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Abstract: We survey new extensions of continuum mechanics incorporating spontaneous violations
of the Second Law (SL), which involve the viscous flow and heat conduction. First, following
an account of the Fluctuation Theorem (FT) of statistical mechanics that generalizes the SL,
the irreversible entropy is shown to evolve as a submartingale. Next, a stochastic thermomechanics is
formulated consistent with the FT, which, according to a revision of classical axioms of continuum
mechanics, must be set up on random fields. This development leads to a reformulation of
thermoviscous fluids and inelastic solids. These two unconventional constitutive behaviors may
jointly occur in nano-poromechanics.
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1. Introduction

As is well known, the Second Law can be expressed in terms of a deterministic inequality (e.g., [1])

∆S(ir) ≥ 0, (1)

where ∆S(ir) is the irreversible part of the entropy increment ∆S. The later quantity can at any given
time be written as the sum

∆S = ∆S(r) + ∆S(ir) with ∆S(r) =
∆Q

θ
, (2)

in which ∆S(r) is the reversible part of S, while θ is the absolute temperature.
While random fluctuations are negligible on macroscales, the Second Law gets spontaneously

violated on very small (molecular) scales, as expressed by the so-called fluctuation theorem (FT) which
gives the relative probability of observing processes that have positive (A) and negative (−A) total
dissipation in non-equilibrium systems [2,3]:

P (φt = A)

P (φt = −A)
= eAt. (3)

Here φt is the total dissipation for a trajectory Γ ≡ {q1, p1, ..., qN , pN} of N particles originating at
Γ (0) and evolving for a time t:

φt (Γ (0)) =
∫ t

0
φ (Γ (s)) ds. (4)

The integral in (3) involves an instantaneous dissipation function:

φ (Γ (t)) =
dφt (Γ (0))

dt
. (5)
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It follows that the Second Law is correct as either an ensemble, or a temporal, or a volume average.
Clearly, the FT represents a stochastic generalization of the Second Law. Depending on the particular
assumptions/conditions, there exist similar versions of the FT [2]. Note that experiments validating
the FT have been conducted [4,5]. The fluctuations are Gaussian.

There are three types of classical physics phenomena where spontaneous violations occur–viscous
flow [6], heat conduction [7], and electrical resistance [3]—and in this paper we review the recently
introduced extensions of continuum mechanics incorporating the first two of these. See also Figures 1
and 2 in [8] for molecular fluid dynamics simulations showing such violations.

2. Irreversible Entropy Evolves as a Submartingale

In view of the random fluctuations, φt is a stochastic process with a specific type of memory effect
to be examined as follows. First, every stochastic process is defined with reference to a probability
space (Ω,F ,P), where Ω is the sample space (of elementary events), F is the σ−field, and P the
probability measure, the argument ω ∈ Ω being employed to indicate an elementary event as well as
the random character of φt. We now switch from a continuous (t) to a discrete (n) time parametrization

φn := φt=n, (6)

the reason for this switch being that the analytical aspects of discrete-time stochastic processes are
simpler than those of continuous-time processes; the integral in (4) is replaced by a summation,
while the derivative in (5) is understood in a finite-difference sense.

Our growing knowledge of the process φn at the successive times (i.e., its history) is represented
by a so-called filtration on Ω: a sequence {Fn : n = 0, 1, 2, ...} of sub-sigma fields of F such that for all
time instants tn, Fn ⊂ Fn+1. In view of (5), we observe that this inequality is satisfied

E{φn+1|Fn} ≥ φn, (7)

which indicates that φn is a submartingale. On the technical side dictated by the probability theory,
(7) has to be accompanied by two more conditions: (i) {Fn; n = 0, 1, 2, ...} is a filtration and φn is
adapted to Fn; (ii) for each n, φn is integrable.

