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1. Short Information Theory Primer 

In essence, information theory defines information in terms of uncertainty and frames 
uncertainty in terms of probability theory ([1,2]). The less uncertainty, the more information and vice 
versa. The two basic metrics of information theory, entropy and mutual information, have a tight 
relation to the more well-known metrics of variance and covariance (e.g. [3]). Variance and entropy 
both measure diversity, while covariance and mutual information both measure the difference 
between joint and independent distributions. In information theory, entropy and mutual information 
are the answers to the two fundamental questions Shannon solved in his seminal 1948 paper.  

Entropy is the result of his ‘source coding theorem’ and is the answer to the question of the purest 
state of information. It asks how many symbols are minimally needed to represent all information 
(after the elimination of redundant data). Formally it is calculated as ( ) = −∑ ( ) ∗ log ( ), 
with ( ) being the probability of all realizations  of the random variable . It can be understood 
as a measure of uncertainty. With a logarithm of base 2 it measures uncertainty in bits, or, more 
specifically, it indicates how often uncertainty is reduced by half in order to reveal a true state of a 
random variable. To show its fundamental role Shannon used the asymptotic properties of long 
sequences of symbols, which requires the assumptions of ergodicity and stationarity. In essence 
entropy quantifies the growth of possible messages in the typical set, which indicates the rate of 
increase message diversity.  

Mutual information is the result of Shannon’s ‘noisy channel coding theorem’ and answers the 
question of the achievable communication rate over a noisy channel (the channel capacity). It is the 
uncertainty the sending and the receiving variables have in common. In information theory this is 
often depicted with the help of a Venn-diagram, such as in Figure 3 in the main text and in Figure S1 
below. The mutual information is the shared intersection of the circles, which represent the entropies 
(here of the sender and receiver). Shannon’s reasoning is that the mutual information between both 
is the uncertainty in the receiver, minus the uncertainty that remains in the receiver after the 
communication: ( ; ) = ( ) − ( | ) . Since the arising common ground is supposed to be 
mutual, it has to be the same for the sender and the receiver and is therefore symmetrical. Figure S1 
presents the case where the mutual information between S and R is calculated as the the uncertainty 
of R, minus the remaining uncertainty of R when knowing S.  

 

Figure S1. Venn-diagrams of mutual information (intersection) and entropies (circles). 

Mutual information is calculated as the ratio between the joint and its independent distribution. ( ; ) = ∑ ( , ) ∗ log ( , )( )∗ ( ), . It is a special case of the more general Kullback-Leibler relative 

entropy, which is calculated as the ratio between any two distributions of the same variable: 
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( || ) = ∑ ( , ) ∗ log ( , )( , ), . One typical way of explaining the role of mutual information in 

information theory textbooks is through the Gedankenexperiment of the “noisy typewriter” (see 
[1,2]). The noisy typewriter starts with 26 equally likely symbols as input ( ) = 1 26⁄ . The 
uncertainty of receiving a specific one as output is therefore ( ) = log 26. The noisy channel either 
sends input correctly or transforms it into the next letter of the alphabet with probability 0.5 (see 
Figure S2). This implies that receiving a certain output, there is an uncertainty of 1 bit about the 
original input: ( | ) = −(0.5 ∗ log 0.5 + 0.5 ∗ log	0.5	) 	= 1 . The most straightforward way to 
avoid this is to only use a non-confusable subset of 13 uniquely identifiable inputs (see Figure S2). 
The capacity of this channel in terms of its mutual information is ( ; ) = log 13. This can be 
calculated as ( ; ) = ( ) − ( | ) = log 26 − 1 = log 13 (compare the representation in 
Venn diagrams in Figure 4). 

 
Figure S2. Noisy typewriter and its noiseless subset.  

The logic of the noisy typewriter can be generalized, which is presented in Figure 2 of the main 
text. Following this logic, the fact that optimal growth turns ( ( , )‖ ( , )) into ( ; ) 
(Equation (5) of the main text) shows that optimal population growth quantifies the amount of 
structure in the updated population that unequivocally comes from the environment through the 
mutual information between both. Or, in the normative sense, fitness can be optimized by searching 
for the channel constellation for which each channel output in the updated population can be 
assigned an unequivocal channel input from the environmental distribution. 

Information theory is sometimes a bit inconsistent with notation. For example, the random 
variables embraced by an absolute entropy are represented by majuscule letters that omit the 
reference to the distribution, e.g. ( | ) , while relative entropies use the opposite rule, e.g. ( ( , )‖ ( , )) (see [1]). As a result, our add-on notations like …  and …  are attached to 
different letters respectively.  

