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Abstract: Understanding and quantifying polarization in social systems is important because of
many reasons. It could for instance help to avoid segregation and conflicts in the society or to control
polarized debates and predict their outcomes. In this paper, we present a version of the q-voter
model of opinion dynamics with two types of responses to social influence: conformity (like in
the original q-voter model) and anticonformity. We put the model on a social network with the
double-clique topology in order to check how the interplay between those responses impacts the
opinion dynamics in a population divided into two antagonistic segments. The model is analyzed
analytically, numerically and by means of Monte Carlo simulations. Our results show that the system
undergoes two bifurcations as the number of cross-links between cliques changes. Below the first
critical point, consensus in the entire system is possible. Thus, two antagonistic cliques may share
the same opinion only if they are loosely connected. Above that point, the system ends up in a
polarized state.

Keywords: opinion dynamics; social influence; conformity; anticonformity; polarization; agent-based
modeling; dynamical systems

1. Introduction

What do affirmative action and gun control [1], same-sex marriage and sexual minority rights [2],
abortion [3] stem cell research [4], global warming [5], attitudes toward political candidates [6] or
the recent refugee crisis in Europe [7] have in common? All of these keywords are examples of
topics known to ignite polarized debates in society. Studying them could thus shed more light on the
phenomenon of polarization, which is one of the central issues in the recent opinion dynamics research.
Polarization is understood here as a situation in which a group of people is divided into two opposing
parties having contrasting positions [8]. It is sometimes referred to as bi-polarization [9] to distinguish
it from the so-called group polarization, i.e., the tendency for a group to make decisions that are more
extreme than the initial inclination of its members [10,11].

Understanding and quantifying polarization is important because of many reasons. It could for
instance help to avoid segregation and conflicts in the society [8] or to control polarized debates
and predict their outcomes [12]. There are numerous theories [13–17] and many experimental
attempts [18–26] to explain the formation and dynamics of individuals’ opinions, including the
mechanisms leading to polarization. As far as the theoretical part is concerned, mathematical
and computational approaches are dominant in modeling of opinion dynamics [27]. In general,
mathematical models allow for some theoretical and/or numerical analysis [28–33]. They usually
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make some reasonable assumptions (e.g., a homogeneous and well-mixed population) to simplify
the spreading process of opinions and focus on its representation at the macroscopic level. With the
appearance of affordable high-performance computers, simulation approaches to opinion dynamics are
more and more popular [34–36]. They usually build opinion formation models at the individual level,
providing more detailed representation of realities at the cost of higher computational complexity.

Agent-based models are one of the most powerful tools available for theorizing about opinion
dynamics [37]. In many cases, they act as in silico laboratories wherein diverse questions can be posed
and investigated. There are already several attempts to apply such models to polarization. For instance,
French [13], Harary [14] and Abelson [38] showed that consensus must arise in populations whose
members are unilaterally connected unless the underlying social network is separated. According to
Axelrod [15], local convergence may lead to global polarization. A number of papers has been devoted
to explaining polarization within the social balance theory, i.e., by accounting for sentiment in dyadic
and/or triadic relations in social networks [39,40]. In other computer experiments, it has been shown
that bridges between clusters in a social network (long-range ties) may foster cultural polarization
if homophily and assimilation at the micro level are combined with some negative influence, e.g.,
xenophobia and differentiation [17,41]. Within the information accumulation systems, the probability
of reaching consensus has been found to decrease with the total number of interactions between agents
that take place in the society [42]. From other studies, it follows that polarization may be also induced
by geometry of social ties [43], mass media communication [44] or some external actions of suitable
controls (e.g., opinion leadership) [45,46].

Although the aforementioned models are very insightful, we still have some gaps in understanding
concerning polarization. One of the recent examples is the impact of new communication channels
like websites, blogs and social media on polarization. In particular, social media services are by
definition a space for information exchange and discussion. They shrink distances and facilitate
communication among people of various backgrounds. There are two competing hypotheses [47].
The first one states that people tend to expose themselves to like-minded points of view and rather
avoid dissimilar perspectives. As a consequence, they form more extreme opinions in the direction
of their original inclination [48,49], which leads to both group and bi-polarization. Tools such as
filtering and recommendation systems built in social media are considered to amplify this tendency.
According to the other hypothesis, new media enable people to encounter more diverse views
and thus to have balanced opinions on different hot topics [50,51]. The empirical evaluation of
these two hypotheses is inconclusive. Some studies have shown that people are more likely to
select information sources consistent with their opinions or beliefs [18–21]. Cognitive dissonance,
i.e., the mental stress or discomfort experienced by an individual holding two contradictory opinions
at the same time, has been identified as one of the possible triggers of such behavior [52,53]. On the
other hand, there are some findings that individuals do not avoid information sources representing
opposing points of view [22–24]. Some theories state that exposure to dissimilar views may have
depolarizing effect, because it stimulates critical thinking [54]. This effect has been observed in a series
of experiments [25,26].

