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Abstract: Water engineering is an amalgam of engineering (e.g., hydraulics, hydrology, irrigation,
ecosystems, environment, water resources) and non-engineering (e.g., social, economic, political)
aspects that are needed for planning, designing and managing water systems. These aspects and the
associated issues have been dealt with in the literature using different techniques that are based on
different concepts and assumptions. A fundamental question that still remains is: Can we develop a
unifying theory for addressing these? The second law of thermodynamics permits us to develop a
theory that helps address these in a unified manner. This theory can be referred to as the entropy theory.
The thermodynamic entropy theory is analogous to the Shannon entropy or the information theory.
Perhaps, the most popular generalization of the Shannon entropy is the Tsallis entropy. The Tsallis
entropy has been applied to a wide spectrum of problems in water engineering. This paper provides
an overview of Tsallis entropy theory in water engineering. After some basic description of entropy
and Tsallis entropy, a review of its applications in water engineering is presented, based on three
types of problems: (1) problems requiring entropy maximization; (2) problems requiring coupling
Tsallis entropy theory with another theory; and (3) problems involving physical relations.

Keywords: entropy; water engineering; Tsallis entropy; principle of maximum entropy; Lagrangian
function; probability distribution function; flux concentration relation

1. Introduction

Water resources systems serve a multitude of human needs. They are needed for water supply,
water transfer, water diversion, irrigation, land reclamation, drainage, flood control, hydropower
generation, river training, navigation, coastal protection, pollution abatement, transportation and
recreation, among others. Many of the systems (e.g., channels, culverts, impoundments) have been
with us since the birth of human civilization. Some (e.g., spillways, small dams, levees) are several
centuries old, while some others (e.g., large dams, long-distance water transfer structures) are of more
recent origin. In the beginning, systems were designed more or less empirically. Then, engineering
and economics constituted the sole foundation of design. About fifty years ago, planning and design
of hydraulic structures went through a dramatic metamorphosis. These days, they are based on both
engineering and non-engineering aspects. Engineering aspects encompass planning, development,
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design, operation and management, while non-engineering aspects include environmental impact
assessment, socio-economic analysis, policy making and impact on society.

For designing water engineering systems (e.g., channels, levees, bridge piers, drainage structures,
dams, reservoirs, spillways), some key questions that need to be addressed relate to the following,
among others: peak discharge; velocity distribution; sediment yield, concentration and discharge;
pollutant load, concentration and transport; river bed profile, meandering and braiding; downstream
and at-a-point hydraulic geometry; flow depth, discharge and velocity routing; and seepage through
a dam. For water supply systems, the key questions are concerned with, among others: reliability;
loss of energy in the distribution system; and pipe sizes. In addition, pollutant concentration and
transport as well as pollution abatement are also now considered as essential components of water
resources system design. In a similar manner, because of increased public awareness, primarily
triggered by environmental movement, non-engineering aspects of hydraulic design, dubbed under
“socio-economic analyses,” play a critical role. Besides engineering feasibility and economic viability,
issues related to public health, political support, legal and judicial restrictions and social acceptability
determine, to a large extent, if the water resources project will go off the ground.

A survey of the water engineering literature shows that there are myriad techniques for
addressing questions pertaining to the design of water resources systems. The techniques range
from empirical to semi-empirical to physically-based ones. Empirical techniques are data-based;
examples are regression, time series analysis and other statistical methods. Semi-empirical methods,
also sometimes referred to as conceptual or systems-based techniques, employ mass conservation
and some empirical relationship or hypothesis; a good example is the unit hydrograph theory.
Physically-based methods employ the laws of conservation of mass, momentum and energy; an
example is the use of St. Venant’s equations for flow routing or Richards’ equation for computing
infiltration. Strictly speaking, even physically-based methods also employ empirical parameters
and, thus, are not entirely “physically-based.” Indeed, all these three types of techniques employ
some physics through data or hypotheses or laws. Extensive details of these methods are already
well-documented in the literature [1–6]. A more recent and comprehensive account of these methods
and applications is also presented in [7].

Because of the large diversity of these techniques, based on different hypotheses and assumptions, it is
difficult to present the developments in any subject or field of interest in a unified and coherent manner.
This becomes particularly challenging when undertaking water resources system engineering design.
There are, of course, some theories that do apply to a wide variety of problems, such as kinematic wave
theory and diffusion wave theory [8,9]. These theories can be applied to solve a wide variety of problems
where the movement of water, sediment and/or pollutant is involved. However, many problems in water
engineering design require a statistical treatment. For addressing such problems, entropy theory can serve
as a unifying theory. During the past three decades, entropy theory has been applied to address a wide
spectrum of problems in water engineering, including rainfall-runoff [1,3,8], infiltration [2], soil moisture [2],
network design [10], velocity distributions [11–14], sediment concentration and discharge [15–17], hydraulic
geometry [18–22] and reliability [23], among others. For recent comprehensive accounts of entropy theory
applications in water and environmental engineering, see [24–26].

The origin of entropy theory is in the second law of thermodynamics. Koutsoyiannis [27] has
presented a nice account of the historical background of entropy. The most commonly used measure
of entropy is the Boltzmann-Gibbs-Shannon (BGS) entropy [28], which is often referred simply as the
Shannon entropy [29]. Tsallis [30] introduced a more general entropy function for complex systems,
which is now referred to as the Tsallis entropy. Tsallis entropy specializes in the Shannon entropy.
During the last two decades or so, Tsallis entropy theory has found many applications in water and
environmental engineering and there is certainly a great potential to extend the applications to a much
wider spectrum of water systems and associated problems.

This paper aims to provide a review of the applications of Tsallis entropy theory in water
engineering. It revisits the Tsallis entropy theory, presents a general methodology for application of
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the theory, shows how entropy theory couples statistical information with physical laws and how it
can be employed to derive useful physical constructs in time and/or space and provides a review of
physical applications of the Tsallis entropy theory in water engineering.

The rest of the paper is organized as follows. Section 2 reviews the Tsallis entropy theory.
Sections 3–6 review the applications of the Tsallis entropy theory in water engineering. Section 3
presents an overview of three types of problems in water engineering. Section 4 reviews problems
requiring entropy maximization. Section 5 reviews coupling entropy theory with another theory.
Section 6 reviews physical relations. Section 7 draws some conclusions.

