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Abstract:



The notion of topological entropy dimension for a [image: there is no content]-action has been introduced to measure the subexponential complexity of zero entropy systems. Given a [image: there is no content]-action, along with a [image: there is no content]-entropy dimension, we also consider a finer notion of directional entropy dimension arising from its subactions. The entropy dimension of a [image: there is no content]-action and the directional entropy dimensions of its subactions satisfy certain inequalities. We present several constructions of strictly ergodic [image: there is no content]-subshifts of positive entropy dimension with diverse properties of their subgroup actions. In particular, we show that there is a [image: there is no content]-subshift of full dimension in which every direction has entropy 0.
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1. Introduction


Shannon introduced the notion of entropy to measure the information capacity of the process [1]. Since Kolmogorov brought the notion to dynamical systems, entropy provided the field with new perspectives and has played one of the central roles for understanding the chaoticity of measurable and topological dynamical systems [2,3]. Systems of positive entropy have been studied for several decades and many of the properties are well understood at least in the case of [image: there is no content]-actions. Entropy has been studied for amenable group actions and more recently for nonamenable group actions [4,5,6].



In the case of measurable dynamics, zero entropy systems make a dense [image: there is no content] subset of the set of all ergodic systems. Given a full shift, the set of zero entropy subshifts is also a dense [image: there is no content] subset [7]. Moreover, zero entropy systems arise rather naturally in the study of general group actions. To understand the complexities of zero entropy [image: there is no content]-actions, it is natural to ask the entropies of their non-cocompact subgroup actions. It is well-known that their subgroup actions exhibit diverse behaviors in their entropies. For example, the well-known three dot subshift (xi,j+xi,j+1+xi+1,j≡0(mod2) for all [image: there is no content]) has entropy zero while all of its non-cocompact subgroup actions have positive entropy. In addition, there is a zero entropy [image: there is no content]-subshift, all of whose directions have infinite entropy. In his study of cellular automaton maps, Milnor extended the entropy of noncocompact subgroup actions to irrational directions, and called it directional entropy [8]. It is easy to see that the three dot model also has positive directional entropy in all irrational directions. If a [image: there is no content]-action has positive entropy, then each direction has infinite entropy. If a [image: there is no content]-action has entropy zero, the entropy of its directions could be zero, positive, or infinite. We note that there exists a [image: there is no content]-subshift of entropy zero that has directions of entropy zero, of positive entropy and of infinite entropy. Properties of directional entropies and the dynamics of subgroups have been investigated in [9,10,11,12,13].



Topological entropy dimension has been introduced and studied in [14,15] to classify the growth rate of the orbits of zero entropy systems. For example, any positive entropy [image: there is no content]-subshift has the orbit growth rate in the order of [image: there is no content], while the three dot model has the orbit growth rate in the order of [image: there is no content]. The model has intermediate growth rate with nontrivial directional dynamics. Zero entropy [image: there is no content]-subshifts may contain subgroup actions whose directional entropy is 0. To understand the complexity of [image: there is no content]-actions, we introduce topological entropy dimension analogous to the one for [image: there is no content]-actions. As in the case of [image: there is no content]-action, entropy dimension for [image: there is no content]-action measures the intermediate growth rate, which is bigger than polynomial and less than exponential. If a system has a polynomial growth rate, then it has entropy dimension 0. Meyerovitch [15] has constructed a family of [image: there is no content]-subshifts of entropy dimension α for all [image: there is no content]. To measure the subexponential growth rate in all directions including the irrational directions, we define directional entropy dimension, which is the extension of the entropy dimension for the noncocompact subgroup actions.