If the≥ sign in (7) were replaced by an equality sign, we would have a so-called martingale. In fact,
this observation acquires more light in view of the so-called Doob decomposition [9] saying that any
submartingale is the sum of a martingale (M) and an increasing process (G): Let φ = {φn; n ≥ 0} be a
submartingale relative to the filtration (Fn). Then there exists a martingale M = {Mn; n ≥ 0} and a
process G = {Gn; n ≥ 0} such that

(i) M is a martingale relative to Fn;
(ii) G is an increasing process: Gn ≤ Gn+1 almost everywhere;
(iii) Gn is Fn−1-measurable ∀n;
(iv) φn = Mn + Gn.

In [10] we have employed an analogous (Doob–Meyer decomposition) theorem in continuous
time, also giving a unique decomposition of a submartingale into a martingale and a “drift” process.
The discrete time case should be sufficient for most continuum physics applications, while allowing a
simpler analytical treatment.

Since we are interested in continuum mechanics/physics, we write Equations (1) and (2) in terms
of the rates of entropy densities (ṡ, s∗(r), s∗(ir))

ṡ = s∗(r) + s∗(ir) with s∗(r) = −
( qi

θ

)
,i and s∗(ir) ≥ 0, (8)

where qi (≡ q) is the heat flux. As we are focusing on continuum physics, we use equivalent notations
of subscript-type ( fi...) and symbolic-type (f) for tensors. While an overdot indicates a material time
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derivative corresponding to a total differential of a given quantity, a superscript ∗ is used to indicate a
time rate of a quantity which is not a state function [1,11].

While the inequality in (8)3 is assumed to hold instantaneously (i.e., for ∀t) in conventional
continuum mechanics/physics, in fact it holds only for statistical averages (such as (7) above), or for
sufficiently long time averages, or for sufficiently large systems. We are interested in extending
the conventional continuum mechanics/physics so as to account for violations of the Second Law
according to FT.

3. Stochastic Thermomechanics

3.1. Basic Framework

Since the fluctuation theorem involves a dissipation function, the natural framework to
generalize the continuum mechanics is one employing the thermodynamics with internal variables
(TIV) [1], where the key role is played by the internal energy u and the entropy production rate ṡ(i).
Thus, u = u

(
εij, s

)
is the functional of strain εij (assuming for simplicity that we work with small

elastic strains) and entropy s, satisfying the first law of thermodynamics (the energy balance)

ρu̇ = σijdij − qi,i , (9)

where ρ is the mass density, σij is the Cauchy stress, dij is the deformation rate, and qi is the heat flux.
Note that the first term on the right is the specific power of deformation. By a well-known partial
Legendre transform, the free energy is

ψ
(
εij, θ

)
= u

(
s, εij

)
− sθ. (10)

Following the standard derivations of TIV [11], on account of (8)1, (8)2, (9), and (10), we obtain
the relation

σ
(d)
ij dij = ρ

∂ψ

∂εij
dij +

qi
θ

θ,k +ρθṡ(ir) (11)

With ψ playing the role of a potential for the entropy (s) and the quasi-conservative Cauchy stress
(σ(q)

ij ), we have

s = −∂ψ

∂θ
, σ

(q)
ij =

∂ψ

∂εij
. (12)

The stress σ
(d)
ij is the dissipative part of the total stress σij (= σ

(q)
ij + σ

(d)
ij ); it appears in the

discussion of irreversible phenomena immediately below.
If we were to assume (8)3, we would obtain the standard Clausius–Duhem inequality

Y ·V = σ
(d)
ij dij − qk

θ,k
θ

= ρθṡ(ir) ≥ 0, (13)

where we employ a standard representation of φ as a scalar product of two conjugate vectors

velocities V = {dij, θ,k /θ},
dissipative forces Y = {σ(d)

ij , − qk}.
(14)

If we admit violations of the Second Law according to the FT discussed in the first section of this
paper, the dissipation function φ = θṡ(i) is neither strictly non-negative for all times, nor deterministic.
Rather, φ is a scale-dependent stochastic functional φ(V, ω), which satisfies the Clausius–Duhem
inequality only in the ensemble average sense

E {Y ·V} = E {φ(V, ω)} ≥ 0. (15)
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The explicit dependence of φ on ω (∈ Ω) indicates the stochastic character of φ. The basic
model, sufficiently general for our purposes and valid for linear viscous (Stokes-type) and thermal
(Fourier-type) fluids, involves an additive decomposition of φ into two parts: one mechanical (φmech)
and another thermal (φth):

φ(V, ω) = φmech(dij, ω) + φth(θ,k /θ, ω). (16)

Now, the randomness itself is introduced by taking each of these parts as a sum of a deterministic
mean (which must be positive-valued) plus a fluctuating part which may spontaneously take negative
values, see (19) below.