Recently, an Ising-type agent-based model of a social system has been presented to study if and
how a combination of different responses to social influence may lead to polarization in a segmented
network [55]. The model was based on the q-voter model of binary opinion dynamics [34] with
an additional type of social response: anticonformity. From the statistical physics point of view,
the model falls into the category of quenched disorder models, which are known to be hard to analyze
mathematically [56]. In this work, we introduce an annealed version of that model that allows for
mathematical treatment. We find a limiting dynamic system for a model of infinite size, which allows
us to build the phase portrait of the model and gain some insight into its dynamics. The limiting system
is solved numerically. However, we also calculate some of its characteristics analytically. Finally, we
show with the help of computer simulations that both the quenched and the annealed models of a
finite size converge to the limiting system with the increasing number of agents.
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The paper is organized as follows. In the next section, we introduce the model and briefly describe
how it differs from the one presented in [55]. Then, we will investigate the model both analytically
and numerically. Finally, some conclusions will be presented.

2. Materials and Methods

2.1. Basic Assumptions

We begin with a brief description of the assumptions of the model analyzed in [55]. We choose
the q-voter model [34] as our modeling framework. Within the original model, q randomly picked
neighbors influence a voter to change his/her opinion. The voter conforms to their opinion if all q
neighbors agree. If they are not unanimous, the voter can still flip with a probability ε. The unanimity
rule is in line with a number of social experiments. For instance, it has been observed that a larger
group with a non-unanimous majority is usually less efficient in terms of social influence than a small
unanimous group [57,58]. Moreover, Asch found that conformity (i.e., matching attitudes, beliefs and
behaviors to group norms) is reduced dramatically by the presence of a social supporter: targets of
influence having a partner sharing the same opinion were far more independent when opposed to a
seven-person majority than targets without a partner opposed to a three-person majority [59].

From social networks analysis, it follows that the existence of segments within a network may be
correlated with polarization [60–62]. We will thus assume that our social network is already modular.
For the sake of simplicity, we will put the model on the so-called double-clique topology consisting
of two complete graphs (cliques) connected by some cross-links with each other [63]. An example of
such a network is shown in Figure 1. It should be emphasized that this is a rather strong assumption,
because one actually cannot rule out the opposite possibility that segmentation is induced or intensified
by polarization. However, analysis of the casual connection between the network segmentation and
the polarization is beyond the scope of this work and will be addressed in a forthcoming paper.

Figure 1. An example of a double-clique network. The network consists of two separate complete
graphs (cliques) with some cross-links between them.

The original q-voter model uses conformity, i.e., the act of matching attitudes and opinions to
group norms, as the only response to social influence. Other possible types of responses have been
described for instance within the diamond model [64–67] and are shown in Figure 2. The anticonformity
(i.e., challenging the position or actions of a group) representing negative ties is of particular interest,
because from the social balance theories, it follows that both positive and negative ties are needed for
polarization to emerge and to prevail [40].Thus, we will add this type of response to our model to
check how the interplay between conformity and anticonformity impacts its dynamics.
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Figure 2. Possible responses to social influence according to the diamond model [64–67]; here, presented
within a q-voter model framework with q = 4 [34]. The source of influence is a group consisting of
unanimous agents (schematically pictured as a cloud). The “up”’ and “down”’ spins (arrows) represent
agents with two different opinions on a single issue.

It is worth noting here that the anticonformity as a type of social response was introduced into
binary models of opinion dynamics for the first time probably by Serge Galam, who used the notion of
“contrarians” in order to describe agents always adopting opinions opposite to the prevailing choice of
others [68]. In his seminal paper, he showed that there exists a critical density of contrarians above
which a system always ends up in a bi-polarized state.

We are however aware that the assumption of negative influence is still a subject of intense
debate. There are several models able to explain polarization without any kind of negative influence,
for example the argument-communication theory of bi-polarization [9] or the bounded-confidence
model [16]. Some empirical studies on negative influence do not provide convincing support for this
assumption either [69].

There is an important point while speaking about anticonformity: it is relative. It turns out that in
many settings, multiple sources of norms are possible. As a consequence, conformity to one source
can at the same time be anticonformity to another. For instance, a teenager’s conformity to peers is
very often anticonformity to his/her parents [66]. Therefore, we will assume within our model that an
agent strives for agreement within his own clique and simultaneously anticonforms to individuals
from the other clique.

Within the q-voter model, all individuals are characterized by a single dichotomous variable,
i.e., the model belongs to the class of binary models. At first glance, this approach may seem unrealistic,
because the opinions of individuals on specific subjects are expected to vary gradually. Therefore, they
should be rather represented by continuous variables [9,13,14,16]. However, from empirical findings,
it follows that the distribution of opinions on important issues measured on some multivalued scale
is often bimodal and peaked at extreme values [70,71]. Moreover, many data on social networks are
characterized by a semantic unicity, meaning that opinions and interactions of networks’ members
are restricted to a single domain or topic [72]. Very often, those opinions may be interpreted as
simple “yes”/“no”, “in favor of”/“against” or “adopted”/“not adopted” answers [73]. In other words,
in some situations, the most important characteristics of the system under investigation may be already
captured by the relatively simple models of binary opinions.

2.2. The “Old” (Quenched Disorder) Model

In this section, we recall the model introduced in [55]. We consider a set of 2N agents, each of
whom has an opinion on some issue that at any given time can take one of two values: Si = −1 or
Si = 1 for i = 1, 2, . . . , 2N. We will sometimes call these agents spinsons to reflect their dichotomous
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nature originating in spin models of statistical physics and humanly features and interpretation
(spinson = spin + person) [35,74].