Our main interest is to look into the complexity of given group actions of entropy zero together with their subgroup actions in terms of directional entropy dimension. In the case of [image: there is no content]-actions, if a direction has positive entropy or has entropy dimension 1, then clearly the [image: there is no content]-entropy dimension is greater than [image: there is no content]. In general, we show that if X is a [image: there is no content]-subshift with entropy dimension [image: there is no content] and [image: there is no content] is the directional entropy dimension of a direction vector [image: there is no content], then the following inequalities hold: [image: there is no content] (see Theorem 2). We construct [image: there is no content]-subshifts of different positive entropy dimensions for which the equality holds in the second inequality. In fact, for each [image: there is no content], we present a [image: there is no content]-subshift of entropy dimension α whose directional entropy dimension is [image: there is no content] for every direction (see Example 5).



We present a [image: there is no content]-subshift of entropy dimension 1, where the directional entropy is 0 for every direction (see Example 7). This example indicates that [image: there is no content]-complexity may be spread out in all directions. It is interesting to compare the example with the three dot model whose entropy dimension is [image: there is no content]. It also shows that there is a difference between zero entropy subshifts of entropy dimension 1 and positive entropy subshifts, as every directional entropy is infinite for the latter ones.



The paper is organized as follows. Section 2 presents necessary terminology for [image: there is no content]-subshifts and the definitions of the entropy dimension and directional entropy dimension. In Section 3, we discuss equivalent definitions for entropy dimension. An inequality for entropy dimension and directional entropy dimension is presented in Section 4. In Section 5, we first present a general method to construct strictly ergodic [image: there is no content]-subshifts with positive entropy dimension, and then construct [image: there is no content]-subshifts exhibiting interesting behaviors in their directional entropy dimensions.




2. Topological Entropy Dimension for [image: there is no content]-Actions


As we assume some familiarity with topological and symbolic dynamics, we introduce a few terminology and known results. For details on symbolic dynamics, see [16], and, for topological entropy dimension of [image: there is no content]-actions, see [14].



A two-dimensional full shift is a set [image: there is no content] for a finite set [image: there is no content], together with the [image: there is no content]-shift actions [image: there is no content] given by translations [image: there is no content] for [image: there is no content]. A [image: there is no content]-subshift (or [image: there is no content]-shift space) X is a closed σ-invariant subset of a full shift. A finite set [image: there is no content] is called a shape. A member of [image: there is no content] is called a pattern on the shape F. For a shape [image: there is no content], denote by [image: there is no content] the set [image: there is no content] of all patterns on the shape F occurring in X. For [image: there is no content], we denote by [image: there is no content] the set [image: there is no content] for notational simplicity. In particular, for [image: there is no content], let


Rm,n={v=(v,w)∈Z2:0≤v<mand0≤w<n}








be a rectangular shape in [image: there is no content] and


[image: there is no content]








be the set of the patterns on the shape [image: there is no content] occurring in X. We simply put [image: there is no content].



The (two-dimensional) topological entropy of X is defined by


[image: there is no content]











It is well known that the limit exists and equals the maximum of the measure-theoretic entropies of the shift-invariant probability measures. As in the case of [image: there is no content]-actions, the entropy dimension of a [image: there is no content]-subshift X is defined.



Definition 1.

The (two-dimensional) upper entropy dimension of X is defined by


[image: there is no content]











The lower entropy dimension [image: there is no content]is defined analogously by using lim inf instead of lim sup. If [image: there is no content], we denote it by [image: there is no content]and call it the (topological) entropy dimension of X.





Note that the (upper and lower) entropy dimension of X lies in the interval [image: there is no content]. They are invariant under topological conjugacy between two [image: there is no content]-subshifts. One can check that [image: there is no content] is the unique critical value for α of the function


[image: there is no content]








that is,


[image: there is no content]











The similar equivalences hold for [image: there is no content] and [image: there is no content] using lim inf and lim, respectively. We note that if X has positive entropy, then it has entropy dimension 1.



We recall the definition of directional entropy introduced by Milnor [8,9]. For a [image: there is no content]-subshift, the definition is stated much simpler. For [image: there is no content], let [image: there is no content] be a unit vector orthogonal to [image: there is no content]. Given [image: there is no content] and [image: there is no content], we let


E(v,n,t)={av+bv⊥∈R2:0≤a<nand0≤b<t}.











