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Abstract: Measures of predictability in physiological signals using entropy measures have been
widely applied in many areas of research. Multiscale entropy expresses different levels of either
approximate entropy or sample entropy by means of multiple factors for generating multiple time series,
enabling the capture of more useful information than using a scalar value produced by the two entropy
methods. This paper presents the use of different time shifts on various intervals of time series
to discover different entropy patterns of the time series. Examples and experimental results using
white noise, 1/ f noise, photoplethysmography, and electromyography signals suggest the validity
and better performance of the proposed time-shift multiscale entropy analysis of physiological signals
than the multiscale entropy.

Keywords: approximate entropy; sample entropy; multiscale entropy; higuchi’s fractal dimension;
time shift; physiological signals

1. Introduction

The notion of the approximate entropy (ApEn) [1], which quantifies irregularity or predictability
in scalar time series has been increasingly applied in various scientific domains of signal processing.
The modified version of ApEn known as the sample entropy (SampEn) [2] was introduced to remove
self-matching in ApEn, and reported to produce results better than the use of ApEn in several studies
of time-series analysis [3–5].

Consider a scalar time series X of length N taken at regular intervals: X = (x1, x2, . . . , xN),
and a given embedding dimension m, a set of newly reconstructed time series from X, denoted as Y, can
be established as Y = (y1, y2, . . . , yN−m+1), where yi = (xi, xi+1, . . . , xi+m−1), i = 1, 2, . . . , N −m + 1.
Given a positive tolerance value r, the probability of vector yi being similar to vector yj is computed as

Cm
i (r) =

1
N −m + 1

N−m+1

∑
j=1

θ[d(yi, yj)], (1)

where θ(d(yi, yj)) is the step function defined as

θ[d(yi, yj)] =

{
1 : d(yi, yj) ≤ r,
0 : d(yi, yj) > r.

(2)

The distance between the two vectors can be obtained by

d(yi, yj) = max
k

(|xi+k−1 − xj+k−1|), k = 1, 2, . . . , m. (3)
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The probabilities of all vectors being similar to one another are computed as

Cm(r) =
1

N −m + 1

N−m+1

∑
i=1

log[Cm
i (r)]. (4)

Approximate entropy, denoted as ApEn, is defined as

ApEn = Cm(r)− Cm+1(r). (5)

For the calculation of ApEn, m = 2 or 3, and r = 0.1 to 0.25 ×σ, where σ is standard deviation of
the time series, were typically suggested [6]. Let Bm

i (r) be defined as

Bm
i (r) =

1
N −m− 1

N−m

∑
j=1

θ[d(yi, yj)], i 6= j. (6)

Thus, Bm(r) is given by

Bm(r) =
1

N −m

N−m

∑
i=1

Bm
i (r). (7)

The formulation of SampEn is expressed as

SampEn = − log
[

Bm+1(r)
Bm(r)

]
. (8)

In particular, the multiscale entropy (MSE) [7] was developed to measure entropy such as SampEn
at different scales by averaging non-overlapping time points of the original time series in order
to better reveal patterns of predictability or regularity in the time series. The use of MSE analysis of
time series is able to explain the inconsistency encountered with single-scale analysis in the increase
and decrease in entropy values of certain physiological signals, and have been found useful in many
applications, most recently such as [8–11]. The MSE works by applying a “coarse-graining” process to
the original time series to generate several time series of different scales, and then computing either
SampEn or ApEn for all coarse-grained time series, which are plotted as a function of the scale factor.
Consider the time series X of length N taken at regular intervals: X = (x1, x2, . . . , xN). For a scale
factor τ, a new time series Xτ is created by the MSE as follows [7]:

Xτ
j =

1
τ

jτ

∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ. (9)

2. Time-Shift Multiscale Entropy

The proposed time-shift multiscale entropy, denoted as TSME, is motivated by a popular approach
for computing the fractal dimension of irregular time series, known as the Higuchi’s fractal dimension
(HFD) [12]. The HFD computes the “mean length" of the curve of a time series by constructing a set
of new time series that has the property of a fractal curve over all time scales as each time series
can be considered a reduced scale form of the whole. A set of new time series constructed from
the original time series by the HFD, which are utilized in this study, are based on the consideration
of the phase distribution. This phase distribution can reveal strong effects of the irregularity of time
series [13]. In fact, it has been reported that the HFD is a stable numerical approach for time series
analysis, including stationary, nonstationary, deterministic, and stochastic signals [14–17]. Therefore,
the time-shift multiscale entropy can be expected to be applied to these types of signals for studying
irregularity in time series.
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The new time series generated by the HFD are constructed as follows by once again considering
the time series X of length N : X = (x1, x2, . . . , xN). Let β and k be positive integers, where β = 1, 2, . . . , k,
then k new time series can be generated using the following equation [12]:

