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Abstract: Biochemical networks having similar functional pathways are often correlated due to
cross-talk among the homologous proteins in the different networks. Using a stochastic framework,
we address the functional significance of the cross-talk between two pathways. A theoretical analysis
on generic MAPK pathways reveals cross-talk is responsible for developing coordinated fluctuations
between the pathways. The extent of correlation evaluated in terms of the information theoretic
measure provides directionality to net information propagation. Stochastic time series suggest that the
cross-talk generates synchronisation in a cell. In addition, the cross-interaction develops correlation
between two different phosphorylated kinases expressed in each of the cells in a population of
genetically identical cells. Depending on the number of inputs and outputs, we identify signal
integration and signal bifurcation motif that arise due to inter-pathway connectivity in the composite
network. Analysis using partial information decomposition, an extended formalism of multivariate
information calculation, also quantifies the net synergy in the information propagation through the
branched pathways. Under this formalism, signature of synergy or redundancy is observed due to
the architectural difference in the branched pathways.
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1. Introduction

The decision making processes at the cellular level are initiated by some specialised signalling
networks [1,2]. These networks play a pivotal role in making robust and precise cellular response
towards endogenic and exogenic perturbations. In addition, the process of decision making resolves
cellular fate as well as survival strategies in diverse peripheral conditions. Although both prokaryotic
and eukaryotic cells are comprised of several common signalling networks, few signalling networks
are incorporated mostly in the eukaryotes [3].

As an evolutionary outcome, cells have developed an optimal protein-protein (cognate and
noncognate) interaction within the signalling pathway to transduce extra-cellular information
efficiently [4]. One such signalling network is the mitogen-activated protein kinase (MAPK) pathway
that plays the central role to attune with extra-cellular signal in eukaryotic cells [5–9]. Although
different MAPK pathways with diverse inputs and outputs belong to a higher living species, they
are sometimes interconnected through overlapping sets of signalling components. Depending on
the interconnections, MAPK pathways can be classified into different groups that use one or more
than one common signalling components. Moreover, as a result of cross-interaction, a single regulon
regulates multiple targets in addition to its cognate target. Such type of signal association is defined
as cross-talk. Cross-coupling in the signalling network can modify the functionality of a network
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topology and can subsume errors compared to the uncoupled one. Cross-interactions have been
identified not only in eukaryotes but also in prokaryotes, as observed in the bacterial two-component
system [10–14]. In the eukaryotic system, cross-talk has been identified in numerous situations [15–17].
Furthermore, cross-talk and several of its variants have also been identified at different stages of gene
regulation [18–22].

Since cross-talk is observed in a broad range of biological processes, one may interrogate the
functional utility of such network coordination. The cross-coupling mechanism is conveyed through
generations and observed in a significant number of evolutionary descent. This signature remains
prominent in the course of evolution in spite of other modifications that are taking place at the
cellular level. Such character indicates that cross-talk might have a definite functional role to build up
synchronised cellular regulations by spending the stored energy. If this is true, how does a cell balance
the trade-off between network association and potential cost? Few comprehensive experiments on
the network connectivity suggest that networks of a well-delineated cluster are correlated with each
other but are uncorrelated to the rest of the network [8]. Synchronisation is necessary to attain natural
activity but needs to maintain a threshold value. Otherwise, too much synchronisation may lead
to a physiological disorder like epilepsy [23]. Inter-pathway cross-talk becomes prominent due to
the limitation of common resources, defined as the overloaded condition. However, cross-talk effect
becomes faint in the underloaded condition, where the level of available resources are present in
sufficient amount [19,20,22,24,25]. A key source of survival strategy under diverse environmental
conditions is the generation of fluctuations which induces non-genetic variability in a cellular
population. In such a situation, cells readjust to cope with the limited resources by introducing
cross-correlation among a set of genes and thus implementing a successful bet-hedging program [22].
Cross-talk also facilitates synchronisation in different organs such as cardio-respiratory interaction,
brain and tissues [23].

To address the functionality of cross-talk, we undertake a representative network comprised
of well-characterized features of signal transduction. To be specific, we focus on MAPK pathway,
a well-studied eukaryotic signalling machinery, conserved with three kinase cascades. In S. cerevisiae,
five MAPK signalling pathways are present, out of which only three (pheromone response, filamentous
growth response and osmostress adaptation) use a common kinase protein Ste11 [5,8]. In fact,
pheromone response and filamentous growth pathways also use the same kinase Ste7. Pheromone
MAPK cascade (Ste11 → Ste7 → Fus3) is activated by mating pheromone. Under low nutrient
condition, filamentous growth MAPK cascade (Ste11 → Ste7 → Kss1) becomes active whereas
high external osmolarity activates the osmoadaption cascade (Ste11→ Pbs2→ Hog1) [5,8]. Due to
inter-cascade correlation among the three signalling pathways, one pathway can be activated by the
signal of another pathway in the absence of its own signal. Several experimental results suggest that
such cross-talk is filtered out by cross-pathway inhibition, kinetic insulation and formation of scaffold
protein [5,8,26–29]. Although activation through inter-pathway cross-talk and cross-pathway inhibition
compensates each other, information is exchanged among the pathways during these interactions. This
leads to distinct queries (i) is it possible for an individual signalling pathway to convey its input signal
reliably downstream without experiencing any influence from the other channels of signal? (ii) Since
the inter-pathway connectivity is known not to allow the uniqueness of transduced signals - what are
the physiological advantages of cross-talk? (iii) Is there any participation of pathway output in the
cooperative regulation of a downstream target in a synchronised manner? (iv) How is it possible for
correlated pathways to keep up static as well as dynamic synchronisation in a single cell environment
that is prevalently stochastic in nature? (v) Do correlated fluctuations have any capability to control
the variability in the correlation between two different proteins?

In the present manuscript, we study generic S. cerevisiae MAPK pathways to address the potential
functionality of inter-pathway cross-talk within a stochastic framework. We consider two equivalent
interacting MAPK pathways, each one consisting of a linear chain of three MAPK cascade proteins [5,8].
Both pathways get activated by their corresponding external signals propagating downstream through
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phosphorylation (activation) and dephosphorylation (deactivation) of the cascade proteins. In addition,
due to cross-talk, phosphorylation of the intermediate components of the two pathways is influenced
by the activated kinase of the other pathway along with the cognate one. As the population of each
cascade protein is not sufficiently high within a single cell and experiences a fluctuating environment,
we express all associated chemical reactions in terms of the stochastic differential equation. We solve
the coupled set of nonlinear Langevin equations using linear noise approximation (LNA) [30,31] and
calculate the variance of each kinase and covariance between two different kinases (see Sec. II and
Appendix). Recent theoretical development [32] shows that LNA is not only limited to high copy
number but also exact up to second moments of any chemical species involved in a second-order
reaction. The fluctuations associated with at least one of the species participating in each of the
second-order reaction are Poissonian and uncorrelated with the fluctuations of other species. Also,
LNA remains valid for faster activation and deactivation (or synthesis and degradation) rates of the
corresponding components compared to the coarse-grained (steady state) time scale [30–40].

To classify the signal transduction efficacy through two pathways in the presence of
cross-association, we quantify two as well as multivariate mutual information. Distributions of all
kinase proteins are approximately considered Gaussian, allowing us to adopt a reduced expression of
mutual information [41,42]. The reduced equation mainly depends on the variance and the covariance
of the corresponding kinase. We validate our analytical calculation by exact stochastic simulation [43].
In the first subsection, we quantify two variable mutual information under the influence of cross-talk
parameter. We also investigate the mutual information between two non-cognate kinases and find
causality of this coordination. Since causality leads to synchronisation [23,44], it is important to
measure causality relation between the pathways, i.e., who regulates whom and to which extent. If
both pathways interact with each other and transduce information of the corresponding input signal
with different degrees, then it is challenging to characterize the magnitude and direction of signal
propagation. To overcome such difficulty, we define a new measure, net information transduction,
using the expressions of two cross mutual information, which satisfactorily quantifies the amount of
net signal propagation. In the connection of measuring directionality, it is important to mention the
concept of transfer entropy [45] which has been applied in several systems [46–49]. Transfer entropy
quantifies the directed information transfer within a system. In the calculation of transfer entropy,
one considers the time series of the random variable and makes use of the time lagged data. In our
study, however, we make use of mutual information evaluated at steady state to define a relative
dimensionless measure, net information transduction D (see Equation (1)). D is a normalized quantity
and is bounded within a range ±1. It helps to diagnose the direction of net information flow between
the two parallel cross interacting signalling pathways. We also verify inter-pathway synchronisation
with the help of coordinated fluctuations of stochastic trajectories of two parallel kinases. This result
implies how two kinases are synchronised within a cell. To understand this phenomenon further,
we investigate how much correlation develops between the steady state levels of two different kinases
in a hypothetical population of genetically identical cells.