2. Tsallis Entropy Theory

2.1. Definition of Entropy

The concept of entropy is closely linked with the concept of uncertainty, information, chaos,
disorder, surprise or complexity. Indeed, there are often different interpretations of entropy in different
fields [24–26,31–33]. For instance, in statistics, entropy is regarded as a measure of randomness,
objectivity or unbiasedness, dependence, or departure from the uniform distribution. In ecology, it
is a measure of diversity of species or lack of concentration. In water engineering, it is a measure of
information of uncertainty. In industrial engineering, it is a measure of complexity. In manufacturing,
it is a measure of interdependence. In management, it is a measure of similarity. In social sciences, it is
measure of equality. This may be illustrated as follows.

Consider a random variable X that takes on values xi , i = 1, 2, . . . , N, that occur with
probabilities pi , i = 1, 2, . . . , N. If pi = 1 (the event is certain to occur), pj = 0 (the event is certain not
to occur), i 6= j, then it can be said that there is no surprise about the occurrence or non-occurrence of
event X = xi and the occurrence or non-occurrence of this event provides no information. The system
that produces such an event has no complexity and is not chaotic or disorderly. On the other hand, if
an event xi occurs with very small probability pi, say 0.01, then our anticipation of event xi is highly
uncertain and if xi does indeed occur, then there will be a great deal of surprise about its occurrence.
The occurrence of this event provides a great deal of information and the system producing such
an event is complex, chaotic and disorderly. Intuitively, the information content of event xi or the
anticipatory uncertainty of xi prior to the observation decreases as the value of probability p(xi)
increases [24,26]. It may be noted that information is gained only if the variable takes on different
values. The value that occurs with a higher probability conveys less information and vice versa.

It is logical to deduce that if a system has more uncertainty, then more information will be needed
to characterize it and vice versa. That is, information reduces uncertainty, meaning that, for a system,
more information means less uncertainty. Uncertainty increases the need for more information; that
is, more uncertainty means more information is needed. Shannon [29] formulated entropy as the
expected value of the probabilities of values that a variable or event may take on. The information
gained is indirectly measured as the amount of reduction of uncertainty. Thus, entropy is defined as a
measure of disorder, chaos, uncertainty, surprise, or information.

From an informational perspective, the information gain from the occurrence of any event xi,
∆H(xi), can be expressed as:

∆H(xi) = − log pi (1)

Equation (1) says that the information gained is minus the logarithm of the inverse of the
probability of occurrence. For N events, the average or expected information gain, Hs, is the weighted
average of Equation (1):

Hs =
N

∑
i=1

H(xi) = −
N

∑
i=1

pi log pi (2)
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Equation (2) is the Shannon entropy [29], also called informational entropy. Equation (1) shows
that the information gain is directly a function of probability and is, hence, called gain function.
Equation (1) can be generalized by expressing it as a power function, given by:

∆I(xi) =
1

m− 1
(1− pi

m−1),
N

∑
i=1

pi = 1 (3)

where ∆I(xi) is the gain in information from an event i which occurs with probability pi and m is
any real number. The gain function computed from Equation (3) for m = −1, 0, 1 and 2, as shown in
Figure 1, decreases with an increase in the probability value regardless of the value of m. For increasing
value of m, the gain function diminishes for the same probability value. The gain function has a much
longer tail, showing very low values of gain as the probability increases.
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Analogous to Shannon entropy, the average or expected gain function for N events, Hm, is the
weighted average of Equation (3), given by:

Hm = E[∆Ii] =
N

∑
i=1

pi[
1

m− 1
(1− pi

m−1)] =
1

m− 1

N

∑
i=1

pi[1−pi
m−1] (4)

where Hm is designated as the Tsallis entropy or m-entropy [30], which is often referred to as the
non-extensive statistic, m-statistic, or Tsallis statistic. It can be shown that as m→ 1, Tsallis entropy
converges to Shannon entropy. The quantity m is often referred to as the non-extensivity index, Tsallis
entropy index, or simply entropy index and its value can be positive or negative. Entropy index
m reflects the microscopic dynamics and the degree of nonlinearity of the system. Since almost all
real systems (e.g., water systems) are inherently nonlinear in nature, the Tsallis entropy has a clear
advantage when compared to the Shannon entropy. Tsallis [34] noted that super-extensivity, extensivity
and sub-extensivity occur when m < 1, m = 1 and m > 1, respectively. Interestingly, if m ≥ 0, m < 1
corresponds to the rare events (0 ≤ m < 1) and m > 1 corresponds to frequent events [35,36], pointing
to the stretching or compressing of the entropy curve to lower or higher maximum entropy positions.

If random variable X is non-negative continuous with a probability density function (PDF), f (x),
then the Shannon entropy can be written as:

Hs(X) = Hs( f ) = −
∞∫

0

f (x) log f (x)dx (5)
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Likewise, Tsallis entropy can be expressed as [37–39]:

Hm(X) = Hm( f ) =
1

m− 1

∞∫
0

{ f (x)− [ f (x)]m}dx =
1

m− 1
{1−

∞∫
0

[ f (x)]m}dx (6)

From now onwards, subscript m will be deleted and Hm will be simply denoted by H.
A plot of H versus p for m = −1, −0.5, 0, 0.5, 1 and 2 is given in Figure 2. For m < 0, the Tsallis

entropy is concave; and for m > 0, it becomes convex. For m = 0, H = (N − 1) for all pi’s. For m = 1,
it converges to Shannon entropy. For all cases, the Tsallis entropy decreases as m increases.
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2.2. Properties of Tsallis Entropy

As mentioned earlier, the concept of entropy is closely linked with the concept of uncertainty,
information, chaos, disorder, surprise or complexity. Tsallis entropy has some interesting
properties [30,40] that are briefly summarized here.

(1) m-entropy: The m-surprise or m-unexpectedness is defined as logm(1/pi), where the logarithm
is the base m. Hence, the m-entropy can be defined as:

H = E[logm
1
pi
] (7)

which coincides with the Tsallis entropy:

H = E[
1− pi

m−1

m− 1
] (8)

in which E is the expectation.
(2) Maximum value: Equation (4) attains an extreme value for all values of m when all pi’s are

equal, i.e., pi = 1/N. For m > 0, it attains a maximum value and for m < 0 it attains a minimum value.
The extremum of H becomes

H =
Nm−1 − 1

1−m
(9)

(3) Concavity: For two probability distributions P = {pi, i = 1, 2, . . . , N} and
Q = {qi, i = 1, 2, . . . , N} corresponding to a unique set of N possibilities, an intermediate probability
distribution G = {gi, i = 1, 2, . . . , N} can be defined for a real a, such that 0 < a < 1, as:

gi = api + (1− a)qi (10)
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for all i’s. It can be shown that for m > 0,

H[G] ≥ aH[P] + (1− a)H[Q] (11)

and for m < 0,
H[G] ≤ aH[P] + (1− a)H[Q] (12)

Functional H(G) ≥ 0 if m > 0 and is, hence, concave; H(G) = 0 if m = 0; and H(G) ≤ 0 if m < 0 and
is, therefore, convex.

