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Abstract:



In this contribution, we introduce the concepts of logical entropy and logical mutual information of experiments in the intuitionistic fuzzy case, and study the basic properties of the suggested measures. Subsequently, by means of the suggested notion of logical entropy of an IF-partition, we define the logical entropy of an IF-dynamical system. It is shown that the logical entropy of IF-dynamical systems is invariant under isomorphism. Finally, an analogy of the Kolmogorov–Sinai theorem on generators for IF-dynamical systems is proved.
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1. Introduction


The notions of entropy and mutual information are basic notions in information theory [1] and, as is known, the customary approach is based on Shannon’s entropy [2]. Let [image: there is no content] be a probability distribution; Shannon’s entropy of P is the number [image: there is no content] where [image: there is no content] is the Shannon function defined by [image: there is no content] for every [image: there is no content] Remark that it used the convention (based on continuity arguments) that [image: there is no content] The idea of Shannon’s entropy was generalized in a natural way to the Kolmogorov–Sinai entropy [image: there is no content] of dynamical systems [3,4,5], which allows dynamical systems to be distinguished. Kolmogorov and Sinai applied the entropy [image: there is no content] to prove that non-isomorphic Bernoulli shifts exist. Of course, the theory of Kolmogorov–Sinai entropy has many other important applications. For this reason, various proposals were made to generalize the Kolmogorov–Sinai entropy concept. In [6], we generalized the Kolmogorov–Sinai entropy concept to the case of a fuzzy probability space [7]. This structure represents an alternative mathematical model of probability theory for the situations when the considered events are fuzzy events, i.e., events described unclearly, vaguely. Further proposals for fuzzy generalizations of Shannon’s and Kolmogorov–Sinai entropy are presented e.g., in [8,9,10,11,12,13,14,15,16,17]. It is known that there exist many ways to define operations for modeling the union and intersection of fuzzy sets; an overview was listed in [18]. We remark that while the model studied in [6] was based on Zadeh’s fuzzy set operations [19], in our study [14], the Lukasiewicz fuzzy set operations were used.



Since its inception in 1965, the fuzzy set theory has been continually developing, and it has been shown to be useful in many disciplines. It has been applied to many mathematical areas, such as algebra, analysis, clustering, graph theory, measure theory, probability theory, control theory, optimization, topology, and so on. Currently, algebraic structures based on fuzzy set theory, such as MV-algebras [20,21,22,23,24,25,26,27,28], D-posets [29,30,31], effect algebras [32,33], and A-posets [34,35,36], are intensively studied. There are also interesting results about the Kolmogorov type entropy on these structures; some of them can be found, e.g., in [37,38,39,40,41,42,43]. Moreover, the fuzzy set theory also has significant practical applications; applications of this theory can be found, for example, in control engineering, data processing, management, logistics, artificial intelligence, computer science, medicine, decision theory, expert systems, logic, management science, operations research, pattern recognition, and robotics.



In 1983, Atanassov introduced a more general fuzzy theory—intuitionistic fuzzy sets theory [44,45,46]. Recall that while a fuzzy set is a mapping [image: there is no content][image: there is no content] (where the considered fuzzy set is identified with its membership function [image: there is no content]), the intuitionistic fuzzy set (shortly, IF-set) is a pair [image: there is no content] of fuzzy sets for which the condition [image: there is no content] for every [image: there is no content] is satisfied. The function [image: there is no content] is called the membership function of A, the function [image: there is no content] is called the non-membership function of A. Evidently, each fuzzy set [image: there is no content] can be regarded as an IF-set [image: there is no content] Each result that applies to IF-sets also applies to the case of fuzzy sets. Of course, the opposite implication is not valid, e.g., the representation theorem of IF-states does not follow by the corresponding result for fuzzy states. The theory of IF-sets represents a non-trivial generalization of the fuzzy set theory; thus, the IF-sets provide opportunities to model a larger class of real situations. We remark that a probability theory on intuitionistic fuzzy events has been elaborated in [47], see also [48]. Some results about the Kolmogorov type entropy for the case of intuitionistic fuzzy sets are given e.g., in [49,50,51,52,53].



When solving some specific problems, instead of Shannon’s entropy it is more appropriate to use an approach based on the concept of logical entropy [54,55,56,57]. If [image: there is no content] is a probability distribution, then the logical entropy of P is defined by the formula [image: there is no content] In [57], historical aspects of the logical entropy formula [image: there is no content] are discussed and the relationship between logical entropy and Shannon’s entropy is examined. The concepts of logical conditional entropy and the logical mutual information have been introduced as well. We note that some results about the logical entropy on some of the above mentioned algebraic structures, based on fuzzy set theory, can be found e.g., in [58,59,60,61,62].



The purpose of the present work is to study the logical entropy and logical mutual information of experiments in the intuitionistic fuzzy case. The paper is organized in the following way. In the following section, basic definitions and notations are provided. In Section 3, the concept of logical entropy for the case of intuitionistic fuzzy experiments is introduced, and basic properties of the proposed measure are shown. In Section 4, we introduce the concepts of logical mutual information and conditional mutual information of intuitionistic fuzzy experiments and derive some properties of these measures. In Section 5, using the suggested concept of logical entropy, we define the logical entropy of IF-dynamical systems. It is shown that the logical entropy of IF-dynamical systems is invariant under isomorphism. Finally, an analogy of the Kolmogorov–Sinai theorem on generators for IF-dynamical systems is proved. Section 6 contains a brief summary.