In the second subsection, we quantify three variable mutual information (i.e., two sources to
one target, or one source to two targets) when both the channels of information flow work separately.
We make use of three variable mutual information along with two variable mutual information to
define the measure of net synergy [50]. In the present work, we quantify net synergy using the
theory of partial information decomposition (PID) [51] as the formalism deals with the calculation
of multivariate mutual information. Furthermore, it defines unique, synergistic and redundant
information among the variables of interest. Following the initial development by Williams and
Beer [51], several modifications of the formalism have been proposed till date [52–54]. In the context
of dynamical systems obeying Gaussian noise processes the formalism has been further extended by
Barrett [55]. We note here that the measure of interaction information is the negative of the measure
of net synergy [56]. Considering the interactions between two parallel MAPK pathway, we identify
signal integration and signal bifurcation motif. In signal integration motif, two MAPKKK proteins
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transmit signal into a single MAPKK protein which amounts to a sub-motif with two inputs and one
output. On the other hand, in signal bifurcation motif, a single MAPKKK protein transmits signal to
two MAPKK protein thus leading into a sub-motif with one input and two outputs. Quantification
of information transmission in these two sub-motifs requires calculation of both two variable and
multivariate mutual information which in turn provides the metric of net synergy. We observe the sign
of net synergy value changes depending on the signal integration as well as signal bifurcation and is
mainly controlled by pathway architecture.

2. Results and Discussion

2.1. Two Variable Mutual Information

The parameters ε2 and ε1 control the signalling channel X and Y, respectively. In Figure 1, we show
the mutual information profile as a function of ε2 for two different sets of parameters (see Tables 1
and 2) while keeping ε1 constant. Figure 1A shows that mutual information between xp1 and xp2

kinases decays with the increment of ε2. Augmentation of ε2 includes a competition between xp1 and
yp1 to phosphorylate the x2 kinase. During phosphorylation, mutual association is originated, and
signal transduction is ensued. Thus, for the low value of ε2, maximum level of mutual information is
attained due to minimal phosphorylation competition. On the other hand, minimum level of mutual
information is propagated at high ε2 value due to maximum phosphorylation contribution of yp1.
In Figure 1B, mutual information between xp1 and yp2 is plotted, which shows a constant value as a
function of ε2. This happens as ε2 has no influence in the alteration of mutual information. The same
logic is applicable to the mutual information between yp1 and yp2 shown in Figure 1C. In Figure 1D,
mutual information between yp1 and xp2 increases as a function of ε2, as ε2 is only responsible for
establishing the cross-talk between yp1 and xp2. This result implies that with the enhancement of
cross-talk the process of signal integration through yp1 increases. The same profiles can be generated as
a function of ε1, while keeping ε2 fixed. These results together indicate that I(xp1; xp2) and I(yp1; xp2)

depend on ε2, whereas I(xp1; yp2) and I(yp1; yp2) depend on ε1. In Figure 1A–D, the green lines drawn
for slower relaxation rate (see Table 2) always maintains a lower mutual information value compared
to the red lines drawn for faster relaxation rate (see Table 1). Relaxation rates of the corresponding
kinases i.e., xp1, xp2, xp3, yp1, yp2 and yp3 are−Jx1x1 = (α1 + kxsx),−Jx2x2 = (α2 + k12x〈xp1〉+ ε2〈yp1〉),
−Jx3x3 = (α3 + k23x〈xp2〉), −Jy1y1 = (β1 + kysy), −Jy2y2 = (β2 + k12y〈yp1〉+ ε1〈xp1〉) and −Jy3y3 =

(β3 + k23y〈yp2〉), respectively, where the angular bracket 〈· · · 〉 indicates the deterministic copy number
at long time limit (see Appendix). An input signal can reliably flow downstream if relaxation rate (or
degradation rate) of a cascade protein is higher than that of its upstream cascade proteins [35]. For red
line, we consider higher degradation rate for xp2 and xp3 (yp2 and yp3) compared to xp1 (yp1). Thus,
faster relaxation rates are attained under this condition with high information propagation capacity.

Next, we quantify mutual information between two parallel kinases (xpi and ypj, with i = j) of
the two equivalent interacting MAPK pathways. The inter pathway coupling is unidirectional when
either ε1 or ε2 is zero but is bidirectional when both are non-zero. In this situation, both variables
(xpi and ypj) do not interact with each other but are regulated by a common kinase regulon
incorporating coordinated fluctuations into these variables. In other words, quantification of mutual
information actually evaluates the extent of cross-correlation between these two variables. We observe
zero mutual information value between xp1 and yp1, as these are uncorrelated. In Figure 1E, we show
mutual information between xp2 and yp2 as a function of ε2 keeping ε1 fixed. The profile shows an
increasing trend as cross-talk parameter ε2 increases. Similarly, in Figure 1F, mutual information
between xp3 and yp3 is shown with a similar trend as in Figure 1E. Interestingly, for faster relaxation
time scale, mutual information between similar cascade kinases increases while moving from second
(xp2 and yp2) to third (xp3 and yp3) cascade. On the other hand, an opposite trend is observed for slower
relaxation time scale. This characteristic trend is further shown in Figure 1G,H using bar diagram.
These results together suggest that fluctuations due to faster relaxation rate transduce correlated
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fluctuations in a better way compared to the slower one. In Figure 1E, mutual information is high for
slower relaxation rate than the faster one, as slower rate parameters yield high level of xp2 and yp2

which in turn incorporate extra fluctuations that help to increase mutual association. A similar result is
also observed in Figure 1F. Identical mutual information profiles of I(xp2; yp2) and I(xp3; yp3) can be
generated as function of ε1 keeping ε2 fixed. These results suggest that both the cross-talk parameters
ε1 and ε2 contribute equally to the development of an association between two parallel pathways.

Figure 1. (color online) Two variable mutual information and net information transduction as a function
of cross-talk parameter. (A–F) Two variable mutual information profiles I(xp1; xp2), I(xp1; yp2),
I(yp1; yp2), I(yp1; xp2), I(xp2; yp2) and I(xp3; yp3) as a function of cross-interaction parameter ε2

for a fixed value of ε1 = 0.5 × 10−4. In all figures, red (with open circle) and green (with open
diamond) lines are generated using faster (Table 1) and slower (Table 2) relaxation rate parameters,
respectively. The symbols are generated using stochastic simulation algorithm [43] and the lines are
due to theoretical calculation; (G,H) Bar diagram of two variable mutual information of three parallel
cascade kinases under an equivalent cross-talk condition (ε1 = ε2 = 0.5× 10−4) for faster (Table 1)
and slower (Table 2) relaxation rate parameters, respectively; (I) Net information transduction D as a
function of cross-interaction parameter ε2 for a fixed value of ε1 = 0.5× 10−4. The red (with open circle)
and the green (with open diamond) lines are due to faster (Table 1) and slower (Table 2) relaxation
rate parameters, respectively. The figure indicates data collapse for two relaxation rate parameters.
The symbols are generated using stochastic simulation algorithm [43] and the lines are obtained from
theoretical calculation. All the simulation data (open circles and open diamonds) are ensemble average
of 107 independent trajectories; (J) 2d-surface plot of net information transduction D as a function of
two cross-talk parameters ε1 and ε2 for faster (Table 1) relaxation rate parameters.