(4) Additivity: For two independent systems A and B with ensembles of configurational
possibilities EA = {1, 2, . . . , N} with probability distribution PA =

{
pi

A, i = 1, 2, . . . , N
}

and configurational possibilities EB = {1, 2, . . . , M} with probability distribution
PB =

{
pj

B, j = 1, 2, . . . , M
}

, one can express the union of two systems A∪ B and their corresponding
ensembles of possibilities EA∪B = {(1, 1), (1, 2), . . . , (i, j), . . . , (N, M)}. If pij

A∪B represents the
corresponding probabilities, then, by virtue of independence, the joint probability will be equal to the
product of individual probabilities, i.e., pij

A∪B = pi
A pj

B or pij(A + B) = pi(A)pj(B), for all i and j.
One can write the entropy of the union of two systems A and B as:

H(A + B) = H(A) + H(B) + (1−m)H(A)H(B) (13)

Equation (13) describes the additivity property, which can be extended to any number of systems.
In all cases, H ≥ 0 (non-negativity property). If systems A and B are correlated, then

pij
A∪B 6= [

N

∑
i=1

pij
A∪B][

M

∑
j=1

pij
A∪B] (14)

for all (i, j). One may define mutual information of the two systems or transinformation S as:

T[(pij
A∪B)] = HA∪B[(pij

A∪B)]− HA[(
N

∑
i=1

pij)]− HB[(
M

∑
j=1

pij)] (15)

Considering Equation (15), T(pij) = 0 for all m, if A and B are independent and Equation (15)
will reduce to Equation (13). For correlated A and B, T(pij) < 0 for m = 1 and T(pij) = 0 for m = 0.
For arbitrary values of m, it will be sensitive to pij; it can take on negative or positive values for both
m < 1 and m > 1 with no particular regularity and can exhibit more than one extremum.

(5) Composability: The entropy H(A + B) of a system comprised of two sub-systems A and B can
be computed from the entropies of sub-systems, H(A) and H(B) and the entropy index m.

(6) Interacting sub-systems: Consider a set of N possibilities arbitrarily separated into two

sub-systems with W1 and W2 possibilities, where W = W1 + W2. Defining PW1 =
W1
∑

i=1
pi and PW2 =

W2
∑

j=1
pj,

PW1 + PW2 = 1 =
W
∑

k=1
pk, it can be shown that

H(PW) = H(PW1 , PW2) + PW1
m H(pi

∣∣PW1) + PN2
mH(pj

∣∣PW2) (16)

where pi
∣∣PW1 and pj

∣∣PW2 are the conditional probabilities. Note that pi
m > pi for m < 1 and pi

m < pi for m > 1.
Hence, m < 1 corresponds to rare events and m > 1 to frequent events [41]. This property can be extended
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to any number R of interacting sub-systems: W =
R
∑
j=1

Wj. Then, defining wj =
Nj

∑
i=1

pi, j = 1, 2, . . . , Nj,

N
∑
j=1

wj = 1, Equation (16) can be generalized as:

H({pi}) = H({wj}) +
R

∑
j=1

wj
m H(

{
pi
∣∣wj
}
) (17)

Here, pj = wj.

2.3. Principle of Maximum Entropy

Quite often, some information may be known about the random variable X. Then, it seems logical
to choose a PDF of X that is consistent with the known information. Since there can be more than
one PDF that may satisfy this condition, Jaynes [42,43] formulated the principle of maximum entropy
(POME), which states that one should choose the distribution that has the highest entropy, subject
to the given information. This distribution will be the least-biased distribution. Furthermore, it is
equivalent to the minimum relative (cross) entropy condition when no prior is given, which is also
called as the Kullback-Leibler principle [44]. The implication here is that POME takes into account all
of the given information and, at the same time, avoids consideration of any information that is not
given. This is consistent with Laplace’s principle of insufficient reason (or principle of indifference),
according to which all outcomes of an experiment should be considered equally likely unless there
is information to the contrary. Therefore, POME enables entropy theory to achieve the probability
distribution of a given random variable.

The procedures for applications of POME entails the following steps [24,26]: (1) definition of
Tsallis entropy; (2) specification of constraints; (3) maximization of entropy, in accordance with POME,
using of the method of Lagrange multipliers; (4) derivation of the probability distribution in terms of
constraints; (5) determination of Lagrange multipliers; and (6) determination of the maximum entropy.
Since the definition of entropy has already been reviewed earlier, it will not be repeated here. The
remaining steps, (2)–(6), are briefly discussed here.

2.3.1. Specification of Constraints

For deriving the PDF of a random variable X using POME, appropriate constraints need to be
defined. Papalexiou and Koutsoyiannis [28] suggested three considerations for defining constraints:
(1) Simplicity and physical meaningfulness; (2) little variability in the future; and (3) definition in
terms of laws of physics—mass, momentum and energy conservation and constitutive laws—as far as
possible. For simplicity, constraints are often defined in terms of statistical moments and, fortunately,
the moments are related to the laws of physics.

Let Ci denote the i-th constraint, i = 0, 1, 2, . . . , n, where n is the number of constraints. Let gr(x)
be an arbitrary function of X. Then, constraints Cr, r = 0, 1, 2, . . . , n, can be defined as:

C0 =

b∫
a

f (x)dx = 1 (18)

Cr =

b∫
a

gr(x) f (x) dx = E[gr(x)] = gr(x), r = 1, 2, . . . , n (19)

where g0(x) = 0; gr(x), r = 1, 2, . . . , n, represents some function of x and gr(x) is the expectation of gr(x).
Equation (18) states the total probability theorem that the PDF must satisfy. If r = 1 (first moment)
and g1(x) = x, then Equation (19) represents the mean x; likewise, for r = 2 (second moment) and
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g2(x) = (x− x)2, it denotes the variance (σ2) of X. The first moment corresponds to the conservation
of mass and the second moment to the conservation of momentum. Similarly, r = 3 (third moment),
measuring skewness, corresponds to the conservation of energy. It is noticed that the order of moments
higher than 3 may be unreliable [45]. In water engineering, two or three constraints usually suffice.

