default mode, cerebellum, executive control, frontoparietal,
sensorimotor and visual. Very remarkably, infra-unbalanced brain maps overlapped 9.5% with the
frontoparietal network. Balanced brain maps overlapped 84% and 77% respectively with the cerebellum
and visual networks. Supra-unbalanced brain maps matched 69.18% with the DMN, again revealing a
major redundant role of this network.

Table 1. Overlapping percentage of the ratio R/S with the main Resting State Networks. Notice that
the RSNs are overlapping networks each other, so overlapping percentage is not normalized.

Infra-Balanced (%) Balanced (%) Supra-Balanced (%)

Default Mode 0.2246 19.0583 69.1893
Auditory 0.0284 38.1631 55.2979
Cerebellum 0 84.3334 0.8268
Executive Control 5.176 37.3482 30.9205
Frontoparietal 9.5896 39.358 39.5368
Sensorimotor 1.72 11.7076 57.8549
Visual 0 77.7678 5.9748

4. Discussion

Interaction information (II) allows to assess how information between pairs of variables is
enhanced (by synergy, S) or diminished (by redundancy, R) after adding a third interacting variable.
Here, using the brain’s oxygenation dynamics provided by functional MRI, we have studied how the
values of R and S are distributed across brain areas and along lifespan.

Across brain areas, high values of S were found majorly in subcortical structures (amygdala,
hippocampus, putamen and caudate), although some others were cortical (entorhinal cortex,
fusiform and temporal pole), whilst R was found fully at the cerebral cortex (precuneus,
posterior cingulate, superior and middle temporal gyrus, paracentral lobule, precentral gyrus,
superior frontal and parietal gyrus and insula) and in the cerebellum. At the functional level, S was
associated with spatial and temporal memory, emotion processing and motor skills, whereas R was
associated with sensory processing (auditory and visual) and to a major extent to the DMN.

When looking to R and S across different age groups, we have found that the anatomical
representation of R and S preserved along lifespan, although an increase in the magnitude of both R
and S occurred for the group of participants older than 60 years as compared to younger populations.

This excess of R in the DMN occurring for the old population might be related with a network
plasticity mechanism based on compensation, triggered after a brain insult and producing DMN
hyperconnectivity occurring in the onset of several pathologies, for instance, after concussion [56,57]
or in the early stage of Alzheimer’s disease [58].

The DMN has been shown to be altered in a plethora of brain disorders. Its redundant role found
here, as yet unreported, might suggest the DMN to work as an information integrator at the large
scale achieved by increasing redundancy. Perhaps, the significant increase of R occurring for the old
population suggests a physiological dysfunction of the DMN when we age, known to be altered [59],
but more research is needed to confirm this conjecture.

We have shown that the amount of R and S are roughly balanced (as the ratio R/S tends to 1) across
brain areas and along lifespan, suggesting compensatory informational mechanisms in brain networks,
that as far as we know, never before has been acknowledged. However, some specific networks go
beyond the balanced regime, such as the frontoparietal network, which classically associated with
attentional control [60] is the network most infra-unbalanced (i.e., with smaller values of the ratio
R/S), revealing a new synergetic role of this network from an informational perspective. Moreover,
cerebellum and visual are the two networks most balanced, similarly revealing new informational
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roles for these networks. Finally, the DMN is the one most supra-unbalanced (with the highest ratio
R/S), and therefore, confirming from an information-compensation point of view, again, the redundant
role of the DMN.

Future research should pay attention to what possible mechanisms or circuits can sustain R and S
in the brain, for instance, addressing if some network topological metrics obtained from the structural
connectivity matrix such as integration or segregation are somehow related to synergy and redundancy,
although this is far the scope of the present work.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/20/10/742/
s1, Figure S1: Validation of the Gaussian assumption for the different variables redundancy (R), synergy (S) and
the ratio R/S.
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