Xβ
k = (xβ, xβ+k, xβ+2k, . . . , x

β+b N−β
k ck

), (10)

where bN−β
k c is the “floor” function that rounds N−β

k to the largest integer not exceeding N−β
k .

From Equation (10), β and k indicate the initial time point and time interval, respectively,
that is, for a given time interval k, k new time series are constructed using k time shifts. For example [18],
let k = 3, and N = 100, three new time series are generated as: Xβ=1

k=3 : (x1, x4, x7, . . . , x100), Xβ=2
k=3 :

(x2, x5, x8, . . . , x98), and Xβ=3
k=3 : (x3, x6, x9, . . . , x99).

The proposed TSME method works by constructing k time-shift series for a given time interval k,
then computing either SampEn or ApEn for all time-shift time series, denoted as TSMEβ

k , β = 1, . . . , k.

The TSME for each k, denoted as TSMEk, k = 1, . . . , kmax, is defined as the average value of all TSMEβ
k ,

that is,

TSMEk =
1
k

k

∑
β=1

TSMEβ
k . (11)

The procedure for computing TSME is described as follows:

1. Given a scalar time series X, dimension m, tolerance r, and kmax.
2. Set k = 1.
3. Using Equation (10) to construct k time-shift time series from X : Xβ

k , β = 1, . . . , k.

4. For each Xβ
k , β = 1, . . . , k, compute TSMEβ

k .
5. Compute TSMEk using Equation (11).
6. Set k = k + 1.
7. Repeat steps 3–6 until k = kmax.

3. Results and Discussion

3.1. Analysis of Signals with Known Properties

In signal processing, white noise and 1/ f (pink) noise are signals with known statistical properties,
which are widely found as good approximation of many real-world data and generate mathematically
tractable models. Time series of white noise are sequences of serially uncorrelated random variables
with zero mean and finite variance, having equal intensity at different frequencies and constant power
spectral density [19]. Time series of 1/ f noise is a signal with a frequency spectrum such that the power
spectral density is inversely proportional to the frequency of the signal; it is an intermediate between
the white noise and random walk noise with no correlation between increments [20]. Signals of
white noise (mean = 0 and variance = 1), and 1/ f noise, both consist of 10,000 samples, were used
in this analysis. Another type of signal of known property is the Lorenz system [21], consisting
of x (convection velocity), y (temperature difference), and z (temperature gradient) components,
which are well known to be chaotic as shown in Figure 1. These three signals, each having the
length of 4000 samples, behave irregularly with time: the x and y components fluctuate around
positive and negative values, and the z component oscillates around the range from about 10 to 40.

To carry out the TSME analysis, we set m = 2 and r = 0.15× σ, where σ is the standard deviation
of the original time series, to compute ApEn and SampEn. With kmax = 10, the ApEn-based TSMEβ

k
tends to slightly decrease with increasing k from 2.4 for k = 1 to 1.4 for k = 10, while the SampEn-based
TSMEβ

k remains fairly constant around the value of 2.4. Figure 2 shows the TSMEk of the white noise
and 1/ f noise, respectively, where the SampEn-based TSMEk for both signals are fairly constant.
Both SampEn-based TSMEβ

k and SampEn-based TSMEk meet the expectation for the analysis of
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randomly generated time series. The trend in ApEn-based TSMEβ
k and ApEn-based TSMEk should be

due to the bias of self-matching in the computation of ApEn [2].
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Figure 1. Time series of the three components of the Lorenz system. (a) x component; (b) y component;
(c) z component.
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Figure 2. TSMEk obtained from noise time series, where < · > stands for average. (a) white noise;
(b) 1/ f noise.