2.3.2. Entropy Maximizing Using Lagrange Multipliers

Tsallis entropy, given by Equation (6), can be maximized, subject to constraints defined by
Equations (18) and (19), using the method of Lagrange multipliers [42,43]. Therefore, the Lagrangian
function L can be expressed as:

L =

∞∫
0

f (x)
1− [ f (x)]m−1

m− 1
dx + (λ0 −

1
m− 1

)[

∞∫
0

f (x)dx− 1] +
M

∑
i=1

λi[

∞∫
0

gi(x) f (x)dx− gi(x)] (20)

where λi, i = 0, 1, 2, . . . , M, are the Lagrange multipliers. Note that −1/(m − 1) is added to the
zeroth Lagrange multiplier for algebraic simplification. Using the Euler-Lagrange calculus of variation,
differentiating Equation (20) with respect to f (x) and equating the derivative to zero, we obtain:

dL
d f (x)

= 0 =
1

m− 1
− [ f (x)]m−1 + λ0 −

1
m− 1

+
M

∑
i=1

λigi(x) (21)

2.3.3. Determination of Probability Distribution

Equation (21) yields the least-biased probability distribution of X:

f (x) = [λ0 +
M

∑
i=1

λigi(x)]
1

m−1 (22)

Integrating Equation (22), the cumulative distribution function F(x) is obtained as:

F(x) =
x∫

0

[λ0 +
M

∑
i=1

λigi(x)]
1

m−1 dx (23)

The properties of the probability distribution will depend on the value of m, Lagrange multipliers,
functions gi(x) and M.

2.3.4. Determination of the Lagrange Multipliers

Equation (22) contains M unknown Lagrange multipliers that can be determined with the use of
Equations (18) and (19). Substituting Equation (22) in Equations (18) and (19), the result is, respectively:

∞∫
0

[λ0 +
M

∑
i=1

λigi(x)]
1

m−1 dx = 1 (24)

∞∫
0

gi(x)[λ0 +
M

∑
i=1

λigi(x)]
1

m−1 dx = gi(x), i = 1, 2, . . . , M (25)

Solution of Equations (24) and (25) yields the unknown Lagrange multipliers λi, i = 1, 2, . . . , M.
It may be noted from Equation (24) that λ0 can be expressed as a function of other Lagrange multipliers
and, therefore, the unknown multipliers are λi, i = 1, 2, . . . , M. Except for simple cases, Equations (24)
and (25) do not have an analytical solution but can be solved numerically.
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2.3.5. Determination of Maximum Entropy

Substitution of Equation (24) in Equation (6) leads to the maximum Tsallis entropy:

H =
1

m− 1
{1−

∞∫
0

[λ0+
M

∑
i=1

λigi(x)]
m

m−1 dx} (26)

Equation (26) shows that the entropy of the probability distribution of X depends only on the
specified constraints, since the Lagrange multipliers themselves can be expressed in terms of the
specified constraints.

3. Applications in Water Engineering: Overview

The problems that can be addressed using the Tsallis entropy theory can be classified into
three groups. The first group consists of problems that only require the maximization of the Tsallis
entropy, which can be accomplished using POME. Examples of such problems include frequency
analysis, parameter estimation, network evaluation and design, spatial and inverse spatial analysis,
geomorphologic analysis, grain size distribution analysis, flow forecasting, complexity analysis and
clustering [46–52].

The types of problems included in the second group require coupling with another theory, such
as the theory of stream power or theory of minimum energy dissipation rate. Examples of problems in
this group include hydraulic geometry [19,20] and evaporation [53]. Also included in this group are
problems wherein first relations between entropy and design variables are derived and then relations
between design variables and system characteristics are established. Examples include geomorphologic
relations for elevation, slope and fall; and evaluation of water distribution systems [54,55].

The third group includes problems that require deriving a physical relation either in time or
in space. This means, the domain of analysis requires a shift from the probability domain to a
real domain (space or time), which is accomplished by invoking a relation between the cumulative
probability distribution function and the design variable. Examples of such problems are infiltration
capacity, soil moisture movement in vadose zone, groundwater head distribution, velocity distribution,
rainfall-runoff relation, channel geometry, rating curve, flow-duration curve, erosion and sediment
yield, sediment concentration and discharge, debris flow, longitudinal river profile, hydraulic geometry,
channel cross-section shape and rating curve [19–22,56–61]. The objective in this class of problems is to
derive a relation of the design variable as a function of time or space.

These three kinds of problems are further detailed in the following sections, with examples from
water engineering.

4. Problems Requiring Entropy Maximization

Fundamental to solving problems that only require entropy maximization is the derivation of
probability distribution. A multitude of problems in water engineering involve essentially data analysis
for deriving either a probability distribution or computing entropy.

4.1. Frequency Distributions

The procedure for deriving a maximum entropy-based frequency distribution has been discussed
above. The procedure is illustrated here using only two constraints: mean (first moment) and second
moment. For any probability density function, f (x), of a random variable X, the total probability must
equal one, i.e.,

∞∫
0

f (x)dx = 1 (27)
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The first and second moments can be defined, respectively, as:

∞∫
0

x f (x)dx = E(x) = µ1 (28)

and
∞∫

0

x2 f (x)dx = E(x2) = µ2 (29)

In order to obtain the least-biased f (x), subject to Equations (27)–(29), Equation (6) can be
maximized for m > 0 using the method of Lagrange multipliers. The Lagrange function L can be
written as:

L =

∞∫
0

f (x)
1− [ f (x)]m−1

m− 1
dx− λ0[

∞∫
0

f (x)dx− 1]− λ1[

∞∫
0

x f (x)dx− µ1]− λ2[

∞∫
0

x2 f (x)dx− µ2] (30)

Differentiating L with respect to f (x) and equating the derivative to zero, one obtains:

f (x) = { 1
m

+
(1−m)

m
[λ0 + λ1x + λ2x2]}

1/(m−1)

(31)

Defining k = (1–m)/m [37] and αi = mλi, i = 0, 1, 2, Equation (31) can be written as:

f (x) = (1 + k)−1−1/k[1 + k(α0 + α1x + α2x2)]
−1−1/k

(32)