Then, directional entropy [image: there is no content] of a [image: there is no content]-subshift X in the direction [image: there is no content] is defined by


[image: there is no content]











Note that there are two vectors orthogonal to [image: there is no content], and [image: there is no content] depends on the choice of [image: there is no content]. However, the set of patterns [image: there is no content] in both cases are the same.



By definition, it is clear that [image: there is no content] for all [image: there is no content]. Note that, for [image: there is no content], [image: there is no content] coincides with the entropy of the [image: there is no content]-topological dynamical system [image: there is no content]. Analogously, we define directional entropy dimension as follows.



Definition 2.

Let X be a [image: there is no content]-subshift and [image: there is no content]. The directional upper entropy dimension of X in the direction [image: there is no content]is defined by


[image: there is no content]











The directional lower entropy dimension [image: there is no content]is defined analogously using lim inf. If [image: there is no content], and we denote it by [image: there is no content]and call it the directional entropy dimension of X in the direction [image: there is no content].





Using a similar argument as for entropy dimension, one can check that [image: there is no content] is equal to [image: there is no content] where [image: there is no content] is a unique critical value for α of the function


[image: there is no content]











As for the case of directional entropy, for [image: there is no content], [image: there is no content] coincides with the topological upper entropy dimension [14] of the [image: there is no content]-topological dynamical system [image: there is no content]. One can see that [image: there is no content] for all [image: there is no content]. Hence, we may assume that [image: there is no content] lies on the unit circle [image: there is no content] as far as the directional entropy dimension is concerned. The properties similar to the mentioned hold for [image: there is no content] and [image: there is no content].




3. Equivalent Definitions for Entropy Dimension


In this section, we present equivalent formulations for two-dimensional entropy dimension using the entropy generating shape, which generalizes the notion of entropy generating sequence for one-dimensional case in [14]. The argument directly extends to the case of [image: there is no content]-actions for any integer [image: there is no content]. Throughout the paper, [image: there is no content] denotes the set of nonnegative integers.



Let [image: there is no content] be an infinite subset. For [image: there is no content], we define a function


[image: there is no content]








and denote by [image: there is no content] the critical value for τ of the function [image: there is no content], that is,


[image: there is no content]











This definition is equivalent to


[image: there is no content]











We call [image: there is no content] the upper dimension of S. The lower dimension [image: there is no content] and the dimension of S, [image: there is no content], are defined similarly. Following [14], we say that S is an entropy generating shape of the [image: there is no content]-subshift X if


[image: there is no content]











As for the [image: there is no content]-case, the intuitive idea of an entropy generating shape is to specify positions where the independence occurs. An infinite subset [image: there is no content] is called a weak entropy generating shape of X if


lim infn→∞log|B[0,n)2∩S(X)||[0,n)2∩S|β>0forall0<β<1.











It is easy to see that if S is a weak generating shape of X, then


[image: there is no content]











Theorem 1.

Let X be a [image: there is no content]-subshift. Then, the following three values are equal.

	1. 

	
[image: there is no content]




	2. 

	
the supremum of [image: there is no content]over all entropy generating shapes S of X,




	3. 

	
the supremum of [image: there is no content]over all weak entropy generating shapes S of X.











Proof. 

Let [image: there is no content] (resp. [image: there is no content]) be the supremum of [image: there is no content] over the entropy generating shapes S (resp. weak entropy generating shapes S). Clearly, [image: there is no content]. In ([14], Theorems 3.8 and 3.10), it was shown that if X is a [image: there is no content]-subshift, then [image: there is no content] equals the supremum of [image: there is no content] over all entropy generating sequences S for X. One may check that the proof is valid for [image: there is no content]-subshifts with a little modification. For each j-th step in ([14], Theorem 3.8), we can take [image: there is no content]. Then, [image: there is no content] is an entropy generating shape.