We put our agents on a double-clique network. It consists of two complete graphs of N nodes
connected with L× N2 cross-links (Figure 1). The parameter L is the fraction of the existing cross-links
and N2 their maximum number. The cross-links between the cliques are chosen randomly and the
resulting network does not evolve in time during simulation. Thus, from the statistical physics’ point
of view, the model belongs to the class of models with quenched disorder [75].

We will assume that a spinson strives for agreement within his/her own clique (conformity)
and simultaneously challenges the opinions of individuals from the other clique (anticonformity).
In other words, we link the type of social response of agents with their group identity. To account for
the possibility of acting as both conformist and anticonformist at the same time within the q-voter
model, we introduce the notion of signals and slightly alter the concept of unanimity of the influence
group. A signal is just a state of the neighbor when coming from the spinson’s clique or its inverted
state otherwise. The target of influence changes its opinion only if all members of the influence
group emit the same signal. No other modification of the q-voter framework are needed to account
for anticonformity.

We use Monte Carlo simulation techniques with a random sequential updating scheme to
investigate the model. Each Monte Carlo step in our simulations consists of 2× N elementary events,
each of which may be divided into the following sub-steps:

1. Pick a target spinson at random (uniformly from 2N nodes).
2. Build its influence group by randomly choosing q neighboring agents.
3. Convert the states of the neighbors into signals that may be received by the target. Assume that

the signals of the neighbors from the target’s clique are equal to their states. Invert the states
when from the other clique.

4. Calculate the total signal of the influence group by summing up individual signals of its members.
5. If the total signal is equal to ±q (i.e., all group members emit the same signal), the target changes

its opinion accordingly. Otherwise, nothing happens.

Thus, our model is nothing but a modification of the q-voter with ε = 0 and an additional social
response of spinsons. You may refer to [55] for further details of the model.

2.3. New (“Annealed”) Version of the Model

In the model described in the previous section, the cross-links between the cliques are generated
randomly at the beginning of a simulation and remain fixed while the system evolves in time. If the
number of cross-links is smaller than their maximum number N2 (i.e., L < 1), some agents may have
no connections to the other clique, some others, multiple ones. In other words, the agents may differ
from each other because of the distribution of links between the cliques. While it can be handled
with ease within a computer simulation, this feature constitutes usually a challenge for mathematical
modeling due to the necessity to perform a quenched average over the disorder [56]. Thus, we decided
to modify the model slightly for simpler mathematical treatment.

Most of the assumptions presented earlier in this section hold, i.e., we consider 2N agents living on
a double-clique network. Each agent may be in one of the states {+1,−1} representing its opinion on
some issue. It seeks for agreement within its own clique (conformity) and simultaneously anticonforms
with respect to individuals from the other clique (anticonformity). Additionally, it changes its opinion
if the members of an influence group emit the same signal. Just to recall, a signal is just a state of the
neighbor when coming from the agents’s clique or its inverted state otherwise.

If the size N of each clique is large enough, then the number of links within a single clique is
given by:

(N − 1)N
2

≈ N2

2
. (1)
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With the number of cross-connections equal to L× N2, the quantity:

p =
LN2

LN2 + 2× N2

2

=
L

1 + L
(2)

gives us the probability of choosing one cross-link out of all edges in the double-clique network.
Assuming that every agent from one clique is connected with probability p with an agent from the
other clique, and with probability 1− p with an agent from its own clique, we arrive at the new version
of our model. Technically, this approximation is nothing but an average of the original (quenched
disorder) model over different configurations of cross-links in the network. Thus, it corresponds to
annealed models from statistical physics [76].

Step 2 from the update rules of the model defined in Section 2.2 requires some adjustments:

1. Pick a target spinson at random (uniformly from 2N nodes).
2. Build its influence group by randomly choosing q agents. In the quenched disorder model, we

simply followed 4 randomly-chosen links of the target to achieve that. Due to the setup of that
model, some targets usually had no cross-connections, some others-multiple ones. Now, the
situation is different: each target has the same probability of being cross-connected, and the actual
links to other agents have to be built first. Thus, for each member of the influence group, we
decide first which clique it will belong to (with probability 1− p to the target’s clique, with p to
the other one). Then, we choose the member randomly from the appropriate clique (see Figure 3).

3. Convert the states of the group members into signals.
4. Calculate the total signal of the influence group.
5. If the total signal is equal to ±q (i.e., all group members emit the same signal), the target changes

its opinion accordingly. Otherwise, nothing happens.

Figure 3. Finding the influence group in the new version of the model. Each link of the target (the big
green agent in the middle of Clique A) is chosen independently. With probability p, it may point to
an agent from the other clique (dashed line), with probability 1− p, from the target’s one (solid lines).
See Step 2 of the update procedure defined in Section 2.3 for more explanation.

It should be noted that a similar model, but with a broken symmetry between the cliques, was
used in both the quenched and the annealed version to explain recurring fashion cycles [77].

Let us denote the state of the i-th agent at the discrete time τ by Si(τ). There are two natural
quantities that fully describe the state of the system: the concentration of agents in state +1 and the
average opinion (magnetization in physical systems) [35]. The concentration at time τ is defined as:

c(τ) =
N↑(τ)

2N
→ c(τ) ∈ [0, 1], (3)

where N↑(τ) is the number of agents in state +1 at time τ. The average opinion is given by:

m(τ) =
N↑(τ)− N↓(τ)

2N
→ m(τ) ∈ [−1, 1]. (4)
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Please note that there is a simple relation between these two quantities:

m(τ) = 2c(τ)− 1. (5)

Thus, it actually does not matter which one will be chosen for representation of the state of the
system. For the sake of convenience, we will usually work with the concentration below. However,
some of the results will be transformed to average opinions to allow for comparisons with the findings
from [55].