Equation (32) is the entropy-based probability density function of power type.
The Lagrange multipliers, λi, i = 0, 1, 2 and, consequently, αi = mλi, i = 0, 1, 2, can be estimated

using Equations (27) to (29). For simplification, let λ2 be assumed as 0. Then, Equation (32) becomes:

f (x) = (1 + k)−1−1/k[1 + k(α0 + α1x)]−1−1/k (33)

whose parameters αi = mλi, i = 0, 1, are estimated using Equations (27) and (28). Substituting
Equation (33) in Equation (27), one obtains:

α1 = (1 + k)−1−1/k(1 + kα0)
−1/k (34)

or
α0 = −1 +

1
k
[α1(1 + k)1+1/k]

k
(35)

The other Lagrange multiplier can be determined by inserting Equation (33) in Equation (28) and
is given as:

− (1 + k)−1−1/k

k(1− 1
k )

(1 + kα0)
1−1/k = α2

1 x (36)

By solving Equations (34) or (35) with (36), Lagrange multipliers α1 and α0 can be determined.
Inserting Equation (34) in Equation (33), one obtains

f (x) = (1 + k)−1−1/k(1 + kα0)
−1−1/k[1 + k(1 + k)−1−1/kk(1 + kα0)

−1−1/kx] (37)

Let
β = [(1 + k)(1 + kα0)]

−1−1/k (38)
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Using Equation (38), Equation (37) becomes

f (x) =
1
β
[1 +

kx
β
]
−1−1/k

(39)

Equation (39) is a two-parameter generalized Pareto distribution.
Let

y = x +
β

k
⇒ x = y− β

k
(40)

Equation (39) then becomes

f (y) =
1
β
[
ky
β
]
−1−1/k

(41)

Equation (41) is a two-parameter Pareto distribution. If k→ 0, then Equation (41) leads to an
exponential distribution:

f (y) =
1
β

exp[
y
β
] (42)

Koutsoyiannis [37,38] proposed a generalization, following which Equation (32) can be expressed as:

f (x) = (1 + k)−1−1/k[1 + k(α0 + α1x + α2xc1)]−1−1/kxc2−1 (43)

where c1 and c2 are shape parameters. Equation (43) has four parameters: scale parameter α1 and
shape parameters k and c1 and c2. Note that α0 is not a parameter, because it is a constant based on
the satisfaction of Equation (27). It is, however, not clear as to what led to the generalized form of
Equation (43). Koutsoyiannis [37] suggested that random variable Xc2 would have Beta Prime (also
referred to as Beta of the second kind) distribution [62]. Then, the distribution of X would be referred
to as the power-transformed Beta Prime (PBP). Koutsoyiannis [37] showed that Equation (43) can
specialize into several exponential and power-type probability distributions, such as PBP-L1 (k→ 0) ,
gamma (k→ 0, c1 → 1) , Weibull (k→ 0, c2 = c1) , Pareto (c2 = c1 = 1), Beta Prime (c1 = 1), PBP-L2
(k→ ∞, kα0 → k0, kα1 → α1) and others.

4.2. Network Evaluation and Design

Hydrometric data are required for an efficient planning, design, development, operation and
management of water engineering systems. Many studies have applied the Shannon entropy theory to
assess and optimize data collection networks (e.g., water quality, rainfall, streamflow, hydrometric,
elevation, landscape, etc.) [63,64] but not the Tsallis entropy theory. The basic idea for developing a
methodology for data collection network design is that it must take into account the information of
each gaging station or potential gaging station in the network. A station with a higher information
content is given a higher priority over other stations that have lower information content but the
information content of a station must be tempered with the degree of use. That is, a station that is used
by one user might be given a lower priority than a station that has diverse uses.

A framework for network design or evaluation considers a range of factors, such as: (a) objectives
of sampling; (b) variables to be sampled; (c) locations of measurement stations; (d) frequency of
sampling; (e) duration of sampling; (f) uses and users of data; and (g) socio-economic considerations.
A network design has two modes: (1) number of gages and their locations (space evaluation); and (2)
time interval for measurement (time evaluation).

Let there be two stations A and B with ensembles of configurational possibilities
EA = {1, 2, . . . , N} with probability distribution PA =

{
pj

A, i = 1, 2, . . . , N
}

and configurational
possibilities EB = {1, 2, . . . , M} with probability distribution PB =

{
pj

B, j = 1, 2, . . . , M
}

.
Then, the union of the two stations A ∪ B and their corresponding ensembles of possibilities
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are EA∪B = {(1, 1), (1, 2), . . . , (i, j), . . . , (N, M)}. If pij
A∪B represents the corresponding

probabilities, then the mutual information or transinformation S can be expressed as:

T[(pij
A∪B)] = HA∪B[(pij

A∪B)]− HA[(
N

∑
i=1

pij)]− HB[(
M

∑
j=1

pij)] (44)

From Equation (44), T(pij) = 0 for all m, if X and Y are independent. For correlated X and Y,
T(pij) < 0 for m = 1 and T(pij) = 0 for m = 0. For arbitrary values of m, it will be sensitive to pij; it can
take on negative or positive values for both m < 1 and m > 1 with no particular regularity and can
exhibit more than one extremum.

4.3. Directional Information Transfer Index

By dividing by the marginal entropy, the mutual information T can be normalized [65] as:

T
H

= DIT =
(H − HLost)

H
= 1− HLost

H
(45)

where HLost is the amount of information lost. The ratio of T by H is called the Directional Information
Transfer (DIT) index. Mogheir and Singh [66] called it as the Information Transfer Index (ITI). The DIT
varies from zero to unity and denotes the fraction of information transferred from one station to
another. A zero value of DIT corresponds to the case where sites are independent and, therefore, no
information is transmitted. A value of unity for DIT corresponds to the case where sites are fully
dependent and no information is lost. Since DITXY = T/H(X) is not the same as DITYX = T/H(Y), DIT
is not symmetrical. The term DITXY describes the fractional information inferred by station X about
station Y, whereas DITYX describes the fractional information inferred by station Y about station X.
Between two stations, the station with the higher DIT should be given higher priority because of its
greater capability in inferring (predicting) the information at other sites. The DIT can be applied for
regionalization of the network or watersheds.