Thus, it remains to show that [image: there is no content]. Suppose not. Then, there is a weak entropy generating shape S with [image: there is no content]. Hence,


D¯(X)=lim supn→∞loglog|Bn(X)|logn2≥lim supn→∞loglog|B[0,n)2∩S(X)|logn2≥lim infn→∞loglog|B[0,n)2∩S(X)|log|[0,n)2∩S|·lim supn→∞log|[0,n)2∩S|logn2=D¯(S)>D¯(X),








which is a contradiction. Therefore, [image: there is no content]. ☐




4. Inequalities for Entropy Dimension and Directional Entropy Dimension


In this section, we present simple inequalities between the entropy dimension of a [image: there is no content]-action and its directional entropy dimensions.



Theorem 2.

Let X be a [image: there is no content]-subshift and let [image: there is no content]. Then, we have


[image: there is no content]








and


[image: there is no content]











In particular, if X has entropy dimension, then we have


[image: there is no content]













Proof. 

First suppose that [image: there is no content]. Then, it is clear that [image: there is no content] for each [image: there is no content]. Hence, we have


[image: there is no content]








for each fixed [image: there is no content]. Hence, by letting [image: there is no content], we have the first inequality [image: there is no content]. On the other hand, each pattern on the shape [image: there is no content] is obtained by stacking n patterns on the shape [image: there is no content]. Hence, we have [image: there is no content]. Then,


[image: there is no content]













Hence, by taking supremum on [image: there is no content], we have [image: there is no content].



Let [image: there is no content]. Then, one can find constants [image: there is no content] such that, for all [image: there is no content],


atranslateof[0,sα]2⊂E(v,s,s)⊂atranslateof[0,sβ]2.











Then, for each [image: there is no content] and [image: there is no content], we have


[image: there is no content]








from which we obtain [image: there is no content]. On the other hand, since [image: there is no content] and for each k


E(v,nt,t)+ktv⊥∩Z2⊂atranslateofE(v,nt+2,t+2)∩Z2,








we have


[image: there is no content]








from which we obtain [image: there is no content].



The inequalities for lower entropy dimension are similarly proved. ☐



Remark 1.

Let X be a [image: there is no content]-subshift and [image: there is no content]a hyperplane of codimension ℓ. Then, one can define k-dimensional entropy dimension [image: there is no content]of X and ([image: there is no content])-dimensional entropy dimension [image: there is no content]of G as in Section 2. By the same argument as in the proof of the theorem, we see that


[image: there is no content]








for any subspace G of codimension 1, and, hence, for any subspace G of codimension ℓ, inductively we have


[image: there is no content]













We mentioned that the equality [image: there is no content] is obtained if a direction [image: there is no content] has the same complexity as X has, and the equality [image: there is no content] is obtained if there is a certain independence along the direction [image: there is no content].



We list simple examples of [image: there is no content]-subshifts whose entropy dimension and directional entropy dimension can be easily calculated. In the examples below, there is a direction [image: there is no content] for which the inequality [image: there is no content] is strict.



Example 1.

Let [image: there is no content] be the three dot model (from §1). It is known that [image: there is no content] and [image: there is no content] for each [image: there is no content]. It follows that [image: there is no content] for all [image: there is no content]. For each [image: there is no content], the pattern on the half of the boundary (left and bottom of [image: there is no content]) determines the whole pattern on [image: there is no content]. It follows that [image: there is no content].





Example 2.

Let [image: there is no content] be a [image: there is no content]-subshift of positive entropy, and let X be the [image: there is no content]-subshift generated by [image: there is no content] and [image: there is no content] identity on Z. We know that the directional entropy is continuous [11]. Since [image: there is no content], we have [image: there is no content] for all [image: there is no content] not parallel to [image: there is no content]. It is clear that [image: there is no content]. Hence, directional entropy dimension need not be upper-semicontinuous even when directional entropy is continuous on [image: there is no content].





Example 3.

Let [image: there is no content] be a [image: there is no content]-subshift of positive entropy, and let X be the orbit closure of the set


{x∈AZ2:(x(i,k))i∈N∈Zifkisasquarenumberand(x(i,k))i∈N=0∞otherwise}.