2. Basic Definitions, Notations and Facts


In this section, we provide basic definitions, notations and facts that will be used throughout the contribution.



Definition 1.

By an IF-event we will understand a pair [image: there is no content]of functions [image: there is no content]with the property [image: there is no content]for every [image: there is no content]





In the following, we will use the symbol [image: there is no content] to denote the family of all IF-events. Analogously as in the fuzzy case, there are many possibilities to define operations for modeling the union and intersection of IF-sets (see e.g., [63,64,65]). We will use the operations [image: there is no content] and [image: there is no content] defined as follows. In the family [image: there is no content] we define the partial binary operation [image: there is no content] in the following way: if [image: there is no content] and [image: there is no content] are two IF-events, then [image: there is no content] Here, [image: there is no content] denotes the function defined by [image: there is no content] for every [image: there is no content] Similarly, we denote by [image: there is no content] the function defined by [image: there is no content] for every [image: there is no content] Evidently, if [image: there is no content] then [image: there is no content] exists if and only if [image: there is no content] and [image: there is no content] The zero element of operation [image: there is no content] is the IF-event [image: there is no content] Indeed, [image: there is no content][image: there is no content] for any [image: there is no content] Further, in the family [image: there is no content] we define the binary operation [image: there is no content] in the following way: if [image: there is no content] and [image: there is no content] then [image: there is no content] Put [image: there is no content] Evidently, [image: there is no content] for any [image: there is no content] The IF-event [image: there is no content] is interpreted as an impossible event; the IF- event [image: there is no content] as a certain event. It can easily be verified that, for any [image: there is no content] the following conditions are satisfied:

	(F1)

	
[image: there is no content][image: there is no content] if one side is defined in [image: there is no content] (commutativity);




	(F2)

	
[image: there is no content][image: there is no content] if one side is defined in [image: there is no content] (associativity);




	(F3)

	
if [image: there is no content] exists, then [image: there is no content] exists, and [image: there is no content][image: there is no content]









Since in the fuzzy case the inequality [image: there is no content] implies [image: there is no content] in the family [image: there is no content] it is natural to define the relation [image: there is no content] as follows: if [image: there is no content] and [image: there is no content] are two IF-events, then [image: there is no content] if and only if [image: there is no content] and [image: there is no content] The relation [image: there is no content] is a partial order such that [image: there is no content] for all [image: there is no content] Gutierrez Garcia and Rodabaugh have proved that intuitionistic fuzzy sets ordering and topology are reduced to the ordering and topology of fuzzy sets [66]. Another situation is in measure theory, where the intuitionistic fuzzy case cannot be reduced to the fuzzy case.



Definition 2.

A map [image: there is no content]is said to be a state if the following conditions are satisfied:

	(i)

	
[image: there is no content][image: there is no content], whenever [image: there is no content]is defined in [image: there is no content];




	(ii)

	
[image: there is no content]











Example 1.

Consider a probability space [image: there is no content]and put


[image: there is no content]













It is easy to verify that the mapping [image: there is no content]defined, for any element [image: there is no content]of [image: there is no content]by the formula:


m(A)=∫ΩμAdP +α (1−∫Ω(μA+ νA)dP), α∈[0, 1],



(1)




is a state. Namely, for every [image: there is no content]such that [image: there is no content]exists, we have:


m(A⊕B)=∫Ω(μA+  μB)dP  +α (1−∫Ω(μA+ μB+ νA+νB−1Ω)dP )=∫Ω(μA+  μB)dP  +α (2−∫Ω(μA+ μB+ νA+νB)dP )=∫ΩμAdP + α (1−∫Ω(μA+ νA)dP ) +∫Ω μBdP+α (1−∫Ω(μB+ νB)dP ) =m(A)+m(B),








and


m(1)=m((1Ω,   0Ω))=∫ΩdP + α (1−∫ΩdP )=1+α(1−1)=1.











Remark 1.

Riečan and Ciungu have shown in [67] that any continuous state m defined on a family [image: there is no content]of all S-measurable IF-events has the form (1). In more detail, if a state m defined on a family [image: there is no content]of all S-measurable IF-events is continuous (i.e., [image: there is no content][image: there is no content]A implies [image: there is no content][image: there is no content][image: there is no content]), then there exist exactly one probability measure [image: there is no content]and exactly one [image: there is no content]such that:


m(A)=∫ΩμAdP +α (1−∫Ω(μA+ νA)dP ),for any A=(μA, νA) of F.













Definition 3.

By an IF-partition of [image: there is no content]we will understand a finite collection [image: there is no content]of elements of [image: there is no content]such that [image: there is no content]exists, and [image: there is no content]





Remark 2.