4.4. Reliability of Water Distribution Networks

A water distribution system can be designed by minimizing head losses, costs, risks and
departures from specified values of water quantity, pressure and quality and also maximizing
reliability [67]. Thus, it becomes a multi-objective optimization problem. However, it is not uncommon
to formulate the design problem as a single-objective optimization problem, where the system capital
and operational costs are minimized and, at the same time, the laws of hydraulics are satisfied and
the targets of water quantity and pressure at demand nodes are met. Fundamental to either type of
optimization is reliability [68–70].

To develop a Tsallis entropy-based redundancy measure of the network with N nodes, where
the nodes may be considered to constitute sub-systems, the Tsallis entropy of a node j can now be
expressed in terms of Wij as:

Sj =
1

m− 1
[
n(j)

∑
i=1

Wij −Wij
m)] =

1
m− 1

{
n(j)

∑
i=1

[
qij

Qj
− (

qij

Qj
)

m
]} (46)

where m is the entropy index and is a real number and Sj is an entropic measure of redundancy at node
j and is local redundancy. Maximizing Sj would maximize redundancy of node j and is equivalent
to maximizing entropy at node j. The maximum value of Sj is achieved when all Wij’s or qij/Qj’s are
equal. This occurs when all qij’s are equal. For the entire water distribution network, redundancy is a
function of redundancies Sj’s of individual nodes in the network.

The overall network redundancy can be assessed in two ways. First, the network redundancy can
be assessed by the relative importance of a link to its node and its importance recognized by qij/Qj.



Entropy 2017, 19, 641 13 of 25

In this case, the redundancy is maximized at each node. It may, however, be noted that the network
redundancy is not a sum of nodal redundancies. Second, the network redundancy can be assessed by
the relative importance of a link to the total flow and its importance recognized by qij/Q0. Here, the
proposition is that the importance of a link relative to the local flow is not as important as it is to the
total flow. In this case too, the network redundancy is not a sum of nodal redundancies. In order to
acknowledge the relative importance of a link to the entire network, the nodal redundancy Sj* can be
expressed as:

Sj∗ =
1

m− 1

n(j)

∑
i=1

[
qij

Q0
− (

qij

Q0
)

m
] =

1
m− 1

[
Qj

Q0
−

n(j)

∑
i=1

(
qij

Q0
)

m
] (47)

It may be noted that Sj*, given by Equation (47), is similar to the Sj given by Equation (46). In this
case too, the maximum value of Sj* will occur when the qij values are equal at the j-th node. It can also
be shown that the maximum network redundancy will be achieved when all the qij values are equal.
It may, however, be noted that

Sj∗ =
1

m− 1

n(j)

∑
i=1

[
qij

Q0
− (

qij

Q0
)

m
] 6= 1

m− 1
[1−

n(j)

∑
i=1

(
qij

Q0
)

m−1
] (48)

This is because,
n(j)

∑
i=1

qij = Qj 6= Q0 and
n(j)

∑
i=1

qij

Q0
6= 1 (49)

Therefore, in the second approach, Equation (47) can be used in the spirit of Tsallis entropy or
considering it via partial Tsallis entropy [36].

The network redundancy for N nodes is a function of redundancies of individual nodes, Sj’s, in
the network. However, it will not be a simple summation of these nodal redundancies, because of the
non-extensive property of the Tsallis entropy. For the first approach, it can be shown that the network
redundancy (with N nodes) can be expressed as:

S1∪2∪...∪N = ∑
1≤j≤N

Sj + (1−m) ∑
1≤j1<j2≤N

Sj1Sj2 + (1−m)2 ∑
1≤j1<j2<j3≤N

Sj1Sj2Sj3 + . . .

+(1−m)N−1 ∑
1≤j1<j2...<jN≤N

Sj1Sj2 . . . SjN
(50)

In order to develop an appreciation for Equation (47), it will be instructive to expand Equation (47)
in terms of flow quantities. Equation (47) is just the sum of nodal redundancies.

For the second approach, the network redundancy (with N nodes: 1, 2, . . . , N) can be expressed as:

S1∪2∪3∪4...∪N∗ = (m− 1)N−1 N
Π
j=1

Sj∗ − (m−1)N−2

Q0
[Q1S2∗ . . . SN∗ + Q2S1∗S3∗ . . . SN∗ + . . . QNS1∗S2∗ . . . SN−1∗]

+ . . . + (m−1)
Q0

N−1 [Q1Q2 . . . QN−1SN∗ + Q1Q2 . . . QN−2SN−1∗ + . . . + Q2Q2 . . . QNQ1]
(51)

It can be seen that Equation (51) for network redundancy with the second approach is significantly
different from Equation (50) with the first approach.

5. Problems Requiring Coupling with another Theory

There are some problems where the entropy theory can only be part of the solution methodology
and needs to be coupled with another theory. Consider, for example, hydraulic geometry of a river
or channel, which is defined by the relations between discharge and each of hydraulic variables (e.g.,
flow width, depth, velocity under bankfull conditions) and each of geometric variables (e.g., bed
roughness, slope). Hydraulic geometry is of two types: (1) downstream; and (2) at-a-point. For either
type, the values of hydraulic and geometric variables are average annual values corresponding to
the equilibrium or stable condition of the river. At this condition, the river will try to spend the least
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amount of energy for transporting water and sediment. In response to the influx of water and sediment
coming from the watershed, the river will adjust these variables or characteristics in order to attain the
stable condition. This means, the river will spread the adjustment as equitably as the environment will
allow and will follow the theory of minimum energy dissipation rate. The equal rate of adjustment can
be described by the principle of maximum entropy (POME) that the river will follow. In this manner,
the theory of minimum energy dissipation rate and entropy theory are combined for determining the
hydraulic geometry of a river or designing a stable canal. The advantage of the entropy theory is that it
explicitly allows to incorporate the constraints imposed by the watershed and the design. For example,
if a river is leveed, then it cannot adjust its width and the adjustment will be shared by depth and
velocity. Likewise, if a canal is lined, it cannot adjust its width, slope and roughness and will have
to adjust its depth and velocity. In this manner, a whole hierarchy of hydraulic geometry relations
can be obtained, depending on the constraints imposed. The other existing theories do not allow this
flexibility. In what follows, some specific examples of problems requiring coupling entropy theory
with other theories are presented.