Figure 3 shows that TSMEβ
k using either ApEn or SampEn can distinguish white noise and

1/ f noise from the chaotic time series of the Lorenz system. Similarly, Figure 4 shows that TSMEk
using either ApEn or SampEn can distinguish white noise and 1/ f noise from the chaotic time series.
Particularly, TSMEk can also separate white noise from 1/ f noise. TSMEβ

k and TSMEk values of white
noise and 1/ f noise are higher than those of the three chaotic time series as shown in Figures 3 and 4,
respectively, which suggest the reliability of the TSME analysis, as chaotic signals are deterministic
and therefore more predictable than noise data.
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Figure 3. TSMEβ
k=20 of white noise, 1/ f noise, and the Lorenz system. (a) TSME using ApEn; (b) TSME

using SampEn.
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Figure 4. TSMEk (kmax = 20) of white noise, 1/ f noise, and the Lorenz system. (a) TSME using ApEn;
(b) TSME using SampEn.
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3.2. Analysis of PPG and EMG Signals

To illustrate the performance of the proposed TSME and comparison with the MSE, experiments
using the photoplethysmography (PPG) and electromyography (EMG) signals are presented. The
pulses of the index fingers of the left hands of 43 elderly participants and the middle-age caregiver
were synchronously measured with a PPG sensor, and studied in [22] for automated assessment of
therapeutic communication for cognitive stimulation for people with cognitive decline. The EMG
signals were obtained from the Physical Action Data Set [23], where the channel measured on the
right bicep of the participants with the Delsys EMG wireless apparatus was used in this study, for the
classification of normal and aggressive human physical actions. Figure 5 shows the first 5000 samples
of synchronized PPG signals of two elderly participants and the caregiver. Figure 6 shows the first
5000 samples of the EMG signals of six normal actions: bowing, clapping, handshaking, hugging,
jumping, and running. Figure 7 shows the first 5000 samples of the EMG signals of six aggressive
actions: elbowing, front kicking, hammering, kneeing, pulling, and punching.

For the MSE analysis, we set τ = 20 to compute Xτ
j expressed in Equation (9) as the MSE feature

of 20 scale factors. For the TSME, we set kmax = 20 to compute TSMEk expression in Equation (11)
as the TSME feature of 20 phase shifts. Only SampEn was used in this analysis for computing both
MSE and TSME, with m = 2 and r = 0.15× σ, where again σ is the standard deviation of the original
time series. Both PPG and EMG datasets were used for pattern classification.
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Figure 5. Synchronized photoplethysmography (PPG) signals of elderly participants and caregiver.
(a) Elderly #1; (b) Caregiver; (c) Elderly #2; (d) Caregiver.
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Figure 6. Electromyography (EMG) signals of normal human actions. (a) Bowing; (b) clapping;
(c) handshaking; (d) hugging; (e) jumping; (f) running.
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Figure 7. EMG signals of aggressive human actions. (a) elbowing; (b) front kicking; (c) hammering; (d)
kneeing; (e) pulling; (f) punching.

The first 5000 samples of the synchronized, de-trended PPG signals of 43 elderly participants and
the middle-age caregiver were used to classify the PPG signals of the elderly from the caregiver.
MSE and TSME features using SampEn were extracted from these signals, and classified using
the linear discriminant analysis (LDA) [24,25]. The leave-one-out (LOO) cross validation was applied
to test the accuracy of LDA-based classification of the two types of features. Figure 8 shows the
areas under the receiver operating characteristic (ROC) curves [26], denoted as AUC (area under
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curve), obtained from the MSE and TSME features extracted from the PPG signals, where the AUC
of the MSE = 0.74, and the AUC of the TSME = 0.84 (the higher the value of the AUC, the better the
performance). Table 1 shows the sensitivity (the rate of elderly features that are correctly identified),
specificity (the rate of caregiver features that are correctly identified), and accuracy rates obtained from
the LDA using the MSE and TSME features. The TSME feature yielded better results than the MSE feature
in terms of accuracy and receiver operating characteristics.
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Figure 8. Receiver operating characteristic (ROC) curves obtained from multiscale entropy (MSE)
and TSME features of synchronized PPG signals of elderly participants and caregiver using linear
discriminant analysis. (a) MSE, AUC (area under curve) = 0.74; (b) TMSE, AUC = 0.84.

Table 1. Sensitivity (SEN), specificity (SPE), and leave-one-out (LOO) cross validation obtained
from linear discriminant analysis of synchronized photoplethysmography (PPG) signals of elderly
participants and caregiver, using multiscale entropy (MSE) and time-shift multiscale entropy (TSME).