A classical probability space [image: there is no content]can be regarded as a family of IF-events, if we put [image: there is no content][image: there is no content]where [image: there is no content]is the characteristic function of a set [image: there is no content]the mapping [image: there is no content]defined by [image: there is no content]is a state on [image: there is no content]A usual measurable partition [image: there is no content]of a space [image: there is no content](i.e., any sequence [image: there is no content]such that [image: there is no content]and [image: there is no content] Ø [image: there is no content]) can be regarded as an IF-partition, if we consider (χEi,   1Ω−χEi)instead of [image: there is no content]Namely, [image: there is no content] Ø [image: there is no content]implies ∑i=1nχEi(ω)≤1,for every [image: there is no content]and hence [image: there is no content]exists. Moreover, we have:


m(⊕i=1n(χEi, 1Ω−χEi))=m((∑i=1nχEi, 1Ω−∑i=1nχEi))=m((χ∪i=1nEi, 1Ω−χ∪i=1nEi))=P(∪i=1nEi)=P(Ω)=1,








and the equality [image: there is no content]implies:


[image: there is no content]













Definition 4.

Let [image: there is no content], [image: there is no content]be two IF-partitions of [image: there is no content]The IF-partition [image: there is no content]is said to be a refinement of [image: there is no content](with respect to m) if for each [image: there is no content]there exists a subset [image: there is no content]such that [image: there is no content][image: there is no content][image: there is no content] Ø, for [image: there is no content]and [image: there is no content][image: there is no content]





In the case that [image: there is no content] is a refinement of [image: there is no content] we write [image: there is no content]



Denote by [image: there is no content] the family of all mappings [image: there is no content] If [image: there is no content] and [image: there is no content] are two elements of [image: there is no content] then we put [image: there is no content] and [image: there is no content][image: there is no content]



Theorem 1.

Let [image: there is no content]be a state. Then, the mapping [image: there is no content]defined, for any element [image: there is no content]of [image: there is no content]by


[image: there is no content]








is a state, and [image: there is no content]i.e., [image: there is no content]for any [image: there is no content]





Proof. 

The proof can be found in [68]. ☐





Proposition 1.

Let [image: there is no content]such that [image: there is no content]Then, [image: there is no content]for any [image: there is no content]





Proof. 

Put [image: there is no content] Then:


A⊕C=(μA+1Ω−μA, νA+1Ω−νA−1Ω)=(1Ω, 0Ω)=1,A⋅B⊕B⋅C=(μA⋅μB,  νA+νB−νA⋅νB)⊕(μB(1Ω−μA), νB+1Ω−νA−νB(1Ω−νA))=B,1=m¯(A)+m¯(C)=1+m¯(C),








hence, [image: there is no content] From the monotonicity of [image: there is no content] it follows [image: there is no content]



Therefore:


[image: there is no content]













Proposition 2.

Let [image: there is no content]be an IF-partition of [image: there is no content]Then [image: there is no content]for any [image: there is no content]





Proof. 

Since [image: there is no content] by Proposition 1 and (F3) we get:


[image: there is no content]













Definition 5.

Let [image: there is no content], [image: there is no content], be two IF-partitions of [image: there is no content]Their join [image: there is no content]is defined as the system [image: there is no content], if [image: there is no content]and [image: there is no content]





Theorem 2.

If [image: there is no content]are two IF-partitions of [image: there is no content]then [image: there is no content]is also an IF-partition of [image: there is no content]and [image: there is no content][image: there is no content].





Proof. 

Let [image: there is no content], [image: there is no content] Since [image: there is no content] and [image: there is no content] exist, according to (F3) we obtain that [image: there is no content] also exists, and [image: there is no content]



By Definition 2 we have:


[image: there is no content]











Moreover, using Proposition 1 we get:


[image: there is no content]











This means that [image: there is no content] is an IF-partition of [image: there is no content]



Since the system [image: there is no content] is indexed by [image: there is no content] we put [image: there is no content][image: there is no content] Since [image: there is no content] according to Proposition 1 and (F3), for [image: there is no content] we get:


[image: there is no content]











However, this means that [image: there is no content] ☐






3. Logical Entropy of IF-Partitions


It is obvious that each IF-partition [image: there is no content] represents, from the point of view of classical probability theory, a random experiment with a finite number of results [image: there is no content][image: there is no content] that are intuitionistic fuzzy events, with a probability distribution [image: there is no content][image: there is no content] Namely, [image: there is no content] for [image: there is no content] and [image: there is no content] For that reason, we define the logical entropy of [image: there is no content] as the number:


[image: there is no content]



(2)







Since [image: there is no content] we can also write:


[image: there is no content]



(3)







Remark 3.

Evidently, the IF-partition [image: there is no content]has zero logical entropy.





Example 2.

Consider the measurable space [image: there is no content]where [image: there is no content]is the unit interval [0,1] and [image: there is no content]is the [image: there is no content]algebra of all Borel subsets of [0,1]. Now, we can consider the family of all S-measurable IF-events [image: there is no content]and the state [image: there is no content]defined, for any element [image: there is no content]of [image: there is no content]by the formula:


[image: there is no content]











Put [image: there is no content]Since [image: there is no content](and therefore [image: there is no content]exists), and [image: there is no content][image: there is no content]the set [image: there is no content]is an IF-partition. It has the m-state values [image: there is no content]of the corresponding elements and the logical entropy [image: there is no content]





Some basic properties of the logical entropy of IF-partitions are listed below.



Theorem 3.

Let [image: there is no content]be two IF-partitions of [image: there is no content]Then:

	(i)

	
[image: there is no content]




	(ii)

	
[image: there is no content]implies [image: there is no content][image: there is no content]




	(iii)

	
[image: there is no content][image: there is no content][image: there is no content].











Proof. 