In order to easily detect polarized states in the system (i.e., all agents in state +1 in one clique and
in state −1 in the other), we will often calculate the concentration separately for each clique:

cX(τ) =
N↑X(τ)

NX
, X = A, B, (6)

where A and B are the labels of the cliques.
The interpretation of cX is as follows:

• cX = 1: positive consensus in clique X, i.e., all agents in that clique are in state +1,
• 1

2 < cX < 1: partial positive ordering in clique X, i.e., the majority of agents is in state +1,
• cX = 1

2 : no ordering in clique X, i.e., the numbers of agents in state +1 and −1 are equal,
• 0 < cX < 1

2 : partial negative ordering in clique X, i.e., the majority of agents are in state −1,
• cX = 0: negative consensus in clique X, i.e., all agents in that clique are in state −1.

2.3.1. Transition Probabilities

In each elementary time step, the number of agents in state +1 in one clique, say A, can increase
by 1 only if:

1. a target from clique A is chosen (probability 1/2),
2. the target is in state −1 (probability 1− cA),
3. it flips, i.e., an influence group emitting signal +q is chosen.

We can immediately write down the transition probability for such an event:

Pr
{

N↑A (t + ∆N) = N↑A (t) + 1
}
=

1
2
(1− cA(t)) [(1− p) cA (t) + p (1− cB (t))]q . (7)

We have introduced here a scaled time t = τ
2N and a scaled time step ∆N = 1

2N . We will use them
below to derive a limiting dynamical system for the model.

Moreover, one can easily check that the term of the form (u + v)q in the above equation is just the
generating function for the probabilities of those compositions of q members of an influence group
that can cause an opinion switch event (see Figure 4).

Figure 4. Possible choices of the influence group in case q = 4 that lead to an opinion flip of a spinson
in Clique Abeing initially in state S = −1. See [55] for further details.
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Similarly, the number of spinsons in state +1 in Clique A decreases by 1 if:

1. a target from clique A is chosen (probability 1/2),
2. the target is in state +1 (probability cA),
3. it flips, i.e., an influence group emitting signal −q is chosen.

These conditions lead to the following transition probability:

Pr
{

N↑A (t + ∆N) = N↑A (t)− 1
}
=

1
2

cA (t) [(1− p) (1− cA (t)) + pcB (t)]q . (8)

It is also possible that the number of agents in state +1 remains unchanged in the elementary
time step. The probability of this event is simply given by:

Pr
{

N↑A (t + ∆N) = N↑A (t)
}
= 1− Pr

{
N↑A (t + ∆N) = N↑A (t) + 1

}
− Pr

{
N↑A (t + ∆N) = N↑A (t)− 1

}
. (9)

After repeating analogous considerations for Clique B, we get:

Pr
{

N↑B (t + ∆N) = N↑B (t) + 1
}

=
1
2
(1− cB (t)) [(1− p) cB (t) + p (1− cA (t))]q

Pr
{

N↑B (t + ∆N) = N↑B (t)− 1
}

=
1
2

cB (t) [(1− p) (1− cB (t)) + pcA (t)]q (10)

Pr
{

N↑B (t + ∆N) = N↑B (t)
}

= 1− Pr
{

N↑B (t + ∆N) = N↑B (t) + 1
}
− Pr

{
N↑B (t + ∆N) = N↑B (t)− 1

}

Thus, given the states of the cliques at time t, the expectations for the numbers of agents in state
+1 at time t + ∆N are given by the following expressions:

E
(

N↑A (t + ∆N)
)

= N↑A (t) +
1
2
(1− cA (t)) [ p̄cA (t) + p (1− cB (t))]q

−1
2

cA (t) [ p̄ (1− cA (t)) + pcB (t)]q

E
(

N↑B (t + ∆N)
)

= N↑B (t) +
1
2
(1− cB (t)) [ p̄cB (t) + p (1− cA (t))]q

−1
2

cB (t) [ p̄ (1− cB (t)) + pcA (t)]q (11)

The abbreviation p̄ = 1− p was used in the above formulas.

2.3.2. Asymptotic Dynamical System

We would like to derive from Equation (11) a limiting dynamical system for N → ∞ in scaled
time t = τ

2N . Let us first divide the above equations by N:

E (cA (t + ∆N))− cA (t) = ∆N (1− cA (t)) [ p̄cA (t) + p (1− cB (t))]q

−∆NcA (t) [ p̄ (1− cA (t)) + pcB (t)]q

E (cB (t + ∆N))− cB (t) = ∆N (1− cB (t)) [ p̄cB (t) + p (1− cA (t))]q

−∆NcB (t) [ p̄ (1− cB (t)) + pcA (t)]q (12)