Feature SEN (%) SPE (%) LOO (%)

MSE 51.16 93.02 44.19
TSME 62.50 97.50 62.50

The first 5000 samples of the EMG right bicep signals of the four subjects in the Physical Action
Data Set [23] were also used for the differentiating normal from aggressive actions, using LDA analysis
with MSE and TSME features. The experiments were carried out on each subject performing ten
normal and ten aggressive physical actions that represented human activities. The ten normal actions
are: (1) bowing; (2) clapping; (3) handshaking; (4) hugging; (5) jumping; (6) running; (7) seating;
(8) standing; (9) walking; and (10) waving. The ten aggressive actions include: (1) elbowing; (2) front
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kicking; (3) hammering; (4) heading; (5) kneeing; (6) pulling; (7) punching; (8) pushing; (9) side kicking;
and (10) slapping. Figure 9 shows the ROC areas under curves obtained from the MSE and TSME
features, where the AUC of the MSE = 0.79, and the AUC of the TSME = 0.84, showing the better
performance of the TSME. Table 2 shows the sensitivity (the rate of aggressive action features that
are correctly identified), specificity (the rate of normal action features that are correctly identified),
and accuracy rates obtained from the LDA using the MSE and TSME features. Once again, the TSME
feature yielded better results than the MSE feature in general. The specificity (77.50%) obtained from
the MSE is 5% higher than the specificity (72.50%) obtained from the TSME, while the sensitivity
(67.50%) obtained from the MSE is 15% lower than the sensitivity (82.50%) obtained from the TSME,
and the accuracy (50%) of the MSE is 11.25% lower than the accuracy (61.25%) of the TSME.
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Figure 9. ROC curves obtained from MSE and TSME features of EMG signals of normal and aggressive
actions using linear discriminant analysis. (a) MSE, AUC = 0.79; (b) TMSE, AUC = 0.84.

Table 2. Sensitivity (SEN), specificity (SPE), and leave-one-out (LOO) cross validation obtained from
linear discriminant analysis of electromyography (EMG) signals of normal and aggressive actions,
using MSE and TSME.

Feature SEN (%) SPE (%) LOO (%)

MSE 67.50 77.50 50.00
TSME 82.50 72.50 61.25

4. Conclusions

A method for computing SampEn or ApEn on multiple time shifts has been presented and
discussed. The use of SampEn is more theoretically sound for computing TSME, as it is adopted for
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computing MSE. The construction of the new time series for computing the entropy profiles introduced
in this study was known to be able to provide stable time scale and indices corresponding to the
characteristics of irregular time series, including short time series, by taking into account self-similarity
across the characteristic time scale [12]. While MSE uses the averaging of time series on several
interval scales, the proposed TSME applies time shifting in time series that is based on the calculation
of the “mean length” of the curve of a time series implemented in the Higuchi’s fractal dimension.

The examples using noise and chaotic time series suggest the validity of the TSME, and
classification results using the physiological data illustrate the better performance of the TSME over
the MSE. The computational time required for computing the TSME is higher than for computing
the MSE, particularly when kmax is large. Being similar to the specification of the τ parameter used
in the MSE, an optimal selection for the kmax used in the TSME is still an ad hoc choice reported in many
studies [17], which needs further investigation. Future development of the TSME for multivariate
multiscale entropy is worth pursuing, as it has been formulated based on the concept of the MSE
[27,28]. An extension of the differential Shannon entropy rate of time series using kernel density
estimators for selecting the order and bandwidth parameters [29] may have implications for improving
the performance of the TSME.

As another issue for the implementation of the TSME regarding a good selection of the tolerance
parameter r in the computation of ApEn or SampEn, the quadratic sample entropy (QSE) [30] was
introduced as a complementary stochastic approach to measuring complexity by adding log(2r)
to the deterministic approach ApEn or SampEn so that r can be optimally varied for individual time
series. In studying neonatal heart rate data with transient decelerations, it was shown that, for the
stochastic approach, the entropy tends to be converging as r approaches 0, while for the deterministic
approach (SampEn), the entropy is diverging [30]. The QSE also found potential in the application
to the analysis of very short physiological time series for the automated detection of atrial fibrillation
in implanted ventricular devices [31]. Therefore, the utilization of the QSE in the computation
of the TSME for the classification of physiological signals is worth investigating in future study.

The Matlab code for computing the TSME is available at the author’s personal homepage:
https://sites.google.com/site/professortuanpham/codes.
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