Both the mutual information between xp2 and yp2, xp3 and yp3 are capable of providing a
satisfactory explanation of enhancement of cross-talk with the increment of inter pathway interaction
parameters (ε1 and ε2). Under equivalent interactions condition (ε1 = ε2), each pathway shares its
information with other to an equal extent and is quantified not only by I(xp2; yp2) and I(xp3; yp3)

but also by I(xp1; yp2) and I(yp1; xp2). However, characterization of the direction of information
transduction is difficult under unequal condition (ε1 6= ε2). Except the equivalent condition (ε1 = ε2)
where the net information ( I(yp1; xp2) − I(xp1; yp2) ) flow is zero, it has a definite value with
directionality (positive or negative value) at all other conditions. Since the definition of mutual
information is symmetric in nature and usage of the same is difficult to provide directionality of
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information propagation, we define a dimensionless quantity, net information transduction (D) using
I(xp1; yp2) and I(yp1; xp2) as

D =
I(yp1; xp2)− I(xp1; yp2)

I(yp1; xp2) + I(xp1; yp2)
. (1)

The above expression implies that it is maximal (D = 1) when I(xp1; yp2) is zero, i.e., no information
propagation from xp1 to yp2 (ε1 = 0). It is minimal (D = −1) when I(yp1; xp2) is zero, which specifies
zero information propagation from yp1 to xp2 (ε2 = 0). In Figure 1I, we show the profile of D as a
function of ε2 while keeping ε1 fixed, where the value of D changes from negative to positive as ε2

increases. It suggests that at low ε2, information flowing from X to Y pathway dominates over the flow
from Y to X. In other words, in this regime, the net information flow is accounted for by X→ Y, leading
to a negative value of D. On the other hand, at high ε2, the direction of net information propagation
is from Y to X due to reverse situation and generates a positive D value. The opposite scenario can
be observed if one generates the profile of D as a function of ε1 for fixed ε2 In this connection, it is
important to mention that both the relaxation time scale limits generate a similar profile of D. As
a result, both the profiles of D exhibit data collapse when depicted as a function of ε2 for fixed ε1

(Figure 1I) or vice versa. This observation indicates that normalised profiles of D are independent of
relaxation time scales. In Figure 1J, we also show a 2d-surface plot of D as a function of both ε1 and
ε2 for faster relaxation time scale (Table 1). The surface plot indicates zero (or near to zero) value of
D along the diagonal region (ε1 ≈ ε2). However, the off diagonal region is positive for ε1 < ε2 and
negative for ε1 > ε2.

In Figure 2A,B, we show two 2d-surface plots of mutual information between xp2 and yp2, xp3

and yp3 kinases, respectively, as a function of two cross-interaction parameters ε1 and ε2 under faster
relaxation time scale (Table 1). Both figures show maximum mutual information at high values of the
two parameters. Since, ε1 and ε2 are equally responsible for developing the cross-correlation between
two pathways, one can check the effect of maximisation of mutual information by increasing any
one of these two parameters. Although we can quantify the influence of cross-talk with the help of
two variable mutual information, I(xp2; yp2) and I(xp3; yp3), it is difficult to get an insight how the
static and dynamic populations of the phosphorylated kinases are correlated. To this end, we have
checked such correlation as shown in Figure 2C. Dynamic correlation can be measured using stochastic
trajectories of the two variables in a single cell. If sufficient association between two trajectories exist,
then correlated fluctuations are observed i.e., one trajectory closely follows the other. Otherwise,
uncorrelated fluctuations (trajectories do not follow each other) are seen in the absence of cross-talk. In
Figure 2C, we show stochastic time series of different phosphorylated kinases under varied conditions.
Here, four different sets of ε1 and ε2 parameters have been used - mentioned as I, II, III and IV in
Figure 2A,B. The stochastic time series exhibit correlated fluctuations at high ε1 and ε2. However,
uncorrelated time series are seen at low ε1 and ε2. Each of these time series are generated from a single
run of stochastic simulation and represents the dynamics in a single cell.

Next, we have executed 1000 independent stochastic simulations and measured the steady state
phosphorylated kinase levels from each run to draw a scatter plot. Here, the collection of symbols
mimics the behaviour of a hypothetical population of 1000 genetically identical cells. Each symbol in
the scatter plots is due to a single stochastic run and represents copies of phosphorylated kinases (xpi
and ypj, i, j = 1, 2, 3) in a single cell expressed at steady state. In other words, each symbol signifies
the steady state phosphorylated protein levels in an individual cell within a hypothetical population.
Using this concept, we measure static correlation among the pairs of phosphorylated kinases ((xp1, yp1),
etc.) produced in different cells within the population. The motivation behind creating a scatter plot is
to measure the static correlation between two phosphorylated protein levels expressed in different
cells [57–59]. In Figure 2C, we show static correlation between different phosphorylated kinases
expressed in different cells. For plots with high ε1 and ε2 values, most of the symbols are aligned
diagonally in a narrow strip but for low ε1 and ε2, symbols are distributed in a much larger space.
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Figure 2. (color online) 2d-surface plots of two variable mutual information, stochastic time trajectories
and scatter plots. (A,B) 2d-surface plot of two variable mutual information I(xp2; yp2) and I(xp3; yp3)

as a function of two cross-talk parameters ε1 and ε2 for faster relaxation rate parameters (Table 1).
In both figures, I, II, III and IV correspond to four different values of ε1 and ε2; (C) Stochastic time
trajectories and steady state population of two parallel kinases for four different sets of ε1 and ε2.
For CI, CII, CIII and CIV we have used ε1 = ε2 = 0.1× 10−4, ε1 = 0.1× 10−4 and ε2 = 0.9× 10−4,
ε1 = ε2 = 0.9× 10−4 and ε1 = 0.9× 10−4 and ε2 = 0.1× 10−4, respectively. In each scatter plot,
ρij(i = j) represents analytical value of Pearson’s correlation coefficient. The stochastic trajectories and
the scatter plots are generated using stochastic simulation algorithm [43] and the surface plots are due
to theoretical calculation.

Correlated variation of these kinases in the population is observed along the diagonal direction.
However, an uncorrelated variation along the off-diagonal direction reflects an increase in variability
between two phosphorylated kinases with respect to each other in a population. Therefore,
enhancement of cross-talk decreases variability between two kinases in a population. These results
imply that cross-talk develops correlated fluctuations between kinases in a population, thereby assisting
in the successful development of a robust adaptation machinery as observed in the bet-hedging
program under diverse environmental conditions [22]. Here, an increase in the correlation between
two different protein pool (with high Pearson’s correlation coefficient) is observed for maximal
cross-talk. On the other hand, a decrease in correlation is seen for minimal cross-interaction. Similar
behaviour can be seen under slower relaxation time scale (Table 2) as shown in Figure 3. The primary
difference between the nature of correlation between (xp2, yp2) and (xp3, yp3) are visible from Figure 2
and Figure 3. In Figure 2, the correlation between (xp3, yp3) is always higher than (xp2, yp2) for all
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four conditions. On the other hand, in Figure 3, it shows an opposite trend. We note that coordinated
fluctuations of different MAPK proteins are generated due to cross-talk between two parallel pathways
that ultimately lead to similar cellular function with high reliability. Fluctuations in the transcription
factor are much faster than the transcript dynamics. On the other hand, fluctuations in the transcription
factor (known as extrinsic fluctuations) are comparable with the gene switching (on-off) time scale.
Such time scale agreement gets reflected in the dynamics of the transcript [36].

Figure 3. (color online) 2d-surface plots of two variable mutual information, stochastic time trajectories
and scatter plots. (A,B) 2d-surface plot of two variable mutual information I(xp2; yp2) and I(xp3; yp3)

as a function of two cross-talk parameters ε1 and ε2 for slower relaxation rate parameters (Table 2).
In both figures, I, II, III and IV correspond to four different values of ε1 and ε2; (C) Stochastic time
trajectories and steady state population of two parallel kinases for four different sets of ε1 and ε2.
For CI, CII, CIII and CIV we have used ε1 = ε2 = 0.1× 10−4, ε1 = 0.1× 10−4 and ε2 = 0.9× 10−4,
ε1 = ε2 = 0.9× 10−4 and ε1 = 0.9× 10−4 and ε2 = 0.1× 10−4, respectively. In each scatter plot,
ρij(i = j) represents analytical value of Pearson’s correlation coefficient. The stochastic trajectories and
the scatter plots are generated using stochastic simulation algorithm [43] and the surface plots are due
to theoretical calculation.