5.1. Hydraulic Geometry

Hydraulic geometry is defined by relations between discharge (Q) and each of channel width (B),
flow depth (d), flow velocity (V), slope (S) and roughness factor (say Manning’s n). Hydraulic geometry
is either downstream hydraulic geometry or at-a-station hydraulic geometry [71]. Langbein [72] and
Yang et al. [73] reasoned that hydraulic geometry relations correspond to the equilibrium state of the
channel. In order to attain this state, the channel adjusts its hydraulic variables and the adjustment
is shared equally among these variables. In practice, the channel is seldom in equilibrium, meaning
that the adjustment among hydraulic variables will be unequal. This, then, suggests that there will
be a family of hydraulic geometry relations, depending on the adjustment of hydraulic variables
and the adjustment should explain the variability in the parameters of hydraulic geometry relations.
For downstream hydraulic geometry, Singh et al. [19,20] hypothesized that, for a given influx of
discharge from the watershed, the channel would minimize its stream power by adjusting three
controlling variables: depth, width and friction.

Coupling the theory of minimum energy dissipation rate with the principle of maximum entropy,
three possibilities can occur corresponding to the spatial rate of adjustment of friction, the spatial rate
of adjustment of width and the spatial rate of adjustment of flow depth. These possibilities then lead
to the formulation of, respectively, the proportion of the adjustment of stream power (SP) by friction,
the proportion of the adjustment of SP by channel width and the proportion of the adjustment of
SP by flow depth and, hence, to four sets of hydraulic geometry relations, as follows: (1) the spatial
change in SP is accomplished by an equal spatial adjustment between flow width B and resistance
expressed by Manning’s n; (2) the spatial variation in SP is accomplished by an equal spatial adjustment
between flow depth and flow width; (3) the spatial variation in SP is accomplished by an equal spatial
adjustment between flow depth and resistance; and (4) the spatial variation in SP is accomplished by
an equal spatial adjustment between flow depth, flow width and resistance. These four possibilities
can occur in the same river in different reaches or in the same reach at different times, or in different
rivers at the same time or at different times.

The hydraulic geometry relations are expressed as:

B = aQb, d = cQ f , V = kQm, n = NQp, S = sQy (52)

where a, c, k, N and s are parameters; and b, f, m, p and y are exponents. Values of these exponents
and parameters depend upon the possibility under consideration and the entropy theory permits
explicit expressions for the exponents and parameters. Singh et al. [19,20] showed that most of the
downstream hydraulic geometry relations reported in the literature can be derived as special cases of
the entropy-based equations.
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For at-a-station hydraulic geometry, when discharge changes, a river cross-section can adjust
its width, depth, velocity, roughness and slope or a combination thereof. Singh and Zhang [21,22]
reasoned that the channel cross-section will adjust or minimize its SP by adjusting these four variables:
(1) PB can be interpreted as the proportion of the temporal change of SP due to the temporal rate of
adjustment of width; (2) Ph as the proportion of the temporal change of SP due to the temporal rate
of adjustment of depth; (3) Pα as the proportion of the temporal change of SP due to the temporal
rate of adjustment of friction; and (4) PS as the proportion of the temporal change of SP due to the
temporal rate of adjustment of slope. These cases involve probabilities of four variables, meaning that
any adjustment in hydraulic variables in combinations of two, three or four may occur. These give rise
to different configurations of adjustment that do indeed occur in nature [74]. Thus, the equality among
four probabilities yields 11 possibilities and, hence, leads to 11 sets of equations: (1) PB = Ph; (2) PB = Pα;
(3) PB = PS; (4) Ph = Pα; (5) Ph = PS; (6) Pα = PS; (7) PB = Ph = Pα; (8) PB = Pα = PS; (9) PB = Ph = PS;
(10) Ph = Pα = PS; and (11) PB = Ph = Pα = PS. It should be noted that all eleven possibilities can occur
in the same river cross-section at different times, or in different river cross-sections at the same time
or at different times. Williams [75] explored 11 cases, which are similar to the above 11 possibilities.
The resulting hydraulic geometry relations are of the same form as Equation (52) but expression for
exponents and parameters therein are different.

5.2. Evaporation

Evaporation is a process by which liquid water is converted into water vapor. The process of
evaporation entails four elements [76]: (1) supply of energy; (2) supply of water; (3) tendency of
liquid water molecules to escape; and (4) turbulent transport. The source of energy that is needed
for evaporation to occur from land surfaces is solar radiation, which can be defined by radiative
flux. The supply of water can be from precipitation or irrigation, determining soil wetness, which is
characterized by soil moisture. Fugacity refers to the tendency of water molecules to escape and is
expressed by the saturated vapor pressure at the liquid-vapor interface. The turbulent transport of
water vapor and heat is determined by wind speed and thermal instability of the surface layer and
is defined by turbulent sensible heat flux into the atmosphere. Wang et al. [76] argued that, under
thermodynamic equilibrium, thermal and hydrologic states of the land surface resulting from the
interaction between land and atmospheric processes tend to maximize evaporation.

For a given radiative energy flux, the rate of evaporation depends on the combination of surface
soil moisture, surface soil temperature and sensible heat flux, as well as the dynamic feedbacks
among them at the land surface. There can be many combinations of ground and sensible heat fluxes,
evaporation rate and net radiation that can satisfy the energy balance. Wang et al. [76] hypothesized
that the preferred combination is the one that maximizes evaporation. Denoting the rate of evaporation
by E, surface soil moisture by w, surface soil temperature by T, sensible heat flux into the atmosphere
by H, ground heat flux by G and net radiative by Rn at the surface, maximizing evaporation, subject to
the energy balance, the result is:

E = max[E(w, T, H; R)|E + H + G = Rn] (53)

for all combinations of independent variables w, T and H. Wang et al. [76] investigated three
cases: (1) R = Rn − G, representing the turbulent energy budget, as described by the Bowen ratio;
(2) R = Rn, corresponding to the partitioning of the net radiation into latent, sensible and ground
heat fluxes; and (3) R = Ri, representing the budget of all surface energy fluxes. These cases express
land-atmosphere interactions.

6. Problems Involving Physical Relations

In water engineering, we often need to determine physical relationships, such as infiltration
rate as a function of time, runoff or discharge as a function of time, soil moisture as a function of
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depth from the soil surface, velocity as a function of flow depth measured from the bottom, sediment
concentration as a function of flow depth and sediment discharge as a function of time. For deriving
physical relationships, the probability domain and the physical domain need to be concatenated and
this can be done by hypothesizing the cumulative distribution function (CDF) of a design (dependent)
variable (e.g., flux, say discharge) in terms of independent (concentration) variable (e.g., stage of flow).