2. Decomposing growth into information 

Three steps are involved in the reformulations resulting in Equation (2). First, an expected value 
is taken on  (or its log), which is justified by the fact that the expected value of a constant is the 
same constant (e.g. log = log ). Second, we employ a revers form of the so-called replicator 
equation to decompose average population fitness per environment into lower level type fitness:   



Entropy 2017, 19, 82; doi:10.3390/e19020082 S3 of S5 

 

log = ( | ) log = ( | ) log{ ( )} ( ) = ( | ) ( ) log ( , ) ( | )( | )= ( , )[log ( , )], − ( , ) log ( , )( , ),  
(S1) 

Third, the reformulation of Equation (2) is obtained by replacing the true fitness values ( , ) 
with the weighted hypothetical diagonal fitness values (the share of the corresponding hypothetical 
fitness value: ( = , ) = ( ) ∗ ( | = )), and then expanding with the term |( | ).   

log 	= 	 ( , ) log ( ) ∗ ( | ) ∗ ( | )( | ) − ( ( , )‖ ( , )) = Equation(2)	 (S2) 

3. Average Updating 

We work with the joint probability distributions ( , ) and ( , ). It is redundant to have 
the superscript  both on  and  (as only  changes), but it reminds of the fact that updating 
affects  but not , and aims at integrating different notational habits from different disciplines. We 
calculate average updating, as ( , ) = ( ) ∗ ( 	|	 ) = ( ) ∗ ( | ) ∗ ( , )( ) . Note that on 

contrary to many traditional game theoretic setups, the initial generation ( ), and ( ) are not 
naturally independent, because ( | ) arises from the empirically detected fitness values ( ) 
and ( , ). 

During each new period (and therefore at each environmental state ), the bet-hedging strategy 
assures that ( | ) is constant. This is the essence of bet-hedging: since we do not know when which 
environmental state will occur (only its probability), we look for a population distribution ( | ) 
that is hold constant at each step /environmental state. This implies that there is a proactive strategy 
(… ) to counteract the natural selection processes ongoing between each step (see main text). In 
practice this is done through constant redistribution from winning to loosing types during each step.  

When calculating the force of selection through average updating, ( , ) , we consider 
selection pressure without such redistribution (the perspective with redistribution would not be 
insightful, as it would simply reflect the result of the redistribution strategy: ( , ) = ( , )). So 
in the case where we analyze bet-hedging, our equations evaluate the underlying average 
evolutionary selective pressures ongoing during bet-hedging. Let’s analyze the following 
decomposition: ( ( , )‖ ( , )) = ( ( )‖ ( )) + ( ( | )‖ ( | )) (S3) 

The effect of bet-hedging on this equation is as follows: strategy based bet-hedging fixes ( | ) 
for each environment  (per definition of bet-hedging). This leads to the fact that ( | ) = ( ) 
(Fixing ( | )  over all  results in ( | ) = ( ) . Therefore ( | ) = ( , )( ) = ( | )∗ ( )( ) .)and sets ( ( | )‖ ( | )) = ( ( | )‖ ( )) on the right hand side of the equation. As stated in 
the main text, optimized bet-hedging aims for a distribution that results in a fixed point in which the 
distribution before updating in every environment ( ) is the same as the average distribution over 
all environmental states after updating ( ), eliminating ( ( )‖ ( )).  

Note that while ( | ) = ( )  (since ( | )  is held constant by bet-hedging for all ), ( | ) ≠ ( ). This is because selection still acts on the population through replicator dynamics 
based on our empirically observed growth values ( )  and ( , ) , even so—in practice—
resources might get redistributed (in parallel or thereafter) to assure that the distribution before 
updating in the next environmental state during the time series again maintains fixed shares to enter 
the next round of updating. In essence we start with a fixed distribution ( | ) for all environments 

 and use the replicator equation to obtain our average distributions after general updating ( | ).Error! Bookmark not defined. This implies that	 ( ) = ( | ) ≠ ( | ). In other words, ( ) 
and ( ) are independent, but ( ) and	 ( ) are not (they are dependent as they are affected 
by average updating). Optimal bet-hedging now looks for a population distribution over all 
environments that fulfills the condition ( ) = ( ). In words: selection acts during average 
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updating per environmental state, while optimality implies that the average updated population 
distribution over all environmental states stays constant. 

4. Optimality of =  

To show the two way relation between the appearance of the mutual information and optimal 
fitness, we make use of the fact that optimal growth is achieved for Kelly’s case with a diagonal fitness 
matrix (for a proof see for example Chapter 6 in [1]), and combine it with the fact that the same result 
can be achieved by expressing existing type fitness as a combination of (hypothetical) fitness values 
from a diagonal matrix: ( = , ) = ∑ ( | = ) ∗ ( ) (see [4,5]). In other words, we work 
with the weighted fitness matrix that achieves optimal fitness in the region of bet-hedging. 