Let [image: there is no content] denote the set of blocks of length n occurring in Z. Since [image: there is no content], one finds that [image: there is no content]. It can be checked that [image: there is no content], [image: there is no content] and [image: there is no content] for all [image: there is no content] not parallel to [image: there is no content].






5. Constructions of Subshifts with Positive Entropy Dimension and Directional Entropy Dimension


In this section, we construct subshifts with positive topological entropy dimension with diverse properties in their subgroup actions. We first provide a framework with notations for a general construction of a family of subshifts. Then, we will modify the constructions depending on required properties. All the examples in this sections are minimal. We remark that, without the minimality requirement, the construction with similar properties can be carried out more easily.



The basic idea of our construction is a successive concatenation of previous patterns with well-chosen permuting positions as in [17,18]. In what follows, to simplify the notation, we omit the floor function notation on the square roots and write [image: there is no content] instead of [image: there is no content].



Fix a large number [image: there is no content]. Let [image: there is no content] denote a set of binary patterns on [image: there is no content] square [image: there is no content], and let [image: there is no content] denote the cardinality of [image: there is no content]. For the induction step, suppose that a set [image: there is no content] of patterns on the [image: there is no content] square [image: there is no content] has been constructed and [image: there is no content]. Give an ordering on [image: there is no content] and write [image: there is no content]. We should note that this new [image: there is no content] contains less elements than the old [image: there is no content] unless [image: there is no content] is a square number. We may abuse the notation since the cardinalities of both sets have the same asymptotic behavior, which only matters in what follows. Let [image: there is no content] and consider a new pattern [image: there is no content] on [image: there is no content] formed by concatenating all the patterns in [image: there is no content] in the following way:


u1(j+1)|Rlj+lj·(i1,i2)=ui2Nj+i1+1(j)foreach0≤i1,i2<Nj.











We choose a subset [image: there is no content], which we call the set of permuted positions at the j-th step and let [image: there is no content] be a partition of [image: there is no content]. The collection [image: there is no content] consists of all patterns on the square [image: there is no content] obtained by permuting [image: there is no content]-subpatterns of [image: there is no content] whose lower left corner is at the location [image: there is no content] with [image: there is no content] for each [image: there is no content]. Then, we have iterative formulae for [image: there is no content] and [image: there is no content]


lj+1=lj·NjandNj+1=∏i=1qj|Pj,i|!.











By the construction, [image: there is no content] is a subpattern of [image: there is no content] at the lower left corner for each j. If the cardinality of [image: there is no content] grows fast enough to satisfy [image: there is no content], then, by compactness, there is a unique point [image: there is no content] such that [image: there is no content] for all [image: there is no content]. Let [image: there is no content] be the [image: there is no content]-subshift defined as the orbit closure of w and X the natural extension of [image: there is no content]. Equivalently, we may let X be the set of all configurations [image: there is no content] such that each subpattern of x occurs in some member of [image: there is no content] for some [image: there is no content]. Since each pattern [image: there is no content], for [image: there is no content], in [image: there is no content] occurs in all patterns in [image: there is no content], it follows that X is minimal.



We are free to choose [image: there is no content] and its partition elements [image: there is no content]. By choosing them carefully, we may construct subshifts with prescribed entropy dimension and directional entropy dimensions. The following notations are useful for calculations. For [image: there is no content], let


Bn,m0(X)={u|Rn,m:u∈Cjforsomej∈Nwithlj≥n,m}








and, for [image: there is no content] and [image: there is no content], let


Bn,mk(X)={u|(p,q)·lk+Rn,m:u∈Cjforsomej>kandp,q∈Nwith(p,q)·lk+Rn,m⊂Rlj}={w|(p,q)·lk+Rn,m:p,q∈N}.











That is, [image: there is no content] is the collection of [image: there is no content] patterns of X which can be obtained by restricting the patterns in [image: there is no content] to its lower left corner and [image: there is no content] is that of [image: there is no content] subpatterns of [image: there is no content] for some [image: there is no content] whose lower left corner is on the lattice [image: there is no content]. We list several inequalities between the cardinality of the sets aforementioned:

	(a)

	
Let [image: there is no content]. Then [image: there is no content] and [image: there is no content].