2.2. Three Variable Mutual Information

In the foregoing discussion, we have shown the effect of cross-talk in terms of conventional
two variable mutual information. However, as cross-interaction between two pathways develops a
complex network, a comprehensive study of three variable mutual information provides an extra
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insight. In the present study, three variable mutual information is defined as I(xp1, yp1; xp2) and
I(xp1; yp2, xp2) for two types of branched pathways (see Section 3.2). One of the branched pathways
is two inputs (xp1 and yp1) and one output (xp2 or yp2) motif where two input signals are integrated
into a single output. The other is one input (xp1 or yp1) and two outputs (xp2 and yp2) motif where the
input signal is bifurcated into two outputs. In this subsection, we investigate the efficacy of such signal
integration as well as signal bifurcation. Since marginal and joint distributions of all cascade proteins
are considered approximately Gaussian, we adopt multivariate mutual information theory [49–51] to
analytically estimate three variable mutual information [55]. Each branched motif consists of two signal
propagating channels that work together. It is thus interesting to investigate whether these signalling
channels perform separately and what significant change arises in the estimation of three variable
mutual information. The change in the magnitude of mutual information is defined by net synergy [50]
and is evaluated using the theory of partial information decomposition [49,51,55] in terms of the
difference between three variable mutual information and two corresponding two variable mutual
information. The value of net synergy is either positive or negative; a positive value indicates synergy
(extra information) whereas negative value measures redundancy (deficit of information) [50,55].

Figure 4. (color online) Three variable mutual information as a function of cross-talk parameter. (A,B)
Three variable mutual information I(xp1, yp1; xp2) (A) and net synergy ∆I(xp1, yp1; xp2) ((B) for signal
integration motif. Schematic diagram of signal integration motif in composite MAPK network (see inset
in (A). (C,D) - Three variable mutual information I(xp1; xp2, yp2) (C) and net synergy ∆I(xp1; xp2, yp2)

(D) for signal bifurcation motif. Schematic diagram of signal bifurcation motif in composite MAPK
network (see inset in (C). All the figures are drawn as a function of cross-interaction parameter ε2 for a
fixed value of ε1 = 0.5× 10−4. Here red (with open circle) and green (with open diamond) lines are
drawn for faster (Table 1) and slower (Table 2) relaxation rate parameters, respectively. The symbols
are generated using stochastic simulation algorithm [43] and the lines are obtained from theoretical
calculation. All the simulation data (open circles and open diamonds) are ensemble average of 107

independent trajectories.

In Figure 4A, we show mutual information, I(xp1, yp1; xp2) of two inputs and one output model
as a function of ε2 for a fixed value of ε1. The profile shows a bifunctional behaviour with the increment
of ε2; initially it decreases up to a certain value of ε2, and then it increases. At low ε2, a minimal amount
of signal is propagated from yp1 to xp2. Consequently, the motif reduces to a single input-output
motif and the motif regains its native form due to the significant contribution of ε2. In Figure 1A, we
show that two variable mutual information between xp1 and xp2 decreases with the increment of ε2.
Similar situation arises in Figure 4A for low value of ε2. On the contrary, I(yp1; xp2) increases with the
increment of ε2 (Figure 1D). Thus, two opposing effects work together to generate the convex profile.
In Figure 4B, we plot net synergy of the motif as a function of ε2 for a fixed value of ε1 and it is seen to
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increase monotonically. It is pertinent to mention here that for this motif, one always gets a positive net
synergy value as a function of ε2. This result implies that an integrating signalling motif transduces
more information compared to the summation of two isolated channels. The extra information, i.e.,
synergy facilitates fidelity of the output kinase. Intuitively, the sum of the reduction in the uncertainty
(cross-correlation) of the output kinase contributed by each input signal is lower than the reduction
in the uncertainty of the output provided by both signals together. This phenomenon implicates the
aspect of integration of multiple signals in cellular signalling network motif as observed in V. harveyi
quorum-sensing circuit [60,61].

In Figure 4C, we show mutual information I(xp1; xp2, yp2) of one input and two outputs motif
with the increment of ε2 for a fixed value of ε1. The mutual information value decreases with ε2 since
propagation of information from xp1 to xp2 is only inhibited by the cross-interaction. However, ε2 does
not have any influence in information propagation from xp1 to yp2 and remains unaltered. Thus, three
variable mutual information profile follows a decreasing trend. Figure 4D shows decreasing trend
of net synergy profile as a function of ε2 for a fixed value of ε1. Importantly, for this motif negative
values of net synergy are observed irrespective of the value of ε2. This indicates redundancy in the
information transmission in this composite motif compared to the sum of the individual one. Naturally,
predictability about the output kinases decreases when two isolated signal propagation channels work
together to form a bifurcated signal transduction motif. This result implies that although bifurcated
signalling model reduces mutual information, it has a biological significance of the activation of
multiple signalling channels in the presence of a single input as identified in the chemotaxis system of
E. coli [62]. In all figures (Figure 4A–D), the red lines are plotted for faster relaxation rate constants
(Table 1) of xp2, xp3, yp2 and yp3 and the green lines are for slower relaxation rate constants (Table 2).

3. Materials and Methods

In Figure 5, we show a schematic diagram of two interacting parallel MAPK pathways (named
as X and Y). Each MAPK pathway consists of three kinase components, i.e., x1, x2, x3 (X pathway)
and y1, y2, y3 (Y pathway) [7,28,63–65]. xi and xpi represent dephosphorylated and phosphorylated
form of a kinase proteins, respectively, and the same applies to yj and ypj (here i, j = 1, 2, 3). The
first cascade protein of a MAPK pathway gets phosphorylated with an exposure to the external
stimulus. While phosphorylated, it positively regulates the phosphorylation of its own downstream
kinase along with the kinase of the other pathway. The phosphorylated intermediate kinase regulates
phosphorylation of the last kinase. To maintain the pool of phosphorylated kinase within a cell, a
dephosphorylation process is in action with the help of phosphatase molecules. The cross-pathway
interactions between two parallel MAPK pathways are denoted by the dashed lines in Figure 5 along
with the cross-interaction rate parameters ε1 and ε2. Sx and Sy are the two extra-cellular signals acting
on the X and Y pathway, respectively.
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Figure 5. (color online) Schematic diagram of two parallel MAPK (equivalent and identical) signalling
pathways (X and Y). Each pathway consists of three successively connected cascade kinases, MAPKKK
(red), MAPKK (green) and MAPK (blue). The first activated kinase facilitates the activation of the
second one and then the second kinase regulates the activation of the last one. Both signalling
pathways are exposed to two different signals (Sx and Sy). Cross-talk is developed due to inter-pathway
interactions. ε1 and ε2 are the cross-interaction parameters and the directionality of these interactions
are xp1 → yp2 and yp1 → xp2, respectively.

Both pathways get causally correlated through cross-interactions, and a cross-talk develops as a
consequence. Causal relationships are frequently examined in various circumstances that are subjected
to stochastic fluctuations [23,44,50,55]. In the present manuscript, we quantify the causal relationship
in terms of mutual information. Here, the two cross-interaction parameters ε1 and ε2 play a significant
role in establishing different levels of cross-talk. The parameter ε1 controls information flow from X to
Y pathway (xp1 → yp2), but the parameter ε2 is responsible for Y to X pathway (yp1 → xp2) information
flow. In this connection, it is important to mention that during mating process, both pheromone and
filamentous growth pathways are activated to a roughly equal extent, whereas during invasive growth
process, only filamentous growth pathway is activated [26]. These observations corroborate with our
model development. In our calculation, we only consider the post-translationally modified forms
of all MAPK proteins. Thus, in the model, the total population of a MAPK protein is the sum of
the phosphorylated and the unphosphorylated form of the protein and is considered to be constant
((xi + xpi) = xTi = (yj + ypj) = yTj = constant, here i = j). In addition, we consider a physiologically
relevant parameter set for our calculation [6,9,66].