The condition that ( ( , )‖ ( , )) = ∑ ( , ) log ( , )( , ), =∑ ( , ) log ,( )∗ ( ), = ( ; )  is fulfilled for ( , ) = ( ) ∗ ( ) , since the mutual 

information is defined as the relative entropy between the joint distribution and the corresponding 
independent distribution. With the help of the replicator equation, this condition can be rewritten as ( | ) = ( ) = ∑ ( ) ∗ ( | ) = ∑ ( ) ∗ ( | ) ∗ ( , )( ) . We include the assumption of 

stable shares of types in all environments: ( | = ) =  for all . In our case this is 
achieved either through proportional bet-hedging or by betting all resources on one type, but can be 
achieved by any other kind of stable equilibrium in the population shares. This cancels out ( | ) 
and we obtain the condition that the time-average of relative fitness is equal to 1: 1 = ( ) ( , )( )  (S4) 

Given that ( | ) is constant, we can expand with it: ( | ) ∗ 1 = ( | ) ∗ ( ) = ( | ) ∗ ( ) ( , )( ) = ( ) ( | ) ( , )( )  

( , ) = ( ) = ( ) ∗ ( | ) = ( ) (S5) 

From the above equality ( , ) = ( ) ∗ ( ), it follows that ( ) ∗ ( | ) = ( ) ∗ ( ). 
We start the two-way proof by showing that optimal fitness implies the existence of mutual 
information in our decomposition: ⇒	 = . We express both the numerator and 
denominator of Equation (S5)  with their equivalent expressions from the noiseless channel fitness 
matrix:   ( ) ( , )( ) = ( ) ( | ) ∗ ( )( ) ∗ ( ) = ( | ) = 1 (S6) 

where the last step follows from stochasticity of the weighting matrix (in this case of optimal bet-
hedging in mixed fitness landscapes ( | ) = ( | )). This shows that in the case of optimal 
growth the relative entropy term  turns into mutual information . 

One additional assumption is required for the complementary proof that: = ⇒	 . It is that the fitness matrix of population types and environmental shares is linearly 
independent (referring to independence in the sense of linear algebra, not to probabilistic 
independence). This seems to be a reasonable demand, as redundant types or environmental states 
should be merged. We begin by reformulating the stochastic weighting matrix 1 = ∑ ( | ) =∑ ( , )( ). We include the restriction of the region of bet-hedging, which is 0 ≤ ( | ) ≤ 1, and 

replace ( , )  with the reverse form of the replicator equation. ∑ ( | )( | ) ( ) ( ) =∑ ( , )( | ) 		 ( )( )	 ( ) = 1. We introduce our starting condition, = , which implies ( , ) =( | ) ∗ ( ) = ∗ ( ), or ( | ) = . We then introduce our first assumption, that 
the shares of types ( | ) are fixed for a specific type , which allows us to bring this term to the 
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right hand side. This leaves us with ∑ ( , ) ( )( )	 ( ) = = ∑ ( , ) . We can 

rewrite this in matrix form for all types  over all types and environmental states: ∗ =  (S7) ( = 1, = 1) ( = 1, = 2) …( = 2, = 1) … …… ⋯ … ( = 1) [ ( = 1) ( = 1)]( = 2) [ ( = 2)	 ( = 2)]…= ∑ ( = 1, )∑ ( = 2, )…  
(S8) 

If the rank of the coefficient matrix  is equal to the rank of the respective augmented matrix #,	the system is consistent and must have at least one solution (Rouché–Capelli theorem). This is the 
case here, since the last column of the augmented matrix, ,  can easily be set to 0s through column 
operations of  (which do not affect the rank; i.e. subtracting each column once). So whatever the 
rank of  will be the rank of #. We furthermore know that the solution is unique if the rank is equal 
to the number of variables. Otherwise we have infinitely many solutions. The trivial case for the 
condition of a unique solution is Kelly’s diagonal fitness matrix, with non-zero values only in the 
diagonal, which is already in reduced echelon form. In the case that either different types or different 
environments are linearly dependent we obtain infinitely many solutions (again, dependence refers 
to the concept from linear algebra here, not to random variables). If these redundant states and types 
are merged, the number or variables is equal to the rank. To identify the unique solution, we employ 
a method that works for many such problems: guess and verify. Plugging in ( )( )	 ( ) for all 

environments shows that it is the unique solution to the system. This confirms that in the case that 
the relative entropy term  turns into mutual information , optimal growth is achieved. 
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