3.2. Axioms of Continuum Thermomechanics

In view of the preceding discussion, the fundamental rôle in TIV [1] is played by the free energy (ψ)
and the dissipation function (φ), the latter quantity, upon (temporal, volume, or statistical) averaging,
giving the positive entropy production rate. Clearly, TIV lends itself to an extension replacing the
Second Law by the FT. Notably, an amazingly wide range of continuum constitutive behaviors can be
obtained from the pair {ψ, φ} [1,11,12].

By contrast, in the rational continuum mechanics (RCM) one works with a quartet of the stress
state σij, heat flux qi, free energy density ψ, and entropy s, all of which are taken as functionals of the
history at a continuum point. As outlined in [13], the axioms (also called principles) of RCM need to be
modified so as to admit a negative entropy production:

1. The Axiom of Causality: “The future state of the system depends solely on the probabilities of events
in the past”. That is, quoting Evans & Searles [3]: “the probability of subsequent events can be predicted
from the probabilities of finding initial phases and a knowledge of preceding changes in the applied field and
environment of the system.”

2. The FT is derived from the Axiom of Causality. While the entropy s(i) is a submartingale in
time (T = (−∞, t]), it is a random field in spatial domain D:

φ : T ×D ×Ω→ R. (17)

3. The Second Law in its conventional deterministic form is obtained–upon spatial, statistical,
or time averaging–as a special case of the fluctuation theorem, and the entire field of continuum
mechanics is recovered as a special case.

4. The Axiom of Determinism: “at any instant t, the value of
[
σij, qi, u, s

]
at depends on the whole

history of the thermokinetic process up to the time t”. The choice of the thermokinetic process depends on
the particular physics involved, and may take the form of a classical or non-classical (e.g., micropolar)
theory or a stochastic field.

5. The Axiom of Local Action is to be replaced by the scale dependence of the adopted continuum
approximation for, clearly, that axiom makes no clear reference to the microstructure of the medium.

6. The Axiom of Equipresence (all the constitutive quantities depend a priori on the same variables)
is to be abandoned since the violation of Second Law may occur in one physical process present in
constitutive relations, not all.

3.3. Random Fields

In view of the preceding discussion, the deterministic continuum theory must be replaced by
a stochastic one: working with TIV, the free energy density ψ and the dissipation function φ are
real-valued random fields over the material (D) and time (T = (−∞, t]) domains:

ψ : D × T ×Ω→ R, φ : D × T ×Ω→ R, (18)
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For example, considering the thermal dissipation, we have

φth

(
∇θ

θ
, ω

)
= −q·∇θ

θ
≡ −qk

θ,k
θ

. (19)

Given the spontaneous, randomly occurring violations of the Second Law, the dissipation
function reads

φth(
θ,k
θ

, ω) = Ġ(
θ,k
θ
) + Ṁ(

θ,k
θ

, ω). (20)

In the case of linear Fourier-type conductivity, (20) becomes more explicit with

Ġ(
θ,k
θ
) =

1
θ

θ,i kij θ,j , Ṁ(
θ,k
θ

, ω) =
1
θ

θ,i Mij (ω) θ,j . (21)

Here Ġ(θ,k /θ) involves the deterministic thermal conduction kij (which is positive definite)
and Ṁ(θ,k /θ, ω) = dM(q, ω)/dt, with M being the martingale modeling the random fluctuations
according to the Doob decomposition (iv) in Section 2. Clearly, the randomness residing in Ṁ allows
the total thermal conductivity kij +Mij to sometimes become negative-definite, since Mij is not
required to be positive-definite, thus signifying the violations of the Second Law. More specifically,
Mij : V → V (where V is a real vector space) is a second-order, rank 2 tensor random field (e.g., [14,15])

Mij : D ×Ω→ V2. (22)

In view of the Gaussian character of nanoscale fluctuations (recall Section 1),Mij is a Gaussian
tensor random field, making negative values possible.