3.1. Two Variable Mutual Information

Adopting Shannon’s information theory [41,42], we have calculated two variable mutual
information between two phosphorylated kinases,
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I(xpi; ypj) = ∑
xpi

∑
ypj

p(xpi, ypj) log2

[
p(xpi, ypj)

p(xpi)p(ypj)

]
. (2)

A generalised index xpi and ypj have been considered to represent the copy number of two
different phosphorylated kinases. Similarly, p(xpi) and p(ypj) are the marginal and p(xpi, ypj) is the
joint probability distributions associated with the corresponding kinases. For the calculation of mutual
information between two kinases of X signalling pathway, we have replaced ypj by xpi (where i 6= j)
and the reverse replacement has been followed for Y signalling pathway. For the estimation of mutual
information between two equivalent kinases (xpi and ypj) of the respective pathways, we have used
the same formula for i = j condition. Mutual information can also be written in the form of the entropy
function. Hence, Equation (2) can be redefined as

I(xpi; ypj) = H(xpi) + H(ypj)− H(xpi, ypj). (3)

Here, H(xpi) and H(ypj) are individual and H(xpi, ypj) is total entropy of the respective kinases.
In the present study, both probability distribution functions (marginal and joint) are approximately
considered to be Gaussian as experimental studies on MAPK pathway show Gaussian dynamics [67].
Thus, using Gaussian channel approximation [41,42,55], Equation (3) takes the reduced form

I(xpi; ypj) =
1
2

log2

[
σ2

xpi
σ2

ypi

σ2
xpi

σ2
ypi
− σ4

xpiypi

]
, (4)

where σ2
xpi

and σ2
ypj

are variances and σ2
xpiypj

is covariance of the corresponding kinases (for detailed
calculation see Appendix). At this point it is important to mention that no prior knowledge is
required about the nature of probability distribution function for evaluating mutual information
using Equation (2). For exact or approximate Gaussian distribution, one can reduce Equation (2) to
Equation (4) applying Gaussian channel approximation. However, for systems with non-Gaussian
distribution, one can still use Equation (2) with proper analytical expressions of probability distribution
functions that may contribute expressions of higher moments in Equation (4).

In the present work, all expressions of two variable mutual information are calculated using
Equation (4). The analytical results are then validated by evaluating probability distribution functions
(Equation (2)) using exact numerical simulation [43]. The two variable mutual information value is
bounded within a scale 0 ≤ I(xpi; ypj) ≤ min(H(xpi), H(ypj)). To quantify the association between
two equivalent kinases, we have used Pearson’s correlation coefficient (ρij, i = j) [68]

ρij =
σ2

xpiypj

σxpi σypj

. (5)

3.2. Three Variable Mutual Information

The three variable mutual information are calculated for both signal integration and signal
bifurcation motif. In the first motif, two phosphorylated input kinases interact with one output kinase.
Hence the complete description of mutual information is given by

I(xp1, yp1; xp2) = ∑
xp1,yp1

∑
xp2

p(xp1, yp1, xp2) log2

[
p(xp1, yp1, xp2)

p(xp1, yp1)p(xp2)

]
, (6)

where p(xp1, yp1, xp2) and p(xp1, yp1) are the joint distribution functions of the corresponding
components. On the other hand, p(xp2) is the marginal distribution of phosphorylated x2 kinase. One
can also write Equation (6) in terms of the respective entropy
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I(xp1, yp1; xp2) = H(xp1, yp1) + H(xp2)− H(xp1, yp1, xp2). (7)

Similarly, using Gaussian approximation [41,42,55], one can reduce Equation (7) into the following
form

I(xp1, yp1; xp2) =
1
2

log2

[
σ2

xp2
(σ2

xp1
σ2

yp1
− σ4

xp1yp1
)

|∆1|

]
, (8)

with

|∆1| =

 σ2
xp1

σ2
xp1yp1

σ2
xp1xp2

σ2
yp1xp1

σ2
yp1

σ2
yp1xp2

σ2
xp2xp1

σ2
xp2yp1

σ2
xp2

 .

Here, the magnitude of three variable mutual information is bounded within a scale 0 ≤
I(xp1, yp1; xp2) ≤ min(H(xp1, yp1), H(xp2)). Using PID formalism, the three variable mutual
information can be decomposed into two parts [50,55]. As a result, the net synergy expression
becomes

∆I(xp1, yp1; xp2) = I(xp1, yp1; xp2)− I(xp1; xp2)− I(yp1; xp2)

=
1
2

log2

[
(σ2

xp1
σ2

yp1
− σ4

xp1yp1
)(σ2

xp1
σ2

xp2
− σ4

xp1xp2
)(σ2

yp1
σ2

xp2
− σ4

yp1xp2
)

|∆1|σ2
xp1

σ2
yp1

σ2
xp2

]
. (9)

Furthermore, one can calculate mutual information for the signal bifurcating motif with the help of
associated distribution functions

I(xp1; xp2, yp2) = ∑
xp1

∑
xp2,yp2

p(xp1, xp2, yp2) log2

[
p(xp1, xp2, yp2)

p(xp1)p(xp2, yp2)

]
. (10)

and the entropy representation of Equation (10) is

I(xp1; xp2, yp2) = H(xp1) + H(xp2, yp2)− H(xp1, xp2, yp2). (11)

Using Gaussian approximation [41,42,55] Equation (11) becomes

I(xp1; xp2, yp2) =
1
2

log2

[
σ2

xp1
(σ2

xp2
σ2

yp2
− σ4

xp2yp2
)

|∆2|

]
, (12)

with

|∆2| =

 σ2
xp1

σ2
xp1xp2

σ2
xp1yp2

σ2
xp2xp1

σ2
xp2

σ2
xp2yp2

σ2
yp2xp1

σ2
yp2xp2

σ2
yp2

 .

In addition, the three variable mutual information value is bounded within a range 0 ≤
I(xp1; xp2, yp2) ≤ min(H(xp1), H(xp2, yp2)). In this case, one can also use the theory of PID to
decompose the three variable mutual information into two parts and calculate the net synergy [50]
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∆I(xp1; xp2, yp2) = I(xp1; xp2, yp2)− I(xp1; xp2)− I(xp1; xp2)

=
1
2

log2

[
(σ2

xp2
σ2

yp2
− σ4

xp2yp2
)(σ2

xp1
σ2

xp2
− σ4

xp1xp2
)(σ2

xp1
σ2

yp2
− σ4

xp1yp2
)

|∆2|σ2
xp1

σ2
xp2

σ2
yp2

]
. (13)

For analytical calculation, we have adopted Equations (4), (5), (8), (9), (12) and (13) which contain only
variance and covariance expressions, whereas we adopt numerical simulation for evaluation of the
expressions given in Equations (2), (6) and (10).

At this point it is important to mention that we validate our analytical calculation by exact
stochastic simulation, commonly known as stochastic simulation algorithm or Gillespie algorithm [43].
The validation signifies how much closer the system dynamics with the Gaussian statistics.
Corroboration of analytical and simulation results indicate a valid consideration of linear noise
approximation. In our numerical simulation, we have used 107 trajectories. We note that the
dynamics of different MAPK pathways exhibit different temporal evolution [8]. However, the average
physiological time scale for the activation of MAPK pathways is∼ 1 h [15]. Keeping this information in
mind, each stochastic simulation was executed for 5000 s (∼ 1.38 h) to ensure that the system dynamics
reaches steady state. Using the final value of the variables of each run we carry out the calculation of
different variances and covariances to evaluate different expressions of mutual information.

Table 1. Reactions and corresponding parameter values for the MAPK network motif of
S. cerevisiae [6,9,66], related to faster relaxation rate. Other Parameters are sx = sy = 10 molecules/cell,
xT1 = x1 + xp1 = 250 molecules/cell, xT2 = x2 + xp2 = 1700 molecules/cell, xT3 = x3 + xp3 =

5000 molecules/cell, yT1 = y1 + yp1 = 250 molecules/cell, yT2 = y2 + yp2 = 1700 molecules/cell and
yT3 = y3 + yp3 = 5000 molecules/cell. The kinetic schemes adopted in the present work follows the
model of Heinrich et al. [63].