It is very likely that in the limit N → ∞, the random variables ci =
N↑i
N localize and hence become

almost surely equal to their expectations. We get:

cA (t + ∆N)− cA (t)
∆N

= (1− cA (t)) [ p̄cA (t) + p (1− cB (t))]q − cA (t) [ p̄ (1− cA (t)) + pcB (t)]q

cB (t + ∆N)− cB (t)
∆N

= (1− cB (t)) [ p̄cB (t) + p (1− cA (t))]q − cB (t) [ p̄ (1− cB (t)) + pcA (t)]q (13)
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Taking the limit N → ∞ and denoting the limiting variables cA and cB by x and y, we arrive at:

x
′

= (1− x) ( p̄x + p (1− y))q − x ( p̄ (1− x) + py)q ,

y
′

= (1− y) ( p̄y + p (1− x))q − y ( p̄ (1− y) + px)q . (14)

2.3.3. Annealed Model as a Birth-Death Process

According to Equations (7)–(10), we have only two types of state transitions in each clique:
“births”, which increase the state variable by one, i.e., N↑X → N↑X + 1 (X = A, B), and “deaths”,
which decrease it by one, N↑X → N↑X − 1. Thus, our model may be seen as two coupled birth-death
processes [78]. Since such a process is relatively easy to simulate, we will use it as an additional
benchmark while comparing the results for the quenched disorder and annealed models.

3. Results

All results presented in this section were obtained via symbolic and numerical calculations by
making use of Python’s scientific stack [79]. Python codes needed to reproduce some of them may be
found in the Supplementary Materials.

Although we will often use the case q = 3 for presenting the results, there is no particular
reason for choosing this value. We considered in our analysis influence groups of sizes ranging
from 1–6. The upper bound of the group size was motivated by the conformity experiments by
Asch [59]. Qualitatively, the results turned out to be independent of the actual value of q. However,
with increasing q, the critical points were shifted towards higher values of the interaction parameter p
(see Figure 5).

Figure 5. Correlation between cliques as a function of the fraction of cross-links L for q = 3 (left plot)
and q = 4 (right plot). Simulation results of the quenched disorder model (label “quenched (sim)” in the
plots) taken from [55] are compared with the numerical solution (“annealed (num)”) of the asymptotic
dynamical system given by Equation (15), as well as with the simulation of the annealed model as
a birth-death process (“annealed (sim)”). Both simulations were performed for a finite size system
(N = 100 agents in each clique). Despite the differences between the models, the agreement between
them is quite good. In particular, for both values of q the transition from consensus to polarization sets
in at similar values of L.

3.1. Direction Fields and Stationary Points

Our goal is to investigate the dynamical system given by Equation (14),

x′ = (1− x) ( p̄x + p (1− y))q − x ( p̄ (1− x) + py)q ,

y′ = (1− y) ( p̄y + p (1− x))q − y ( p̄ (1− y) + px)q . (15)
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It is customary to start such an analysis by plotting direction fields in the state space of the system [80].
Examples of the fields for q = 3 and two values of the parameter p are shown in Figure 6.
As a remainder: the solution trajectory through a given initial state is a curve in the state space,
which at every point is tangent to the field at that point.

Figure 6. Direction field of the dynamical system (15) for q = 3 and two different values of the
interaction parameter p: p = 0.2 (left plot) and p = 0.4 (right plot). Red dots indicate stationary points
of the system. The parameters q and p are the size of the influence group and the probability of being
connected to an agent from the other clique, respectively.

Several things are immediately clear from the picture shown in the figure. At p = 0.2, the flows in
the state plane suggest that there are nine stationary points (already marked with red dots). Some of
these points are easy to classify. For instance, there are two attractors (i.e., points toward which the
system tends to evolve for a wide variety of initial conditions) at (0, 1) and (1, 0) corresponding to a
polarized state of the system, i.e., all agents in one clique are in state +1 and in the other—in state −1.
Moreover, there are two other symmetric attractors close to the coordinates (0, 0) and (1, 1). It seems
that (almost) complete consensus is possible in our system for some initial configurations, at least for
that particular value of p. The point (0.5, 0.5) is a repeller (the system tends to evolve away from it),
and the remaining four points seem to be hyperbolic (near such points, the orbits of a two-dimensional,
non-dissipative system resemble hyperbolas).

At p = 0.4 (right plot in Figure 6), all hyperbolic points and the symmetric attractors disappear.
The point (0.5, 0.5) becomes hyperbolic. The only remaining attractors are (0, 1) and (1, 0). Hence, for
higher values of p, the polarization of the system is the only possible asymptotic state. It should be
noted that these findings recapture the results from [55].

To find the exact coordinates of the system, we just set x′ and y′ equal to zero in Equation (15) and
solve the resulting set of equations with respect to x and y,

0 = (1− x) ( p̄x + p (1− y))q − x ( p̄ (1− x) + py)q ,

0 = (1− y) ( p̄y + p (1− x))q − y ( p̄ (1− y) + px)q . (16)

For p = 0.2 and q = 3, we get:

P1 = (0, 1), P2 = (1, 0)

C1 = (0.019, 0.019), C2 = (0.981, 0.981) (17)

R1 = (0.5, 0.5)

U1 = (0.005, 0.277), U2 = (0.277, 0.005)

U3 = (0.722, 0.995), U4 = (0.995, 0.722)
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The linear stability analysis of these points reveals that indeed P1, P2, C1 and C2 are stable
equilibria, R is a repeller and the remaining points are hyperbolic ones, in agreement with our analysis
of the direction field in Figure 6.