The property (i) is evident. We will prove the second property. Let [image: there is no content], [image: there is no content], [image: there is no content]. Then, for any [image: there is no content] there exists a subset [image: there is no content], such that [image: there is no content][image: there is no content][image: there is no content][image: there is no content], for [image: there is no content] and [image: there is no content][image: there is no content]. Hence, we can write:


H(ξ)=∑i=1Im(Ai)(1−m(Ai))=∑i=1I(m(Ai)−m(Ai) m(Ai))=∑i=1I(∑j∈αim(Bj)−∑j∈αim(Bj)∑j∈αim(Bj)) .











As a consequence of the inequality [image: there is no content] which is true for all non-negative real numbers [image: there is no content] we get:


[image: there is no content]











Therefore:


H(ξ)≤∑i=1I(∑j∈αim(Bj)−∑j∈αi(m(Bj))2)=∑i=1I∑j∈αi(m(Bj)−(m(Bj))2)= ∑j=1Jm(Bj)(1−m(Bj))=H(η).











The inequality (iii) is a simple consequence of the previous property and Theorem 2. ☐





Definition 6.

If [image: there is no content], [image: there is no content]are two IF-partitions of [image: there is no content]then the conditional logical entropy of [image: there is no content]assuming a realization of the IF-experiment [image: there is no content]is defined by the formula:


[image: there is no content]



(4)









Remark 4.

Since [image: there is no content]for the conditional logical entropy it holds that [image: there is no content]If we put [image: there is no content]then [image: there is no content]





Remark 5.

Since by Proposition 2, it holds that [image: there is no content]for [image: there is no content]we can also write:


[image: there is no content]



(5)









Theorem 4.

Let [image: there is no content]be two IF-partitions of [image: there is no content]Then


[image: there is no content]



(6)









Proof. 

Assume that [image: there is no content], [image: there is no content] Let us calculate:


H(η)+H(ξ/η) =1−∑j=1J(m(Bj))2  +∑j=1J(m(Bj))2 − ∑i=1I∑j=1J(m(Ai⋅Bj))2=1−∑i=1I∑j=1J(m(Ai⋅Bj))2=H(ξ∨η). ☐













Remark 6.

As a simple consequence of Theorem 4, we get:


[image: there is no content]



(7)




and according to Definition 5 we obtain that [image: there is no content]





Theorem 5.

Let [image: there is no content]be two IF-partitions of [image: there is no content]Then

	(i)

	
[image: there is no content][image: there is no content];




	(ii)

	
[image: there is no content][image: there is no content][image: there is no content]











Proof. 

(i) Assume that [image: there is no content], [image: there is no content] Since by Proposition 2, we have:


[image: there is no content]








for [image: there is no content] it holds:


∑j=1Jm(Ai⋅Bj)(m(Bj)−m(Ai⋅Bj))≤(∑j=1Jm(Ai⋅Bj)) (∑j=1J(m(Bj)−m(Ai⋅Bj)))=m(Ai)(∑j=1Jm(Bj)−∑j=1Jm(Ai⋅Bj))=m(Ai)(1−m(Ai)).











Therefore, we get:


H(ξ/η) =∑i=1I∑j=1Jm(Ai⋅Bj)(m(Bj)−m(Ai⋅Bj))≤∑i=1Im(Ai)(1−m(Ai))=H(ξ).








(ii) The property (i) along with (7) implies:


[image: there is no content]











The proof is complete. ☐





Theorem 6.

Let [image: there is no content]be IF-partitions of [image: there is no content]Then


[image: there is no content]













Proof. 

Let [image: there is no content][image: there is no content][image: there is no content]. Then by Equation (5) we get:


[image: there is no content]













Theorem 7.

Let [image: there is no content]and [image: there is no content]be IF-partitions of [image: there is no content]Then

	(i)

	
[image: there is no content][image: there is no content][image: there is no content]




	(ii)

	
[image: there is no content][image: there is no content][image: there is no content]











Proof. 

(i) We shall prove the statement using mathematical induction. By Equation (7), we have:


[image: there is no content]











For [image: there is no content] using the previous equality and Theorem 6, we get:


H(ξ1∨ξ2∨ξ3)=H(ξ1)+H(ξ2∨ξ3/ξ1)=H(ξ1)+H(ξ2/ξ1)+H(ξ3/ξ2∨ξ1)=H(ξ1)+∑i=23H(ξi/∨k=1i−1ξk).











Now let us suppose that the result is true for a given [image: there is no content] Then


H(ξ1∨ξ2∨…∨ξn∨ξn+1)=H(ξ1∨ξ2∨…∨ξn)+H(ξn+1/ξ1∨ξ2∨…∨ξn)=H(ξ1) +∑i=2nH(ξi/∨k=1i−1ξk)+H(ξn+1/ξ1∨ξ2∨…∨ξn)=H(ξ1) +∑i=2n+1H(ξi/∨k=1i−1ξk).











Thus, by the principle of mathematical induction, the result follows.



(ii) The proof of the second assertion is analogous; it suffices to use Theorem 6 and the principle of mathematical induction. ☐






4. Logical Mutual Information of IF-Partitions


In this section, using the results of the previous parts, we define the notions of logical mutual information and logical conditional mutual information of IF-partitions and prove basic properties of these measures. We also present some numerical examples to illustrate the results.



Definition 7.