Description Reaction Propensity Function Rate Constant

Activation of x1 x1 + sx
kx−→ xp1 + sx kxsxx1 kx = 10−4 molecules−1 s−1

Deactivation of xp1 xp1
α1−→ x1 α1xp1 α1 = 0.01 s−1

Activation of y1 y1 + sy
ky−→ yp1 + sy kysyy1 ky = 10−4 molecules−1 s−1

Deactivation of yp1 yp1
β1−→ y1 β1yp1 β1 = 0.01 s−1

Activation of x2 x2 + xp1
k12x−→ xp2 + xp1 k12xxp1x2 k12x = 10−4 molecules−1 s−1

Activation of x2 x2 + yp1
ε2−→ xp2 + yp1 ε2yp1x2 ε2 = (0− 1)× 10−4 molecules−1 s−1

Deactivation of xp2 xp2
α2−→ x2 α2xp2 α2 = 0.05 s−1

Activation of y2 y2 + yp1
k12y−→ yp2 + yp1 k12yyp1y2 k12y = 10−4 molecules−1 s−1

Activation of y2 y2 + xp1
ε1−→ yp2 + xp1 ε1xp1y2 ε1 = (0− 1)× 10−4 molecules−1 s−1

Deactivation of yp2 yp2
β2−→ y2 β2yp2 β2 = 0.05 s−1

Activation of x3 x3 + xp2
k23x−→ xp3 + xp2 k23xxp2x3 k23x = 5× 10−5 molecules−1 s−1

Deactivation of xp3 xp3
α3−→ x3 α3xp3 α3 = 0.05 s−1

Activation of y3 y3 + yp2
k23y−→ yp3 + yp2 k23yyp2y3 k23y = 5× 10−5 molecules−1 s−1

Deactivation of yp3 yp3
β3−→ y3 β3yp3 β3 = 0.05 s−1
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Table 2. Reactions and corresponding parameter values for the MAPK network motif of
S. cerevisiae [6,9,66], related to slower relaxation rate. Other Parameters are sx = sy = 10 molecules/cell,
xT1 = x1 + xp1 = 250 molecules/cell, xT2 = x2 + xp2 = 1700 molecules/cell, xT3 = x3 + xp3 =

5000 molecules/cell, yT1 = y1 + yp1 = 250 molecules/cell, yT2 = y2 + yp2 = 1700 molecules/cell and
yT3 = y3 + yp3 = 5000 molecules/cell. The kinetic schemes adopted in the present work follows the
model of Heinrich et al. [63].

Description Reaction Propensity Function Rate Constant

Activation of x1 x1 + sx
kx−→ xp1 + sx kxsxx1 kx = 10−4 molecules−1 s−1

Deactivation of xp1 xp1
α1−→ x1 α1xp1 α1 = 0.01 s−1

Activation of y1 y1 + sy
ky−→ yp1 + sy kysyy1 ky = 10−4 molecules−1 s−1

Deactivation of yp1 yp1
β1−→ y1 β1yp1 β1 = 0.01 s−1

Activation of x2 x2 + xp1
k12x−→ xp2 + xp1 k12xxp1x2 k12x = 10−4 molecules−1 s−1

Activation of x2 x2 + yp1
ε2−→ xp2 + yp1 ε2yp1x2 ε2 = (0− 1)× 10−4 molecules−1 s−1

Deactivation of xp2 xp2
α2−→ x2 α2xp2 α2 = 0.01 s−1

Activation of y2 y2 + yp1
k12y−→ yp2 + yp1 k12yyp1y2 k12y = 10−4 molecules−1 s−1

Activation of y2 y2 + xp1
ε1−→ yp2 + xp1 ε1xp1y2 ε1 = (0− 1)× 10−4 molecules−1 s−1

Deactivation of yp2 yp2
β2−→ y2 β2yp2 β2 = 0.01 s−1

Activation of x3 x3 + xp2
k23x−→ xp3 + xp2 k23xxp2x3 k23x = 10−5 molecules−1 s−1

Deactivation of xp3 xp3
α3−→ x3 α3xp3 α3 = 0.01 s−1

Activation of y3 y3 + yp2
k23y−→ yp3 + yp2 k23yyp2y3 k23y = 10−5 molecules−1 s−1

Deactivation of yp3 yp3
β3−→ y3 β3yp3 β3 = 0.01 s−1

4. Conclusions

To summarize, we have investigated evolutionarily conserved yeast MAPK signalling pathway. In
our phenomenological model, we study two parallel MAPK signalling pathways where one signalling
pathway in addition to its cognate pathway activates the non-cognate pathway through cross-talk
with an emphasis to understand the change in the dynamical behaviour of the system in the presence
of cross-talk at the single cell level. The model nonlinear Langevin equations have been solved
under the purview of LNA to quantify the variance and the covariance associated with the different
phosphorylated kinase. These quantities assist in the evaluation of mutual information (two variable
and multivariate) under Gaussian channel approximation. Quantification of mutual information has
been carried out with the variation of two cross-talk parameters ε1 and ε2. The two variable mutual
information shows that cross-talk establishes correlation in the signal propagation among the two
pathways. To represent a better insight into the directionality of the net information flow, we have
defined a new dimensionless parameter (net information transduction D), which varies on a scale of
−1 to +1. Depending on the sign of D, we have deciphered the fidelity of one pathway compared to
the other.

We show that cross-talk generates correlated fluctuations at the population level. A minimum and
a maximum degree of coordination are observed at the low and high level of cross-talk, respectively.
Our analysis thus suggests that coordinated fluctuations are the causal effect of cross-talk in MAPK
signalling pathways. Furthermore, we demonstrate the impact of correlated fluctuations in the
reduction of variability between two different kinases using scatter plots. At the high degree of
cross-talk, scatter plots show high correlation coefficient compared to the lower level of cross talk.
These results together imply that cross-talk not only develops synchronisation in a cell but also reduces
variability due to the development of correlation between two different phosphorylated kinase levels
in a population. Depending on the number of inputs and outputs, we have identified two types of
signalling motifs from the composite network. Also, quantification of multivariate mutual information
allows us to calculate the net synergy associated with these two different motifs. The signal integration
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motif (two inputs and one output) reveals high fidelity, whereas the signal bifurcation motif (one input
and two outputs) shows redundancy in information propagation.

Based on the aforesaid theoretical discussion, we suggest a satisfactory explanation about the
synchronisation in the outputs - a causal effect of cross-talk in parallel MAPK signalling pathways.
Nevertheless, one question apparently arises - what is the importance of such synchronisation in
cellular physiology? Such functional correlation is possibly required for both the outputs to perform
in a combined way to regulate several essential downstream genes. Several experimental results on
MAPK cross-talk in S. cerevisiae provide interesting evidence that corroborates with our theoretical
analysis. Phosphorylated Fus3 and Kss1 are both responsible for the activation of transcription factor
Ste12 that regulates different downstream genes [64]. Additionally, both activated Fus3 and Hog1
assist in arresting the cell cycle in G1 phase temporarily [5,8]. Cross-talk is also highly significant
for the eukaryotic cells where the promoter of TATA binding proteins is solely controlled by MAPK
signalling pathways [15,69], whereas these binding proteins are essential for the expression of most
nuclear genes. Also, they act as a potential vehicle for developing coordination among the multiple
disparate classes of genes. Thus, coordinated signalling of MAPK pathways paves the way for TATA
binding proteins to establish the association among large-scale nuclear genes. Gene regulation in S.
cerevisiae is known to be controlled by more than one transcription factors that bind cooperatively at
many promoter sites. This phenomenon suggests that coordinated fluctuations between the outputs of
MAPK signalling pathways are necessary to express the gene product in a controlled way. It is also
noticed that coordinated fluctuations among gene products are developed through transcriptional as
well as translational cross-talk [25,57,58,70]. We propose that it could be more convenient for a cell to
establish a functional connection among all intracellular processes if the correlation is initiated in the
signalling pathway, not solely in the gene regulation stage. In fact, one interesting signature which
was observed in different experiments is that cross-talk is prominent at the low concentration level
that is manifested in diverse environmental cues [22,24]. Thus, in these situations, fluctuations in the
cellular components are very high, and it is improbable for cells to adopt a constructive decision for
survival [71]. Our results indicate that such decision making program becomes easy when correlated
fluctuations among the essential proteins are successfully implemented through the bet-hedging
program [22].