Similarly, for p = 0.4 and q = 3, we have:

P1 = (0, 1), P2 = (1, 0) (18)

R1 = (0.5, 0.5) (19)

As before, P1 and P2 are stable, but R1 is now hyperbolic. The remaining points disappeared
(they became complex).

If we repeat the above calculations for other values of the parameter p and plot the results, we get
a bifurcation diagram showing how the dynamics of the system changes with p, i.e., with increasing
degree of anticonformity in the system. The plot of the x coordinates of the fixed points as functions of
p is shown in Figure 7. The picture for the y coordinates would look the same (but with rearranged
labels of the unstable points Ui).

Figure 7. Bifurcation diagram of the system given by Equation (15) for q = 3. Solid lines indicate stable
fixed points, the remaining ones, repellers and hyperbolic equilibria. At small values of p, the system
has four attractors: P1 and P2 correspond to asymptotic polarization, C1 and C2 to consensus. There is
also a repeller R1 and four hyperbolic points U1–U4. As p increases, a bifurcation happens at p∗ ' 0.26.
The four hyperbolic non-symmetric points U1–U4 disappear, and the consensus equilibria C1 and C2

become hyperbolic. With the further increase of p, the symmetric points eventually disappear, and the
repeller R1 becomes hyperbolic.

Stable equilibria are indicated with solid lines. We see that the system has two attractors P1 = (0, 1)
and P2 = (1, 0), as well as the unstable point R1 = (0.5, 0.5) as stationary solutions independently of
p. However, the system undergoes two phase transitions. At p?1 ' 0.26 the hyperbolic points U1–U4

disappear, and the nontrivial symmetric fixed points C1 and C2 become hyperbolic. At p?2 ' 0.32, these
symmetric points disappear, as well.

The above results were obtained numerically. However, in the special case of q = 2, one can find
both critical values of p analytically. For a general value of q, an analytical computation of the second
critical point is possible, as well. We present corresponding calculations in Appendices B and C.

3.2. Time Evolution of the Asymptotic System

The time evolution of our dynamical system for two different values of p is shown in Figure 8.
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Figure 8. Time evolution of the dynamical system given by Equation (15) for two different values of
the parameter p: 0.2 (left column) and 0.4 (right column). The initial concentrations of spinsons in state
+1 in Clique A (i.e., x0) and Clique B (y0) are given in the titles of the plots. The size of the influence
group q was set to three in all calculations.

The set (15) of ordinary differential equations was solved numerically in Python by making use of
the odeint function from the SciPy package [79].

As already known from Figures 6 and 7, at p = 0.2, our system may end up either in the polarized
state (i.e., P1 or P2) or in the consensus one (C1 or C2) depending on the initial conditions for the
concentrations of +1 spinsons. We see that the results shown in the left column of Figure 8 are in
line with these findings. If for instance the starting point is the total positive consensus in Clique
A (x0 = 1.00) and almost total consensus in Clique B (y0 = 0.99), then the system ends up in state
C2 = (0.981, 0.981), representing consensus in the entire system (top left plot in Figure 8). In this case,
the anticonformistic links between cliques, the number of which is represented by p, lead only to a tiny
decrease of the initial concentrations of +1 agents in both cliques. If the initial conditions are close
to the repeller R1 and symmetric (i.e., we start from a point on the diagonal in the state plane, which
means that there is (almost) no ordering in each clique), then again, the system reaches the consensus
state (middle left plot). However, a small deviation from the diagonal pushes the system towards the
polarized state (bottom left).

As we see, the behavior for p = 0.4 is different. The system usually ends up in the polarized state
(top and middle right plots in Figure 8). The only exceptions are initial conditions along the diagonal
in the state plane (x, y). Since R1 is now not a repeller, but a hyperbolic fixed point, the system is
pushed towards it in this case (bottom right plot). Again, this is in agreement with the direction field
shown in Figure 6.
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3.3. Basins of Attraction

Attractors of every dynamical system are surrounded by a basin of attraction representing the set
of initial conditions in the state space whose orbits approach the attractor as time goes to infinity. In the
previous paragraph, we have seen already examples of initial conditions belonging to the basins of
the polarization equilibria (P1 or P2) and the consensus ones (C1 or C2) (see Figure 8). Now, we would
like to quantify the shapes of the basins of different attractors of our system. Of particular interest in
a model with segmentation and negative ties are the basins of the consensus states, since in such a
setting, one intuitively expects polarization as the natural asymptotic state.

Since it is not possible to calculate the shapes analytically, we will resort to numerical methods
again. For that purpose, we create first a grid in the state plane (x, y) with both coordinates varying
from 0.0–1.0 with step 0.01. The points on the grid represent different initial conditions uniformly
distributed in the whole state plane. Then, we solve the dynamical system (15) for each grid point
and check what attractor the solution is converging to at long evolution times. Results for p = 0.2
and p = 0.4 are presented in Figure 9. As often in this paper, the parameter q was set to three in the
whole procedure.

Figure 9. Basins of attraction at two different values of p, 0.2 (left plot) and 0.4 (right plot). Each point
in the state plane corresponds to an initial condition. Its color indicates the attractor, to which a solution
is converging. The coordinates of the attractors are defined in Equations (17) and (18). Boundaries
between the basins are formed by stable manifolds of the hyperbolic points U1–U4 (left plot) or of the
point R1 (right plot).