	(b)

	
Let [image: there is no content] for [image: there is no content]. Then [image: there is no content].




	(c)

	
For [image: there is no content], we have [image: there is no content].









We mention that in each of the examples in this section, [image: there is no content] is a weak entropy generating shape.



Example 4.

Let [image: there is no content] be a rational direction. Then, there is a [image: there is no content]-subshift X with [image: there is no content], [image: there is no content] and [image: there is no content] for all [image: there is no content] not parallel to [image: there is no content].



We only give a construction for the case [image: there is no content] since the construction is similar when [image: there is no content] is an arbitrary rational direction. Let [image: there is no content] with [image: there is no content] and [image: there is no content]. At the j-th step for [image: there is no content], a typical [image: there is no content]-st pattern is obtained by permuting the [image: there is no content] subpatterns (elements of [image: there is no content]) at the bottom of [image: there is no content]. The iterative formula for [image: there is no content] is given by [image: there is no content]. Hence, we have


limj→∞loglog|Blj(X)|log(lj)2=limj→∞loglog|Blj,lj0(X)|log(lj)2=limj→∞loglogNjlog(lj)2=limj→∞logNj−1logNj−1log(lj−1Nj−1)2=limj→∞logNj−1logNj−12=12,



(1)




where the first two equalities follow from property (a) and the third equality follows from Stirling’s formula.



To show that [image: there is no content], fix [image: there is no content]. Then, there is [image: there is no content] such that [image: there is no content], and we may assume that [image: there is no content] for [image: there is no content]. The number of [image: there is no content]-patterns at the permuted positions which are contained in each [image: there is no content] pattern [image: there is no content] is k, and that of [image: there is no content]-patterns at the permuted positions which are contained in each [image: there is no content] is at most k. Hence, we have


P(Nj,k)=|Bl,l0(X)|≤|Bl(X)|≤(lj)2|B(k+1)lj,(k+1)ljj(X)|≤(lj)2(Nj)2P(Nj,k+1),








where [image: there is no content] denotes the number of k-permutations of n. For all sufficiently large n and any k with [image: there is no content], we have [image: there is no content]. Hence, for large j and any [image: there is no content], we have


logk+loglog(Nj−1)2logk+log(lj)2≤loglog|Bl(X)|logl2≤loglog(lj)2+log(Nj)2+(k+1)logNj2logk+log(lj)2≤log(k+4)+loglogNj2logk+log(lj)2,








from which this equation and (1), it follows that


[image: there is no content]











A similar calculation for [image: there is no content]-subshifts can be found in ([18], Section 2).



Now, we calculate the directional entropy dimension. From the construction of [image: there is no content] from [image: there is no content], a pattern u in [image: there is no content] can be uniquely extended to a pattern in [image: there is no content] whose bottom equals u. By induction, for all [image: there is no content], each pattern [image: there is no content] can be uniquely extended to a pattern in [image: there is no content]. Hence, we have [image: there is no content]. Hence, for each j


[image: there is no content]











We can show that in general [image: there is no content] for any j by assuming [image: there is no content] with [image: there is no content] and arguing as in the above. Hence, we have [image: there is no content].



Now, we show [image: there is no content]. As there are [image: there is no content] different [image: there is no content] subpatterns of members of [image: there is no content] whose lower left corner is at [image: there is no content] for [image: there is no content], it follows that [image: there is no content]. By this and property (c), we have [image: there is no content]. This yields


[image: there is no content]








for each i; hence, [image: there is no content].



Finally, let [image: there is no content] be not parallel to [image: there is no content] and let θ be the angle between [image: there is no content] and the x-axis. It is enough to show the case when [image: there is no content] is in the first quadrant. For each i and j with [image: there is no content], denote by [image: there is no content] the parallelogram generated by the line segment from [image: there is no content] to [image: there is no content] and that from [image: there is no content] to [image: there is no content]. Then, [image: there is no content] has base [image: there is no content] and height [image: there is no content]. Let [image: there is no content].