Overall, we suggest that synchronisation between MAPK signalling pathways is a result of
cross-talk. Our analytical calculation supplemented by exact numerical simulation is a general
approach and can be applied to other cross-talk pathways to quantify the strength of cross-interactions.
In future, we plan to address the influence and physiological relevance of cross-talk in other
network motifs. Our theoretical observations in the present work could be verified upon the
quantification of phosphorylated kinase protein in a single cell using flow cytometry and time lapse
microscopy [72–74]. These experimental approaches can be implemented to measure the amount of
intra-cellular phosphorylated kinases by treating cells with external stimuli, fixing and permeabilizing
cells with appropriate chemicals, and then staining with phospho-specific antibodies for different
kinases. After that, one can quantify the intensity of phosphorylated kinases in individual cells of a
colony. Using these data, distribution profiles of the concentration of phosphorylated kinases could be
developed. These quantifiable distribution profiles could be used to quantify the mutual information.
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Abbreviations

The following abbreviations are used in this manuscript:

MAPK Mitogen activated protein kinase
LNA Linear noise approximation
PID Partial information decomposition

Appendix A. Calculation of variance and covariance

The MAPK network motif shown in Figure 5 is explicated through stochastic Langevin equations.
Each pathway (X or Y) is activated by the initiation of an extra cellular signal (Sx or Sy). When the
first cascade kinase is activated, it regulates the activation of downstream kinases of the same as well
as the parallel pathway through cross-interaction. Once activated, the second kinase regulates the
activation of the last kinase. The active and inactive states can be identified in terms of phosphorylated
(xpi and ypj) and dephosphorylated (xi and yj) forms of each kinase (i, j = 1, 2, 3), respectively.
To construct the theoretical model of the composite MAPK network motif, we have considered
the total population (phosphorylated and dephosphorylated form) of all kinases to be a constant
((xi + xpi) = xTi = (yj + ypj) = yTj = constant; i = j). Thus, for X pathway the stochastic differential
equations for xp1, xp2 and xp3 are [63]

dxp1

dt
= kxsx(xT1 − xp1)− α1xp1 + ξ1(t), (A1a)

dxp2

dt
= k12xxp1(xT2 − xp2) + ε2yp1(xT2 − xp2)

−α2xp2 + ξ2(t), (A1b)
dxp3

dt
= k23xxp2(xT3 − xp3)− α3xp3 + ξ3(t). (A1c)

The first and the second terms on the right hand side of Equation (A.1) denote phosphorylation and
dephosphorylation rate of the corresponding kinase. Here, kx, k12x and k23x are activation and α1,
α2 and α3 are deactivation rate constants of xp1, xp2 and xp3, respectively. ε2 is the cross-interaction
parameter that controls signal propagation from Y to X pathway (yp1 → xp2). The ξi-s (i = 1, 2, 3) are
Gaussian white noise terms with zero mean and finite noise strength. While writing Equation (A.1)
we have used the conservation relation xi = xTi − xpi. Similarly, the stochastic Langevin equations
associated with the components of the Y pathway can be written as [63]

dyp1

dt
= kysy(yT1 − yp1)− β1yp1 + η1(t), (A2a)

dyp2

dt
= k12yyp1(yT2 − yp2) + ε1xp1(yT2 − yp2)

−β2yp2 + η2(t), (A2b)
dyp3

dt
= k23yyp2(yT3 − yp3)− β3yp3 + η3(t). (A2c)

In Equation (A.2), the first and the second terms stand for phosphorylation and dephosphorylation
rate. Here, ky, k12y and k23y are activation and β1, β2 and β3 are deactivation rate constants of yp1, yp2

and yp3, respectively. The cross-interaction parameter is ε1 that controls signal transduction from X to
Y pathway (xp1 → yp2). The noise terms ηi-s (i = 1, 2, 3) are considered to be Gaussian white noise
with zero mean and finite noise strength. For Y pathway, constant constraint yi = yTi − ypi is also
valid. The statistical properties of ξi-s and ηj-s (i, j = 1, 2, 3) are
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〈ξ1〉 = 〈ξ2〉 = 〈ξ3〉 = 〈η1〉 = 〈η2〉 = 〈η3〉 = 0,

〈ξi(t)ξ j(t′)〉 = 〈|ξi|2〉δijδ(t− t′),

〈ηi(t)ηj(t′)〉 = 〈|ηi|2〉δijδ(t− t′),

〈ξi(t)ηj(t′)〉 = 〈|ξiηj|〉δijδ(t− t′),

〈|ξ1|2〉 = kxsx(xT1 − 〈xp1〉) + α1〈xp1〉 = 2α1〈xp1〉,
〈|ξ2|2〉 = (k12x〈xp1〉(xT2 − 〈xp2〉)

+ε2〈yp1〉(xT2 − 〈xp2〉) + α2〈xp2〉
= 2α2〈xp2〉,

〈|ξ3|2〉 = k23x〈xp2〉(xT3 − 〈xp3〉) + α3〈xp3〉
= 2α3〈xp3〉,

〈|η1|2〉 = kysy(yT1 − 〈yp1〉) + β1〈yp1〉
= 2β1〈yp1〉,

〈|η2|2〉 = k12y〈yp1〉(yT2 − 〈yp2〉)
+ε1〈xp1〉(yT2 − 〈yp2〉) + β2〈yp2〉

= 2β2〈yp2〉,
〈|η3|2〉 = k23y〈yp2〉(yT3 − 〈yp3〉) + β3〈yp3〉

= 2β3〈yp3〉,
〈|ξ1η1|〉 = 〈|ξ1η2|〉 = 〈|ξ1η3|〉 = 〈|ξ2η1|〉 = 〈|ξ2η2|〉

= 〈|ξ2η3|〉 = 〈|ξ3η1|〉 = 〈|ξ3η1|〉 = 〈|ξ3η3|〉
= 0.

To solve the nonlinear Equations (A.1–A.2), we adopt LNA [30–34,36–40,75–77]. Linearizing
Equations (A.1–A.2) around steady state δz(t) = z(t)− 〈z〉, where 〈z〉 is the average population of z at
long time limit, one arrives at

d
dt



δxp1

δxp2

δxp3

δyp1

δyp2

δyp3


=



Jx1x1 Jx1x2 Jx1x3 Jx1y1 Jx1y2 Jx1y3

Jx2x1 Jx2x2 Jx2x3 Jx2y1 Jx2y2 Jx2y3

Jx3x1 Jx3x2 Jx3x3 Jx3y1 Jx3y2 Jx3y3

Jy1x1 Jy1x2 Jy1x3 Jy1y1 Jy1y2 Jy1y3

Jy2x1 Jy2x2 Jy2x3 Jy2y1 Jy2y2 Jy2y3

Jy3x1 Jy3x2 Jy3x3 Jy3y1 Jy3y2 Jy3y3





δxp1

δxp2

δxp3

δyp1

δyp2

δyp3


+



ξ1

ξ2

ξ3

η1

η2

η3


. (A3)

Here
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Jx1x1 = −(kxsx + α1),

Jx1x2 = Jx1x3 = Jx1y1 = Jx1y2 = Jx1y3 = 0,

Jx2x1 = k12x(xT2 − 〈xp2〉),
Jx2x2 = −(k12x〈xp1〉+ ε2〈yp1〉+ α2),

Jx2y1 = ε2(xT2 − 〈xp2〉),
Jx2x3 = Jx2y2 = Jx2y3 = 0,

Jx3x1 = Jx3y1 = Jx3y2 = Jx3y3 = 0,

Jx3x2 = k23x(xT3 − 〈xp3〉),
Jx3x3 = −(k23x〈xp2〉+ α3),

Jy1y1 = −(kysy + β1),

Jy1x1 = Jy1x2 = Jy1x3 = Jy1y2 = Jy1y3 = 0,

Jy2y1 = k12y(yT2 − 〈yp2〉),
Jy2y2 = −(k12y〈yp1〉+ ε1〈xp1〉+ β2),

Jy2x1 = ε1(yT2 − 〈yp2〉),
Jy2y3 = Jy2x2 = Jy2x3 = 0,

Jy3y1 = Jy3x1 = Jy3x2 = Jy3x3 = 0,

Jy3y2 = k23y(yT3 − 〈yp3〉),
Jy3y3 = −(k23y〈yp2〉+ β3).