By analogy, the same type of approach may be used to introduce fluctuations in mechanical
dissipation φmech

(
dij, ω

)
having spontaneous violations of the Second Law, recall (15).

4. Thermoviscous Fluids

We start from the free energy and the dissipation function

ψ = ψ(εij, θ, θ̇) and φ = φ(dij, ϑ,i /θ), (23)

and assume the macroscopic incompressibility

εii = 0 and dii = 0. (24)

The free energy function ψ (taken per unit volume), assuming no elastic response but the presence
of a relaxation time t0, is

ψ(εij, θ, θ̇) = ψ0 − s0ϑ− CE
2θ0

ϑ2 − CE
θ0

t0ϑϑ̇, ϑ := θ − θ0. (25)

Here ψ0 and s0 are the free energy and entropy in the reference state, µ is the shear elastic modulus,
CE is the specific heat at constant strain, and ϑ is the temperature difference from the reference
temperature θ0. The last term on the right hand side is taken by analogy to the thermoelasticity with
two relaxation times in the next section, so as to retain the Fourier-type heat conduction, but to obey
the hyperbolic (finite speed) heat propagation. In this section, an overdot denotes a material derivative
for absolute tensors (like the temperature gradient and deformation rate) and an Oldroyd derivative
for tensor densities (like the heat flux and stress tensor).
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The free energy being a potential for quasi-conservative stresses σ
(q)
ij and the entropy s, we find

σ
(q)
ij = −pδij,

s = −∂ψ

∂θ
=

CE
θ0

ϑ +
CE
θ0

t0ϑ̇.
(26)

The first relation above reflects the presence of a hydrostatic pressure and the fact that ψ does not
depend on the strain εij since the fluid under consideration does not have any elasticity. The relation
(26)2 is immediately identified as the constitutive equation for entropy.

Henceforth, in view of the fluid’s incompressibility in (24)1 and to simplify the notation, σ
(q)
ij = 0

is taken as the deviatoric part of the quasi-conservative stress tensor. As always in TIV [1], there holds
the relation

σij = σ
(q)
ij + σ

(d)
ij , (27)

where σ
(d)
ij is the dissipative stress, which now also represents the deviatoric part only.

This Ansatz leads to the Clausius-Duhem inequality in the form

ρθs∗(ir) = − qiϑ,i
θ

+ σ
(d)
ij dij ≥ 0, (28)

where σ
(d)
ij is the dissipative stress, which is now equal to the total stress σij. As discussed earlier,

the inequality (28) may spontaneously be violated according to the FT.
On account of the equality in (28), we take the specific (per unit volume) dissipation φ as a

functional of temperature gradient ϑ,i /θ and deformation rate dij:

ρθs∗(ir) = φ
(
dij,−ϑ,i /θ

)
. (29)

Therefore, the inequality in (28) may be stated in terms of the scalar product: Y ·V ≥ 0.
Next, for the entropy production rate we adopt the dissipation functional in the space of velocity

V = (d, −∇θ/θ):

ρθs∗(ir) ≡ φ(V) = Hdijdij +
k
θ

ϑ,i ϑ,i , (30)

where k is the Fourier conductivity and H the fluid viscosity, both parameters modeling an isotropic
medium. The Equation (30) is a special case of (29), with both processes being effectively compound [1].
Using the thermodynamic orthogonality, (30) yields

σij = σ
(d)
ij =

1
2

∂φ

∂dij
= Hdij

−qi =
1
2

∂φ

∂ϑ,i
= kϑ,i .

(31)

Collecting the three parts of the constitutive law–mechanical (Stokesian), thermal (Fourier law),
and entropy- and introducing the FT-type fluctuations, we have

σij = (H +H) dij,

qi = − (k +M) ϑ,i ,

s =
CE
θ0

(
ϑ + t0ϑ̇

)
.