Note that [image: there is no content] can intersect only finitely many [image: there is no content] squares, say q (depending only on i), whose lower left corner is at [image: there is no content]. Put


Qi,j∗={u|(Qi,j∩Z2)+łi(a,0):u∈Ckforsomek>janda∈N}.











The number of different upper subpatterns with height [image: there is no content] of members in [image: there is no content] is [image: there is no content], since all the upper subpatterns with height [image: there is no content] of members in [image: there is no content] are the same. On the other hand, the number of different lower subpatterns with height [image: there is no content] of members in [image: there is no content] is at most [image: there is no content].



As any pattern on [image: there is no content] occurs as a subpattern on [image: there is no content], we have


[image: there is no content]











By this, we obtain


[image: there is no content]








for each i—thus, [image: there is no content], by taking the supremum over all i.





Remark 2.

At the j-th step of Example 4, instead of permuting the j-th patterns at the bottom row of [image: there is no content], we permute all the columns of [image: there is no content]and denote the collection by [image: there is no content]. By a column, we mean a tower of [image: there is no content]-many j-th patterns in [image: there is no content]whose lower left corner is at [image: there is no content]for [image: there is no content].



The iterative formula for [image: there is no content]is given by [image: there is no content]. Note that the cardinalities of the sets [image: there is no content], [image: there is no content]and [image: there is no content]for each [image: there is no content]are the same as those obtained in Example 4. The constructed system has entropy dimension [image: there is no content]. We expect that [image: there is no content]and [image: there is no content]for all [image: there is no content]not parallel to [image: there is no content].





The following example shows that [image: there is no content]-complexity may be spread out in all directions, in the sense that the inequality [image: there is no content] in Theorem 2 can be an equality for all directions.



Example 5.

Let [image: there is no content]. Then, there is a [image: there is no content]-subshift X with


D(X)=αandD(v)=2α−1forallv∈S1.











Let [image: there is no content]. Given j and [image: there is no content], we let


Pj,i={(a,b)∈Z2:a2+b2≤i2<(a+1)2+(b+1)2with0≤a,b<Nj},








and [image: there is no content]. Note that each [image: there is no content] is the set of coordinates near the circle of radius i. We will only give an argument for [image: there is no content] (i.e., [image: there is no content]) for notational simplicity.



Each [image: there is no content] satisfies


[image: there is no content]








and so


[image: there is no content]








for all large j, where we write [image: there is no content] if the ratio [image: there is no content] goes to some positive constant as [image: there is no content]. Hence we have


[image: there is no content]











Hence, we have [image: there is no content]. For general r, similar calculation gives [image: there is no content]; hence, [image: there is no content].



Now, we calculate directional entropy dimension. By the symmetry of permuted positions, it suffices to consider [image: there is no content]. First, by Theorem 2, we have [image: there is no content].



For each j, the number of [image: there is no content] patterns at the permuted positions that are contained in each [image: there is no content] subpattern of members of [image: there is no content] whose lower left corner is at [image: there is no content] is at most [image: there is no content]. Hence, we have, for a fixed j and all [image: there is no content],


[image: there is no content]











The number of [image: there is no content] subpatterns of w whose lower left corner is at [image: there is no content] is at most [image: there is no content]. As in (c),


[image: there is no content]











Hence,


[image: there is no content]








for each j, from which we have [image: there is no content], as desired.





It is possible to construct a [image: there is no content]-subshift with arbitrary entropy dimension. However, we are not able to compute its directional entropy dimension.



Example 6.

There exists a [image: there is no content]-subshift X with [image: there is no content] for any [image: there is no content].



Let [image: there is no content]. Given j and [image: there is no content], we let


[image: there is no content]








and [image: there is no content]. As [image: there is no content], by a similar argument to the one in Example 5, one can check that


[image: there is no content]











The result follows from the fact that any [image: there is no content] can be written as [image: there is no content] for some [image: there is no content].