Let [image: there is no content]be two IF-partitions of [image: there is no content]Then, we define the logical mutual information of [image: there is no content]and [image: there is no content]by the formula:


[image: there is no content]



(8)









Remark 7.

As a simple consequence of Equation (6), we have:


[image: there is no content]



(9)







From Equation (9), it follows that [image: there is no content]and [image: there is no content]





Theorem 8.

Let [image: there is no content]be two IF-partitions of [image: there is no content]Then


[image: there is no content]













Proof. 

The non-negativity of logical mutual information [image: there is no content] follows from the subadditivity of logical entropy (the property (ii) of Theorem 5) and Equation (9). The second inequality is a consequence of Equation (9) and the property (iii) of Theorem 3. ☐





Example 3.

Consider the family [image: there is no content]of IF-events from Example 2 and the state [image: there is no content]defined by the formula:


[image: there is no content]



(10)







Put [image: there is no content]where the functions [image: there is no content]are defined by [image: there is no content][image: there is no content]for every [image: there is no content]and [image: there is no content]where the functions [image: there is no content]are defined by [image: there is no content][image: there is no content]for every [image: there is no content]Evidently, the set [image: there is no content]is an IF-partition with the m-state values [image: there is no content]of the corresponding elements, and the logical entropy [image: there is no content]Further, we put [image: there is no content]where the functions [image: there is no content]are defined by [image: there is no content][image: there is no content]for every [image: there is no content]and [image: there is no content]where the functions [image: there is no content]are defined by [image: there is no content][image: there is no content]for every [image: there is no content]Then, the set [image: there is no content]is an IF-partition with the m-state values [image: there is no content]of the corresponding elements and the logical entropy [image: there is no content]The join of [image: there is no content]and [image: there is no content]is the system [image: there is no content]where [image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]with the m-state value [image: there is no content]of the corresponding elements. The logical entropy of [image: there is no content]is the number:


[image: there is no content]











Let us calculate the logical mutual information [image: there is no content]of IF-partitions [image: there is no content][image: there is no content]By Equation (9), we get:


[image: there is no content]













Theorem 9.

If IF-partitions [image: there is no content], and [image: there is no content]are independent, i.e., [image: there is no content][image: there is no content]for [image: there is no content]then [image: there is no content]





Proof. 

Let us calculate:


I(ξ,η)=H(ξ)+H(η)  −H(ξ∨η)=1−∑i=1I(m(Ai))2 +1−∑j=1J(m(Bj))2 −1+∑i=1I∑j=1J(m(Ai⋅Bj))2=1−∑i=1I(m(Ai))2 −∑j=1J(m(Bj))2 +∑i=1I(m(Ai))2 ∑j=1J(m(Bj))2=(1−∑i=1I(m(Ai))2)⋅ (1−∑j=1J(m(Bj))2) =H(ξ)⋅H(η). ☐













Corollary 1.

If IF-partitions [image: there is no content]are independent, then


[image: there is no content]













Proof. 

Let us calculate:


(1−H(ξ)) ⋅ (1−H(η))=1−H(ξ)−H(η)+H(ξ)⋅H(η)=1−H(ξ)−H(η)+I(ξ,η)=1−H(ξ)−H(η)+H(ξ)+H(η)−H(ξ∨η)=1−H(ξ∨η). ☐













In the following part, we define the logical conditional mutual information of IF-partitions and, using this notion, we establish the chain rules for logical mutual information of IF-partitions.



Definition 8.

Let [image: there is no content]be IF-partitions of [image: there is no content]Then, the logical conditional mutual information of [image: there is no content]and [image: there is no content]assuming a realization of [image: there is no content]is defined by the formula:


[image: there is no content]



(11)









Theorem 10.

For IF-partitions [image: there is no content]of [image: there is no content]it holds:


[image: there is no content]













Proof. 

Let us calculate:


I(ξ,η)+I(ξ,ς/η)=H(ξ)− H(ξ/η)+H(ξ/η)−H(ξ/η∨ς)=H(ξ)− H(ξ/η∨ς)=I(ξ,η∨ς).











The second equality is obtained analogously. ☐





The result of the previous theorem is illustrated by the following example.



Example 4.

Consider the family [image: there is no content]of IF-events from Example 2, the state [image: there is no content]defined by Equation ( 10), and the IF-partitions [image: there is no content][image: there is no content]from the previous example. In addition, put [image: there is no content]where [image: there is no content][image: there is no content][image: there is no content][image: there is no content]for every [image: there is no content]. We will show that [image: there is no content][image: there is no content][image: there is no content]The join of [image: there is no content]and [image: there is no content]is the system [image: there is no content][image: there is no content]with the m-state values [image: there is no content]of the corresponding elements. By simple calculation, we obtain:


[image: there is no content]








and consequently


[image: there is no content]











By definition we have:


[image: there is no content]











In Example 3, we have calculated that [image: there is no content]. It is now possible to verify that the equality [image: there is no content][image: there is no content][image: there is no content]is valid.





Theorem 11.

(Chain rules for logical mutual information). Let [image: there is no content]and [image: there is no content]be IF-partitions of [image: there is no content]Then, for [image: there is no content]it holds:


[image: there is no content]













Proof. 