(32)



Entropy 2017, 19, 78 7 of 10

Here, on account of Section 3, we have introduced the martingale-type fluctuationM in thermal
response (32)2 and an analogous one (H) in the viscous response (32)1. Relation (32)3 shows that,
while the Fourier-type law holds, there is a relaxation effect involved in the entropy. If the scale of
the elementary volume dV of continuum mechanics approximation is very small, that element will
see violations of the Second Law according to [7]. In this model the heat is conducted with finite
speeds—i.e., not infinite speeds as would be the case with t0 = 0. In other words, instead of having a
parabolic (diffusion) equation for temperature, we have (by application of the energy balance (24) and
the entropy-temperature relation (32)3)

kϑ,ii = ρCE
(
ϑ̇ + t0ϑ̈

)
. (33)

Here we have also used the approximation of small temperature fluctuations. In effect, ϑ

(and also θ) is governed by the telegraph (damped hyperbolic) Equation (33), whose limiting case
(for t0 → 0) is the conventional (parabolic) heat conduction equation.

5. Inelastic Solids

5.1. Acceleration Wave with Nanoscale Wavefront Thickness

An acceleration wave in continuum mechanics is a surface carrying a jump (α) in particle
acceleration. In a very wide class of nonlinear elastic/dissipative media the amplitude of acceleration
wave is governed by a Bernoulli equation (e.g., [16,17])

dα

dt
= −µα + βα2. (34)

Here the coefficients µ and β represent, respectively, two effects: dissipation and elastic
nonlinearity. Clearly, there is a competition between these two effects as the wave propagates, and there
exists a possibility of blow-up (α→ ∞), and hence, of shock formation in a finite time t∞, providing
the initial amplitude α0 exceeds a critical amplitude αc

αc =
µ

β
t∞ = − 1

µ
ln(1− µ

βα0
). (35)

When the analysis is conducted in the spatial domain (as done below), a shock (or caustic) forms
at x∞ called the distance to blow-up or distance to form a shock.

If the acceleration wavefront is truly of nanoscale thickness, then the dissipation is not only
fluctuating randomly as seen by an observer traveling with the wavefront, but may also take negative
values according to the fluctuation theorem. At this point it is important to note the formulas specifying
both material parameters in (34) as well as the wave speed c:

µ = −
G′0

2G0
, β = − Ẽ0

2G0c
, with c =

√
G0

ρR
, (36)

where G0 (>0) is called the instantaneous modulus, G′0 (conventionally ≥0) is the viscosity coefficient
responsible for dissipation, Ẽ0 (≤0) is called the instantaneous second-order tangent modulus, and ρR
is the mass density in the reference state. According to FT, in (36) we admit G′0 to be randomly taking
negative values while being positive on average. Analyzing such a stochastic dynamical system [8],
we found: (i) the blow-up event becomes impossible as the wavefront thickness is larger because then,
according to Equation (3), the probability of negative viscosity goes to zero; (ii) taking the spatial
correlations of the random field viscosity richer than the white-noise (e.g., Ornstein-Uhlenbeck) does
not fundamentally change the basic results reported here; (iii) as ζ0 gets larger, the probability of
blow-up decreases to zero.
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5.2. Thermoelasticity with Two Relaxation Times

The classical thermo-elastodynamics is governed by a system of partial differential equations that
are hyperbolic in elastic response and parabolic in heat conduction. While there are several way to
replace the Fourier law by a more general heat conduction equation, so far the fluctuation theorem has
been developed for a Fourier-type law only. Therefore, one may proceed with a theory of thermoelasticity
with two relaxation times which is hyperbolic in elastic and thermal responses and, actually, involves the
Fourier law [18]. To that end, we adopt the free energy (with ϑ = θ − θ0 as before)

ψ = ψ(εij, θ) =
1
2

εijCijklεkl + Mijεijϑ−
CE
2θ0

ϑ2 − CE
θ0

t0ϑϑ̇, (37)

so that
σ
(q)
ij = Cijklεkl + Mijϑ and s = −Mijεij +

CE
θ0

ϑ +
CE
θ0

t0ϑ̇ . (38)

Here Cijkl , Mij and CE denote the stiffness tensor, the stress-temperature tensor, and the
specific heat at zero strain, respectively. These quantities satisfy the following symmetry and
positive-definiteness relations

Cijkl = Cjikl = Cijlk = Cklij, εijCijklεkl > 0,

Mij = Mji, CE > 0.