If X is a zero entropy [image: there is no content]-subshift with [image: there is no content], then [image: there is no content] for all [image: there is no content] by Theorem 2. In the following, we construct such a [image: there is no content]-subshift such that the directional entropy [image: there is no content] for every [image: there is no content].



Example 7.

There is a [image: there is no content]-subshift X with


D(X)=1andh(v)=0forallv.











For each [image: there is no content], let [image: there is no content] be the n-th prime number, and [image: there is no content] the number of prime numbers less than n. Given j and [image: there is no content], we let


Pj,i={(a,b)∈Z2:a2+b2≤p(i)2<(a+1)2+(b+1)2with0≤a,b<Nj},








and [image: there is no content]. Then, the iterative formula is


[image: there is no content]











Hence, we have


[image: there is no content]








for all large j. This yields [image: there is no content].



For the calculation of directional entropy, by symmetry, it suffices to consider when [image: there is no content]. For each j, the number of [image: there is no content] patterns at the permuted positions that are contained in each pattern in [image: there is no content] is [image: there is no content]. Hence, by a simple induction, we have, for all i and k,


[image: there is no content]











It is well known that there exists a constant c such that [image: there is no content] for all x:


log|Bii+k,li0(X)|≤log|Bli,li0(X)|∏j=ii+k−1π(Nj)≤log|Bli,li0(X)|ck∏j=ii+k−1NjlogNj.











As [image: there is no content], we have


[image: there is no content]








for [image: there is no content]. As in Example 5, we also have


log|Bii+k,li(X)|li+k→0fork→∞.











Since this holds for all i, it follows that [image: there is no content].





Example 5 gives a family of subshifts with [image: there is no content] for all directions for each [image: there is no content]. In the following, we show that there is an example with the same property for [image: there is no content]. Recall that three dot example satisfies [image: there is no content] and [image: there is no content] for all directions. Our example shows that [image: there is no content]-complexity may be spread out in all directions.



Example 8.

Let [image: there is no content]. Then, there is a [image: there is no content]-subshift X with


D(X)=αandD(v)=0forallv∈S1.











Let [image: there is no content] and let [image: there is no content] with [image: there is no content] and [image: there is no content]. At the j-th step, we permute the [image: there is no content] patterns on the line [image: there is no content].



Then, the iterative formula for [image: there is no content] is given by [image: there is no content], from which it follows that [image: there is no content]. As the number of [image: there is no content] patterns at the permuted positions that are contained in each pattern in [image: there is no content] is [image: there is no content], we have


[image: there is no content]








from which we have [image: there is no content]. Hence, [image: there is no content]. When [image: there is no content] is not parallel to [image: there is no content], then its directional entropy dimension can be calculated similarly to Example 4.





The following Table 1 summarizes the examples in this paper.



Table 1. Entropy dimension and directional entropy dimension.







	
Examples

	
D(X)

	
D(v)

	
h(v) when D(v) = 1






	
1

	
[image: there is no content]

	
[image: there is no content] for all [image: there is no content]

	
positive




	
2

	
[image: there is no content]

	
[image: there is no content] for all [image: there is no content]

	
positive




	

	

	
[image: there is no content]

	




	
3

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	

	

	
[image: there is no content] for all [image: there is no content]

	




	
4

	
1/2

	
[image: there is no content]

	
[image: there is no content]




	

	

	
[image: there is no content] for all [image: there is no content]

	




	
5

	
[image: there is no content]

	
[image: there is no content] for all [image: there is no content]

	
[image: there is no content]




	
7

	
1

	
[image: there is no content] for all [image: there is no content]

	
[image: there is no content]




	
8

	
[image: there is no content]

	
[image: there is no content] for all [image: there is no content]

	








(*) For [image: there is no content], it seems that directional entropy depends on the arrangement of [image: there is no content] blocks in [image: there is no content].
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