By (8), Theorem 7, and (11), we obtain


I(∨i=1nξi,η)= H(∨i=1nξi)−H(∨i=1nξi/η)=H(ξ1) +∑i=2nH(ξi/∨k=1i−1ξk)−H(ξ1/η) −∑i=2nH(ξi/(∨k=1i−1ξk)∨η)=I(ξ1/η) +∑i=2n(H(ξi/∨k=1i−1ξk) −H(ξi/(∨k=1i−1ξk)∨η))=I(ξ1/η) +∑i=2nI(ξi,η/∨k=1i−1ξk). ☐













Definition 9.

Let [image: there is no content]be IF-partitions of [image: there is no content]We say that [image: there is no content]is conditionally independent to [image: there is no content]assuming a realization of [image: there is no content](and write [image: there is no content]) if [image: there is no content]





Theorem 12.

For IF-partitions [image: there is no content]of [image: there is no content]it holds: [image: there is no content]if and only if [image: there is no content]





Proof. 

Let [image: there is no content] i.e., [image: there is no content] Then [image: there is no content][image: there is no content] and by Equation (6) we get:


[image: there is no content]











Let us calculate:


I(ς,ξ/η)=H(ς/η)−H(ς/ξ∨η)=H(ς∨η)−H(η)−H(ξ∨η∨ς)+H(ξ∨η)=H(ξ/η)−  H(ξ/η)=0.











However, this indicates that [image: there is no content] The reverse implication is obvious. ☐





Remark 8.

According to the previous theorem, we may say that [image: there is no content]and [image: there is no content]are conditionally independent, assuming a realization of [image: there is no content]and write [image: there is no content]instead of [image: there is no content]





Theorem 13.

For IF-partitions [image: there is no content]of [image: there is no content]such that [image: there is no content]we have

	(i)

	
[image: there is no content][image: there is no content]




	(ii)

	
[image: there is no content][image: there is no content][image: there is no content]




	(iii)

	
[image: there is no content][image: there is no content]











Proof. 

(i) Since by the assumption [image: there is no content] using the chain rule for logical mutual information, we obtain:


[image: there is no content]











(ii) By Theorem 10, we have [image: there is no content][image: there is no content][image: there is no content] Hence using (i), we can write:


[image: there is no content]











(iii) From (ii), it follows the inequality [image: there is no content][image: there is no content] By Theorem 12, we can interchange [image: there is no content] and [image: there is no content]. Doing so, we obtain the inequality [image: there is no content][image: there is no content] ☐





We note that, in the classical theory, the last claim of Theorem 13 is known as the data processing inequality.




5. Logical Entropy of IF-Dynamical Systems


The classical dynamical system is a quadruplet [image: there is no content] where [image: there is no content] is a probability space, and [image: there is no content] is a measure preserving map, i.e., [image: there is no content] implies [image: there is no content] and [image: there is no content] Define [image: there is no content] by the equality [image: there is no content] for any [image: there is no content] Then, [image: there is no content] is a mapping with the property [image: there is no content] for any [image: there is no content] In addition, [image: there is no content][image: there is no content] for any [image: there is no content] analogously, [image: there is no content] for any [image: there is no content] It is a motivation for the following definition.



Definition 10.

Let [image: there is no content]be the family of all IF-events and [image: there is no content]be a state. Then, the triplet [image: there is no content]will be called an IF-dynamical system, if [image: there is no content]is such a mapping that the following conditions are satisfied:

	(i)

	
[image: there is no content]implies [image: there is no content]and [image: there is no content];




	(ii)

	
if [image: there is no content]and [image: there is no content]then [image: there is no content]




	(iii)

	
if [image: there is no content]then [image: there is no content]











Proposition 3.

Let any IF-dynamical system [image: there is no content]be given. If [image: there is no content]is an IF-partition of [image: there is no content]then the system [image: there is no content]is also an IF-partition of [image: there is no content]





Proof. 

Since [image: there is no content] exists, according to Definition 8, [image: there is no content] and [image: there is no content] This means that [image: there is no content] exists. Moreover, we have:


[image: there is no content]








and


[image: there is no content]













Define [image: there is no content] and put [image: there is no content] where [image: there is no content] is the identical mapping on [image: there is no content]



Theorem 14.

Let any IF-dynamical system [image: there is no content]be given. If [image: there is no content]are IF-partitions of[image: there is no content]then the following properties are satisfied:

	(i)

	
[image: there is no content]




	(ii)

	
[image: there is no content]implies [image: there is no content]




	(iii)

	
[image: there is no content][image: there is no content]




	(iv)

	
[image: there is no content][image: there is no content]




	(v)

	
[image: there is no content][image: there is no content][image: there is no content]











Proof. 

Assume that [image: there is no content], [image: there is no content]



The property (i) follows from the condition [image: there is no content][image: there is no content]



(ii) If [image: there is no content] then for each [image: there is no content] there exists a subset [image: there is no content] such that [image: there is no content][image: there is no content][image: there is no content] Ø for [image: there is no content] and [image: there is no content][image: there is no content] We get:


[image: there is no content]











However, this indicates that [image: there is no content].



(iii) Since [image: there is no content] for [image: there is no content][image: there is no content] we get:


[image: there is no content]











(iv) The proof is analogous to the proof of the previous property.