(39)

Also, we adopt the dissipation function (this time in the space of heat flux and strain rate)

φ(qi, ε̇ij) = Ts∗(ir) =
λij

θ
qiqj + t1Mij ε̇ijϑ̇, (40)

where λij is the thermal resistivity, so that, by treating both processes as compound [1], we obtain

− ϑ,i
θ

=
1
2

∂φ

∂qi
=

λij

θ
qj and σ

(d)
ij =

∂φ

∂ε̇ij
= t1Mijϑ̇. (41)

With λij =
(
kij +Mij

)−1, this leads to

σij = σ
(q)
ij + σ

(d)
ij = Cijklεkl + Mij(ϑ + t1ϑ̇),

θ0s = −θ0Mijεij + CE(ϑ + t0ϑ̇),

qi = −
(
kij +Mij

)
ϑ,j ,

(42)

where, again (recalling Section 2),Mij is a random field in space-time with spontaneous violations of
positive-definiteness property.Mij is not to be confused with Mij, which is responsible for a thermal
expansion-type of effect. Note that the total Fourier-type conductivity is

(
kij +Mij

)
per (42)3, i.e.,

the anisotropy being possible because we are now dealing with a solid, not a fluid as in Section 4.
It is well known [18] that, mathematically, the relations (42) lead to coupled and hyperbolic-type

equations for the (ui, ϑ) pair

(Cijkluk,l ),j−ρüi + [Mij(ϑ + t1ϑ̇)],j = −bi,

(
(
kij +Mij

)
ϑ,j ),i −CE(ϑ̇ + t0ϑ̈) + θ0Miju̇i,j = −r,

(43)
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where bi and r are the body force and heat source fields, respectively.
We observe:

(i) The constitutive relations (42) are the same as those of the Green-Lindsay theory, but their
derivation is based on treating the Fourier-type heat conduction as a purely dissipative process,
and thus as a process described by the dissipation function rather than by the free energy
function only.

(ii) The inequalities t1 ≥ t0 ≥ 0 have to hold. By setting t1 = t0 = 0, we obtain the classical
thermoelasticity. Also, one may only consider the limit t0 → 0, so that (43)2 reduces to the
conventional heat conduction equation.

(iii) Transient phenomena, if occurring on very short length scales (such as wavefronts discussed
in the preceding section), are expected to deviate from the hyperbolic thermo-elastodynamics
obeying the Second Law.

6. Closure

The situations where violations of the Second Law are relevant involve very small length scales
(extremely thin wavefronts, nano-channels, nano-rods, ...) and short time scales (although times
up to 3 s have been observed for cholesteric liquids [3]). Thus, a natural setting in which to expect
such violations is that of poromechanics involving nanoscale channels, where the Second Law may
apply only on average in the fluid within the channels (viscous flow and heat conduction) and the
solid skeleton (heat conduction). The third possible phenomenon (electrical resistance) is one more
possibility, that still needs to be worked out. As a reference, we start from the classical poromechanics
obeying the Second Law [19], the Clausius-Duhem inequality is written in terms of the irreversible
entropy production S∗(ir) (= ρs∗(ir)) taking the form

TS∗(ir) = TS∗(ir)
( f luid) + TS∗(ir)

(th) + TS∗(ir)
(matrix) ≥ 0, (44)

where three possible contributions to dissipation are identified: (1) fluid dissipation: S∗(ir)
( f luid); (2) thermal

dissipation: S∗(ir)
(th) ; (3) skeleton dissipation: S∗(ir)

(matrix). Conventionally, each of these contributions to
dissipation is assumed to satisfy its own second law inequality. It now follows that, in the case of
poromechanics describing phenomena on very small space and time scales, the spontaneous violations
of the second law (43) can occur in either one, two or three processes.
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