For p = 0.2 (left plot in Figure 9), the whole state plane is divided into the basins of four
attractors: P1, P2, C1 and C2. Their coordinates are defined in Equation (17). Surprisingly, the basins of
both positive (C2) and negative (C1) consensus are relatively large. Thus, if the number of negative
connections between the cliques is small, the consensus may still by reached in a double-clique network
for a range of initial conditions. It is worth mentioning that the boundaries between the basins observed
in the plot are formed by the stable manifolds of non-symmetric hyperbolic points U1–U4.

The picture at p = 0.4 (right plot in Figure 9) is simpler. Consensus is no longer possible and the
whole state plane is divided into the basins of two polarization points P1 and P2 (see Equation (18) for
their coordinates). The boundary between them corresponds to the stable manifold of R1, which is
now hyperbolic.

3.4. Correlation between Cliques

All results presented up to this point indicate that some sort of a competition between conformity
and anticonformity may be responsible for substantial changes in the dynamics of the model.
To elaborate on that issue, we will look at the product of the final states of the cliques,

c∞
A c∞

B = x∞y∞, (20)
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as a function of p at different values of q. We will call this quantity a correlation between the cliques.
To allow for comparisons with the results presented in [55] we will focus our attention on the total
positive consensus x0, y0 = 1.0 as the initial condition. It is referred to as Scenario I in [55] and
corresponds to the following situation: two cliques with a natural tendency to disagree with each other
evolve at first independently. They get in touch by chance and establish some cross-links to the other
group once they both reached consensus on a given issue.

Results for the correlation between the cliques are presented in Figure 10.

Figure 10. Correlation x∞y∞ between final states of the cliques as a function of p for different values of
q. Below the bifurcation (critical) value of p, consensus between cliques is possible. With increasing
p, the consensus is slightly diminished because of the increasing role of the negative ties between the
cliques. Above the bifurcation point, only polarization is possible in the system.

For values of p smaller than a critical value (' 0.267 for q = 3), both cliques always end up
in positive consensus. In other words, in this regime, the intra-clique conformity wins with the
inter-clique anticonformity, and both communities are able to maintain their initial positive consensus.
If the value of p is larger than the critical one, the anticonformity-induced effects take over, and the
whole system ends up in a polarized state. Moreover, the critical point shifts with increasing q towards
higher values of p (see Table 1 for more details). Thus, the bigger the influence group, the more
cross-links are needed to polarize the society.

Table 1. The values of p at the bifurcation point for different values of q.

q 3 4 5 6

p∗ 0.267 0.311 0.339 0.359

Let us compare the above results with the model presented in [55]. For that purpose, we have
to convert the concentrations of agents in state +1 in each clique into average opinions according to
Equation (5) and to transform the probability p of being connected to other clique into the number of
cross-links L. We obtain the transformation formula immediately from Equation (2):

L =
p

1− p
(21)

The comparisons for two different values of q are shown in Figure 5.
The agreement of the results is quite good, despite the differences between the models and the

fact that the numerical solution for the annealed model was obtained for an infinite system, whereas
the simulations were performed for only N = 100 agents in each clique. Most notably, the transition
from consensus to polarization sets in at similar values of L in both models.

Some of the discrepancies between the numerical results for the annealed model and the
simulation results for the quenched disorder one are due to the finite system size of the quenched
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disorder model and the stochastic nature of its simulation. Indeed, the agreement between models is
even better, if we leave the numerical solution out of consideration for a moment and concentrate only
on the simulation results in both cases. Moreover, as follows from Figure 11, the differences between
the models decrease with increasing system size. Thus, for N → ∞ both variants of the model will
probably converge to each other.

Figure 11. Correlation between cliques as a function of the fraction of cross-links L for q = 4 and two
different system sizes: N = 200(left plot) and N = 400 (right plot). See the caption of Figure 5 for an
explanation of the labels. The differences between simulation results for both models decrease with
increasing system size.

4. Discussion

Due to the computational complexity of the Monte Carlo simulation approach to agent-based
models, we were able to investigate only a few distinct initial conditions in [55]. In this paper, thanks
to a slight modification of the model, we could analyze it mathematically and therefore explore the
whole state plane.

Again, our results indicate that the interplay between conformity and anticonformity may lead to
a polarized state of the system. We now have however a much better understanding of the conditions
necessary to arrive at consensus, and we have determined regimes in which polarization takes over.
Thus, the present results complete the analysis started in [55]. The most important message of the
study is that consensus between two antagonistic communities is possible only if they are loosely
connected with each other.

It should be noted that similar results have been achieved by Shin and Lorenz [42] within the
information accumulation system model of continuous opinion dynamics. The authors found that
the convergence of two internally highly connected communities with a comparably low number of
cross-links to the same opinion is less possible the more overall interaction between agents takes place.