The generalised matrix form of Equation (A.3) is

dδA
dt

= JA=〈A〉δA(t) + Θ(t), (A4)

where J is the Jacobian matrix evaluated at steady state. The diagonal elements of J matrix define the
relaxation rate of each kinase and the off-diagonal elements represent the interaction rate between two
different kinases [75–77]. Moreover, δA and Θ are the fluctuations matrix and the noise matrix of the
kinases, respectively. To calculate the different variances and covariances in the stationary state we
make use of the Lyapunov matrix equation [33,36,37]

Jσ + σJT + D = 0, (A5)
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where σ is the covariance matrix and D = 〈ΘΘT〉 is the diffusion matrix that depends on different
noise strengths. Here, 〈· · · 〉 represents ensemble average and T stands for transpose of a matrix.
Solution of Equation (A.5) provides the expressions of variance and covariance of the kinases

σ2
xp1

=
α1〈xp1〉

Jx1x1
. (A6a)

σ2
xp2

=
α2〈xp2〉

Jx2x2
+

α1〈xp1〉J2
x2x1

Jx1x1 Jx2x2(Jx1x1 + Jx2x2)
+

β1〈yp1〉J2
x2y1

Jy1y1 Jx2x2(Jy1y1 + Jx2x2)
. (A6b)

σ2
yp1

=
β1〈yp1〉

Jy1y1
. (A6c)

σ2
yp2

=
β2〈yp2〉

Jy2y2
+

β1〈yp1〉J2
y2y1

Jy1y1 Jy2y2(Jy1y1 + Jy2y2)
+

α1〈xp1〉J2
y2x1

Jx1x1 Jy2y2(Jx1x1 + Jy2y2)
. (A6d)

σ2
xp1xp2

= σ2
xp2xp1

=
α1〈xp1〉Jx2x1 Jx2x2

Jx1x1 Jx2x2(Jx1x1 + Jx2x2)
. (A6e)

σ2
xp1yp2

= σ2
yp2xp1

=
α1〈xp1〉Jy2x1 Jy2y2

Jx1x1 Jy2y2(Jx1x1 + Jy2y2)
. (A6f)

σ2
yp1yp2

= σ2
yp2yp1

=
β1〈yp1〉Jy2y1 Jy2y2

Jy1y1 Jy2y2(Jy1y1 + Jy2y2)
. (A6g)

σ2
yp1xp2

= σ2
xp2yp1

=
β1〈yp1〉Jx2y1 Jx2x2

Jy1y1 Jx2x2(Jy1y1 + Jx2x2)
. (A6h)

σ2
xp1yp1

= σ2
yp1xp1

= 0. (A6i)

σ2
xp3

=
α3〈xp3〉

Jx3x3
+

α2〈xp2〉J2
x3x2

Jx2x2 Jx3x3(Jx2x2 + Jx3x3)
+

α1〈xp1〉J2
x2x1 J2

x3x2(Jx1x1 + Jx2x2 + Jx3x3)

Jx1x1 Jx2x2 Jx3x3(Jx1x1 + Jx2x2)(Jx1x1 + Jx3x3)(Jx2x2 + Jx3x3)

+
β1〈yp1〉J2

x2y1 J2
x3x2(Jy1y1 + Jx2x2 + Jx3x3)

Jy1y1 Jx2x2 Jx3x3(Jy1y1 + Jx2x2)(Jy1y1 + Jx3x3)(Jx2x2 + Jx3x3)
. (A6j)

σ2
yp3

=
β3〈yp3〉

Jy3y3
+

β2〈yp2〉J2
y3y2

Jy2y2 Jy3y3(Jy2y2 + Jy3y3)
+

β1〈yp1〉J2
y2y1 J2

y3y2(Jy1y1 + Jy2y2 + Jy3y3)

Jy1y1 Jy2y2 Jy3y3(Jy1y1 + Jy2y2)(Jy1y1 + Jy3y3)(Jy2y2 + Jy3y3)

+
α1〈xp1〉J2

y2x1 J2
y3y2(Jx1x1 + Jy2y2 + Jy3y3)

Jx1x1 Jy2y2 Jy3y3(Jx1x1 + Jy2y2)(Jx1x1 + Jy3y3)(Jy2y2 + Jy3y3)
. (A6k)

σ2
xp2yp2

= σ2
yp2xp2

=
α1〈xp1〉Jx2x1 Jy2x1(Jx2x2 + Jy2y2 + 2Jx1x1)

Jx1x1(Jx2x2 + Jy2y2)(Jx2x2 + Jx1x1)(Jy2y2 + Jx1x1)
+

β1〈yp1〉Jx2y1 Jy2y1(Jx2x2 + Jy2y2 + 2Jy1y1)

Jy1y1(Jx2x2 + Jy2y2)(Jx2x2 + Jy1y1)(Jy2y2 + Jy1y1)
. (A6l)

σ2
xp3yp3

= σ2
yp3xp3

=
α1〈xp1〉Jx3x2 Jy3y2 Jx2x1 Jy2x1C1

Jx1x1(Jx2x2 + Jy2y2)(Jx2x2 + Jy3y3)(Jx3x3 + Jy2y2)(Jx3x3 + Jy3y3)

×(Jx2x2 + Jx1x1)(Jx3x3 + Jx1x1)(Jy2y2 + Jx1x1)(Jy3y3 + Jx1x1)

+
β1〈yp1〉Jx3x2 Jy3y2 Jx2y1 Jy2y1C2

Jy1y1(Jx2x2 + Jy2y2)(Jx2x2 + Jy3y3)(Jx3x3 + Jy2y2)(Jx3x3 + Jy3y3)

×(Jx2x2 + Jy1y1)(Jx3x3 + Jy1y1)(Jy2y2 + Jy1y1)(Jy3y3 + Jy1y1)

. (A6m)

Here,

C1 = (Jx2x2 + Jy2y2)(Jx2x2 + Jy3y3)(Jx3x3 + Jy2y2)(Jx3x3 + Jy3y3) + 2Jx1x1((Jx3x3 + Jy2y2)

(Jx3x3 + Jy3y3)(Jy2y2 + Jy3y3) + J2
x2x2(Jx3x3 + Jy2y2 + Jy3y3) + Jx2x2(Jx3x3 + Jy2y2 + Jy3y3)

2)

+2J2
x1x1(Jx2x2 + Jx3x3 + Jy2y2 + Jy3y3)

2 + 2J3
x1x1(Jx2x2 + Jx3x3 + Jy2y2 + Jy3y3),

C2 = (Jx2x2 + Jy2y2)(Jx2x2 + Jy3y3)(Jx3x3 + Jy2y2)(Jx3x3 + Jy3y3) + 2Jy1y1((Jx3x3 + Jy2y2)

(Jx3x3 + Jy3y3)(Jy2y2 + Jy3y3) + J2
x2x2(Jx3x3 + Jy2y2 + Jy3y3) + Jx2x2(Jx3x3 + Jy2y2 + Jy3y3)

2)

+2J2
y1y1(Jx2x2 + Jx3x3 + Jy2y2 + Jy3y3)

2 + 2J3
y1y1(Jx2x2 + Jx3x3 + Jy2y2 + Jy3y3).

In our calculation, we use the analytical expressions of variance and covariance for evaluating the
value of mutual information and correlation coefficient.
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