(v) We will prove by mathematical induction. For the case of [image: there is no content], the equality holds by Equation (7). We assume that the statement holds for a given [image: there is no content] and we prove it is true for [image: there is no content] By part (iii), we have:


[image: there is no content]











Therefore, by Equation (7) and the induction assumption, we can write:


H(∨i=0nτiξ)=H((∨i=1nτiξ)∨ξ)=H(∨i=1nτiξ)+H(ξ/∨i=1nτiξ)=H(∨i=0n−1τiξ)+H(ξ/∨i=1nτiξ)=H(ξ)+ ∑j=1n−1H(ξ/∨i=1jτiξ)+H(ξ/∨i=1nτiξ)=H(ξ)+ ∑j=1nH(ξ/∨i=1jτiξ).











The proof is complete. ☐





Lemma 1.

Let [image: there is no content]be a sequence of non-negative real numbers such that [image: there is no content][image: there is no content]for every [image: there is no content]Then [image: there is no content]exists.





Proof. 

The proof can be found in [69]. ☐





Proposition 4.

Let [image: there is no content]be an IF-dynamical system, and [image: there is no content]be an IF-partition of [image: there is no content]Then, there exists the following limit:


[image: there is no content]













Proof. 

Put [image: there is no content] According to Theorem 5 and property (iii) of the previous theorem, for every [image: there is no content] we have:


ar+s=H(∨i=0r+s−1τiξ)≤H(∨i=0r−1τiξ)+H(∨i=rr+s−1τiξ)=ar+H(τr(∨i=0s−1τiξ))=ar+H(∨i=0s−1τiξ)=ar+as.











Hence, by Lemma 1, [image: there is no content] exists. ☐





Definition 11.

Let [image: there is no content]be an IF-dynamical system, and [image: there is no content]be any IF-partition of [image: there is no content]The logical entropy of [image: there is no content]with respect to [image: there is no content]is defined by:


[image: there is no content]











The logical entropy of an IF-dynamical system [image: there is no content]is defined by the formula:


[image: there is no content]













Example 5.

Let [image: there is no content]be the family of all IF-events and [image: there is no content]be a state. Then, the triplet [image: there is no content]where [image: there is no content]is an identity mapping, is a trivial case of an IF-dynamical system. The operation [image: there is no content]is idempotent, therefore:


[image: there is no content]








and the logical entropy of [image: there is no content]is [image: there is no content][image: there is no content][image: there is no content]





Theorem 15.

Let any IF-dynamical system [image: there is no content]be given. If [image: there is no content]are IF-partitions of [image: there is no content]such that [image: there is no content]then [image: there is no content]





Proof. 

If [image: there is no content] then [image: there is no content] for [image: there is no content] By property (ii) from Theorem 3, we have [image: there is no content] for [image: there is no content] Hence, [image: there is no content] ☐





Definition 12.

Two IF-dynamical systems [image: there is no content][image: there is no content]are said to be isomorphic if there exists a bijective mapping [image: there is no content]satisfying the following conditions:

	(i)

	
[image: there is no content]for every [image: there is no content];




	(ii)

	
[image: there is no content]for every [image: there is no content];




	(iii)

	
for every [image: there is no content], [image: there is no content]exists if and only if [image: there is no content]exists, and [image: there is no content][image: there is no content]




	(iv)

	
[image: there is no content]for every [image: there is no content].











Lemma 2.

Let [image: there is no content][image: there is no content]be isomorphic IF-dynamical systems wherein a mapping [image: there is no content]represents their isomorphism. Let [image: there is no content]be an IF-partition of [image: there is no content]Then, the system [image: there is no content]is an IF-partition of [image: there is no content]with the logical entropy [image: there is no content]and moreover, [image: there is no content][image: there is no content]





Proof. 

Since [image: there is no content] exists, by condition (iii) of the previous definition [image: there is no content] exists, and it holds [image: there is no content][image: there is no content] Therefore, by condition (iv) of the previous definition, we can write:


[image: there is no content]











On the other hand, [image: there is no content] This means that [image: there is no content] is an IF-partition of [image: there is no content]. Let us calculate:


[image: there is no content]











Consequently, using conditions (i) and (ii) of the previous definition, we get:


h(τ2,ψ(ξ))=limn→∞1nH(∨i=0n−1τ2iψ(ξ))=limn→∞1nH(∨i=0n−1ψ(τ1iξ))=limn→∞1nH(ψ(∨i=0n−1τ1iξ))=limn→∞1nH(∨i=0n−1τ1iξ)=h(τ1,ξ). ☐













Lemma 3.

Let [image: there is no content][image: there is no content]be isomorphic IF-dynamical systems wherein a mapping [image: there is no content]represents their isomorphism. Then, for the inverse [image: there is no content]the following properties are satisfied:

	(i)

	
[image: there is no content][image: there is no content]for every [image: there is no content]




	(ii)

	
for any [image: there is no content] if [image: there is no content]exists, then [image: there is no content]exists, too, and [image: there is no content][image: there is no content]




	(iii)

	
[image: there is no content]for every [image: there is no content]




	(iv)

	
[image: there is no content]for every [image: there is no content]











Proof. 