Explosive growth in Internet-mediated communication facilitates the exchange of opinions
between people, both passively and actively [81]. Within the language of our model, this means
that modern communication tools like Facebook and Twitter increase the number of links between
people in general and between members of differently-minded cliques in particular. Our results imply
that if the fraction of cross-links (i.e., the value of p) between such cliques exceeds some critical value,
then the polarized state is the only attractor of the system. In real social systems, the situation is of
course more complicated, because the cliques interact not only with each other, but with other actors,
as well. However, our results may indicate one of the possible mechanisms for the omnipresence
of polarization in social media. Paradoxically, the often criticized “filter bubbles” on Facebook or
Google [82], which separate users from information (people) that disagrees with their viewpoints, may
help to weaken the problem with bi-polarization and to maintain overall consensus, because they
reduce the fraction of cross-links between cliques (the discussion of negative effects of “filter bubbles”
on the society is beyond the scope of this work).
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As far as potential extensions to our model are concerned, the suggestions given in our previous
paper still hold. For instance, it could be very informative to check how robust the model is to the
introduction of noise, because it is already known that including noise in models of opinion dynamics
may significantly change their predictions [83]. Another interesting aspect worth addressing in future
studies is the casual connection between the network segmentation and the polarization.
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Appendix A. Critical Values of p in Case q = 2

From the analysis presented in the main text (see Section 3.1), it follows that the system undergoes
two phase transitions. At the first critical point, four hyperbolic nonsymmetric fixed points disappear,
and the nontrivial symmetric equilibria become hyperbolic. At the second critical point, these
symmetric points disappear, as well.

Our goal is to find both critical values of p analytically in the special case q = 2. We will proceed
by first computing the coordinates of the nontrivial symmetric fixed points as functions of p. Then, we
find coordinates of a symmetric point, at which the largest eigenvalue of the Jacobian is equal to zero.
Combining these two results will give us the critical value of the first transition. The second phase
transition occurs at a value of p, for which both symmetric points disappear (i.e., they become complex).

For computing the nontrivial symmetric fixed points, we put x = y and q = 2 into Equation (15).
Setting x′ to zero yields:

(1− x) ((1− p) x + p (1− x))2 − x ((1− p) (1− x) + px)2 = 0 (A1)

Factoring out and simplifying the above equation gives:

4px− x + p2 + 3x2 − 2x3 − 12px2 − 6p2x + 8px3 + 12p2x2 − 8p2x3 = 0, (A2)

which may be written as:

(1− 2x)
(

4px− x + p2 + x2 − 4px2 − 4p2x + 4p2x2
)
= 0. (A3)

Thus:
4px− x + p2 + x2 − 4px2 − 4p2x + 4p2x2 = 0, (A4)

and after some calculations, we arrive at:

x2 − x +
p2

(2p− 1)2 = 0. (A5)

Solving the last equation gives:

x1 =
1
2
− 1

2

√
1− 4p2

(2p− 1)2 , (A6)

x2 =
1
2
+

1
2

√
1− 4p2

(2p− 1)2 . (A7)
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Note that for p > 1
4 , both solutions are complex (i.e., the symmetric points disappear). Hence, the

second transition occurs at:
p?2 =

1
4

. (A8)

We proceed by computing the Jacobian at a symmetric point (x, x). Due to the symmetry of the
dynamical system (15), the Jacobian at such a point is of the form:∣∣∣∣∣ a(x) b(x)

b(x) a(x)

∣∣∣∣∣ . (A9)

Hence, the eigenvalues are (we omit the explicit dependency on x for the sake of simplicity):

λ1 = a + b, (A10)

λ2 = a− b. (A11)

After some straightforward, but lengthy computation, we get:

a = (1− 2p)
(

2x2 (4p− 3)− 2x (4p− 3)− 1 + 2p
)

, (A12)

b = −2p (2x (1− x) (1− 2p) + p) (A13)

Since b is negative for p < 1
2 , the largest eigenvalue is always a− b. Setting it to zero yields:

x2 − x +
1 + 2p2 − 4p
8p2 − 16p + 6

= 0 (A14)

Combining the last expression with Equation (A5) gives:

1 + 2p2 − 4p
8p2 − 16p + 6

=
p2

(2p− 1)2 , (A15)

which is equivalent to:
16p2 − 8p− 8p3 + 1 = 0. (A16)

We have to solve the above equation in order to get the critical value for the first transition. The
relevant solution is:

p?1 =
3
4
− 1

4

√
5 ' 0.190 98. (A17)

Appendix B. Second Critical Value of p for General q

The critical value of p for the second phase transition may be calculated analytically in the case of
a general q. At that critical point, the equilibrium R1 = (1/2, 1/2) changes its character from a repeller
to a hyperbolic one. Hence, we have to evaluate the Jacobian at R1 and look for a value of p, for which
the smallest eigenvalue becomes zero.

The Jacobian will again have the form given by Equation (A9). Taking the derivatives of the
right-hand side of Equation (15) with respect to x and y and setting x = y = 1/2 in the resulting
expressions give:

a = 2q
(

1
2

)q
− 2

(
1
2

)q
− 2pq

(
1
2

)q
, (A18)

b = −pq
(

1
2

)q−1
. (A19)
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The smallest eigenvalue of the Jacobi matrix is given by:

a + b = 2q
(

1
2

)q
− 2

(
1
2

)q
− 2pq

(
1
2

)q
− pq

(
1
2

)q−1
. (A20)

Equating it to zero yields the critical value of p,

p?2 =
2
(

1
2

)q
− 2q

(
1
2

)q

−2q
(

1
2

)q
− q

(
1
2

)q−1 (A21)

For q = 2, we obtain:

p?2 =
1
4

, (A22)

which agrees with the result obtained in the previous section.

Appendix C. Supplementary Materials

A Jupyter notebook with Python code used for the numerical analysis of the dynamical system (15)
may be found in [84].
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