Since [image: there is no content] is bijective, for every [image: there is no content] there exist [image: there is no content] such that [image: there is no content][image: there is no content]

	(i)

	
We get:


[image: there is no content]












	(ii)

	
Let [image: there is no content] such that [image: there is no content] exists. Then, [image: there is no content] exists because [image: there is no content] is surjective. Let us calculate:


[image: there is no content]












	(iii)

	
Let [image: there is no content] Then


[image: there is no content]












	(iv)

	
Let [image: there is no content] Then we have


[image: there is no content]








and


[image: there is no content]

















Hence, the equality [image: there is no content] holds. ☐





Theorem 16.

If the IF-dynamical systems [image: there is no content][image: there is no content]are isomorphic, then [image: there is no content]





Proof. 

Let [image: there is no content] be a mapping representing an isomorphism of IF-dynamical systems [image: there is no content][image: there is no content] By Lemma 2, if [image: there is no content] is an IF-partition of [image: there is no content] then the system [image: there is no content] is an IF-partition of [image: there is no content] and [image: there is no content][image: there is no content] Therefore:


[image: there is no content]








and consequently:


[image: there is no content]











The opposite inequality is obtained in a similar way; it suffices to consider the inverse [image: there is no content] If [image: there is no content] is an IF-partition of [image: there is no content] then it is easy to verify that [image: there is no content][image: there is no content] is an IF-partition of [image: there is no content] Indeed, since [image: there is no content] exists, according to property (ii) from Lemma 3, [image: there is no content] exists, too. Moreover, we have:


[image: there is no content]








and


[image: there is no content]











By means of (iii) from the previous lemma, we get:


[image: there is no content]











Thus, according to the previous lemma, we can write:


h(τ1,ψ−1(η))=limn → ∞1nH(∨i=0n−1τ1iψ−1(η))  =limn → ∞1nH(∨i=0n−1ψ−1(τ2iη))=limn → ∞1nH(ψ−1(∨i=0n−1τ2iη))=limn → ∞1nH(∨i=0n−1τ2iη)=h(τ2,η).











Therefore:


[image: there is no content]








and consequently:


[image: there is no content]











The proof is completed. ☐





In the final part, we prove an analogy of the Kolmogorov–Sinai theorem on generators for the studied situation. This theorem (see e.g., [69]) is the main tool for calculating the entropy of dynamical system. First, analogously as in [62], we introduce the following definition.



Definition 13.

Let [image: there is no content]be an IF-dynamical system and [image: there is no content]be an IF-partition of [image: there is no content]Then [image: there is no content]is called an m-generator of [image: there is no content]if to any IF-partition [image: there is no content]of [image: there is no content]there exists an integer [image: there is no content]> 0 such that [image: there is no content]





Proposition 5.

Let [image: there is no content]be an IF-dynamical system, and [image: there is no content]be an IF-partition of [image: there is no content]Then, for each natural number k, it holds


[image: there is no content]













Proof. 

Let [image: there is no content] be any IF-partition of [image: there is no content] Then, for each natural number k, we can write:


h(τ, ∨i=0kτiξ)  =limn → ∞1nH(∨j=0n−1τj(∨i=0kτiξ))=limn → ∞k+nn⋅1k+nH(∨t=0k+n−1τtξ)=limn → ∞1k+nH(∨t=0k+n−1τtξ)=h(τ,ξ). ☐













Theorem 17.

Let [image: there is no content]be an IF-dynamical system and [image: there is no content]be an m-generator of [image: there is no content]Then


[image: there is no content]













Proof. 

Let [image: there is no content] be an m-generator of [image: there is no content] Then to any IF-partition [image: there is no content] of [image: there is no content] there exists an integer [image: there is no content] > 0 such that [image: there is no content] Consequently by Theorem 15 and Proposition 5, for every IF-partition [image: there is no content] of [image: there is no content] we have:


[image: there is no content]











Thus, we can conclude:


[image: there is no content]














6. Discussion


The purpose of the present study was to introduce the concepts of logical entropy and logical mutual information of experiments in the intuitionistic fuzzy case. Our results have been presented in Section 3, Section 4 and Section 5.



In Section 3, we defined the notions of logical entropy and logical conditional entropy for intuitionistic fuzzy experiments, and proved the basic properties of the proposed measures. It was proved that the logical entropy of intuitionistic fuzzy experiments has properties analogous to the properties of Shannon entropy of measurable partitions, in the sense of classical probability theory. In Section 4, the results of the previous part were used to develop a logical information theory for the intuitionistic fuzzy case. The concepts of logical mutual information and logical conditional mutual information of intuitionistic fuzzy experiments have been introduced, and properties of these measures were studied. Specifically, the chain rule for logical mutual information has been established, and the data processing inequality for conditionally independent IF-partitions was proved. We have also provided some numerical examples to illustrate the results.



In Section 5, the concept of logical entropy of IF-partitions was used to define the logical entropy of IF-dynamical systems. It was shown that the logical entropy of IF-dynamical systems is invariant under any isomorphism. Finally, we have provided an analogy of the Kolmogorov–Sinai theorem on generators for the intuitionistic fuzzy case.



All of the mentioned results can be immediately applied to the fuzzy case. On the other hand, it is hopeful to use the methods developed here in some more general algebraic structures. For example, we mentioned in Theorem 1 the possibility of embedding [image: there is no content] to the family [image: there is no content] with a state [image: there is no content] extending the state m. Actually [image: there is no content] is an example of an MV-algebra with a product [20,21,22,23,24,25,26,27,28]. Further research ought to more fully investigate potential general applications for the methods developed in this work.
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