6.1. Hypotheses on Cumulative Probability Distribution Function

Different types of hypotheses have been formulated when applying entropy theory to derive
relationships for design variables. Examples of a linear hypothesis include velocity distribution as a
function of flow depth, wind velocity as a function of height, sediment concentration profile along
the flow depth, rating curve and groundwater discharge along the horizontal direction of flow. It is
noted that the CDF should have a one-to-one relation with the design variable (i.e., random variable)
of interest and its value should only be between 0 and 1; 0 for the minimum value of the random
variable and 1 for the maximum value. For deriving a two-dimensional velocity (u) distribution, Cui
and Singh [77] hypothesized a general form of the CDF as:

F(u) = [1− (
x
B
)

2
]
b
(

y
D
)

a
for all (x, y) on I(u) (54)

in which y is the vertical dimension, x is the transverse direction, a and b are shape parameters and
B and D act as scale parameters or normalizing quantities. The CDF given by Equation (54) has a
one-to-one relationship with the velocity value u; in other words, the CDF is unique on each isovel I(u)
and has a value of 0 at I(0) and 1 at I(umax). Also, CDF is 0 at x = B or y = 0 and is 1 at x = 0 and y = D
(Figure 3). It is continuous and differentiable in both x and y.
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The two-dimensional (2-D) velocity distribution can also be expressed by transforming the
Cartesian coordinates [vertical (y) and transverse (x)] into curvilinear s-r coordinate system in which r
has a unique, one-to-one relation with a value of velocity and s (coordinate) curves are their orthogonal
trajectories [56]. Then, the CDF of velocity in a channel cross section can be expressed as:

F(u) =
r− r0

rmax − r0
(55)

where r is a coordinate between r0 and rmax and corresponds to y.
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For the one-dimensional (1-D) form of Equation (54) with b = 0, it is seen from Equation (54) that
the CDF will remain between 0 and 1 when 0 ≤ x ≤ B and 0 ≤ y ≤ D. Thus, the CDF for 1-D velocity
distribution can be simplified as:

F(u) = (
y
D
)

a
for all (y) on I(u) (56)

This equation implies that the shape parameter a is critical. If a = 1, then

F(u) = (
y
D
) for all (y) on I(u) (57)

In cases where the design variable is maximum at y = 0 and minimum at maximum y (i.e., y = D), as is
the case for suspended sediment concentration, it is distributed from a maximum value at the channel
bed and decreases towards the water surface. Hence, the CDF should be assumed in a way so that it is
1 at the channel bed (y = 0) and 0 at the water surface (y = D). The CDF of sediment concentration can
then be expressed as:

F(c) = 1− (
y
D
)

a
(58)

It is seen from Equation (58) that F(c) will be between 0 and 1 if 0 ≤ y ≤ D.

6.2. One-Dimensional Velocity Distribution

Velocity distribution is needed for determining flow discharge, scour around bridge piers, erosion
and sediment transport, pollutant transport, energy and momentum distribution coefficients, hydraulic
geometry, watershed runoff and river behavior. Velocity distributions have been derived using
experimental, hydrodynamic, or entropy methods. Shannon entropy has been applied to derive
one- and two-dimensional velocity distributions [26]. Singh and Luo [11,78] and Luo and Singh [12]
employed Tsallis entropy to derive the 1-D velocity distribution. The Tsallis entropy-based velocity
distribution has been shown to have an advantage over the Shannon entropy-based distribution.
However, in these entropy-based velocity distributions, the CDF has been assumed to be linear,
meaning the velocity is equally likely along the vertical from the channel bed to the water surface.
This assumption is fundamental to the derivation of velocity distributions but has not been adequately
scrutinized. Further, this assumption is weak and may partly explain the reason why these velocity
distributions do not accurately describe the velocity near the channel bed.

For deriving 1-D velocity distribution, the constraint equation is derived using the continuity
equation such that g1(u) = u and limits of integration are 0 and uD (maximum velocity at the surface or
flow depth D). The entropy theory then yields the probability density function of velocity u:

f (u) =
[

m− 1
m

(λ∗ + λ1u)
] 1

m−1
(59)

where λ∗ =
1

m−1 + λ0.
Following Cui and Singh [77], the CDF of u can be hypothesized as Equation (56). Then, a general

velocity distribution based on the Tsallis entropy theory [14] is obtained as:

u = −λ∗
λ1

+
1

λ1

m
m− 1

[
λ1

( y
D

)a
+

(
m− 1

m
λ∗

) m
m−1
]m−1

m

(60)

Equation (60) can be simplified by defining a dimensionless parameter G as:

G =
λ1umax

λ1umax + λ∗
(61)
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Parameter G can be regarded as an index of the velocity distribution uniformity. Equation (60)
can be cast as:

u
umax

= 1− 1
G

(
1− ((1− G)

m
m−1 +

(
1− (1− G)

m
m−1
)( y

D

)a
)

m−1
m

)
(62)

Equation (62) shows that for a given m value, the velocity distribution can be obtained with only
two parameters: a and G. A bigger G value tends to slow the growth of the velocity from the channel
bed to the water surface, while the parameter a has an opposite effect. A lower value of G tends
to linearize the velocity distribution and a higher value non-linearize. The opposite is the case for
exponent a. The velocity distribution is more sensitive to a than to G.

6.3. Two-Dimensional Velocity Distribution

For two-dimensional (2-D) velocity distribution, Chiu [56] proposed a transformation that converts
the Cartesian coordinates [vertical (y) and transverse (z)] into curvilinear s-r coordinate system, in which
r has a unique, one-to-one relation with a value of velocity and s (coordinate) curves are orthogonal
trajectories to r. Following the coordinate system of Chiu [56], Luo and Singh [12] employed the Tsallis
entropy. Then, expressing the CDF of velocity in a channel cross section by Equation (57), the velocity
distribution becomes

u = (
m

m− 1
)

1
λ1

{(
λ1

r− r0

rmax − r0

)
+

[
(

m− 1
m

)λ∗

] m
m−1
}m−1

m

− λ∗
λ1

(63)

Defining entropy parameter M = λ1u2
max, the dimensionless velocity distribution can be

expressed as:

u
umax

=
2
M

[
M(

r− r0

rmax − r0
) +

(4−M)2

16

] 1
2

− 4−M
2M

(64)

The Tsallis entropy-based approach of Luo and Singh [12] was either superior or comparable
to Chiu’s distribution for the data sets used therein for testing. However, due to the complexity of
the coordinate system and a large number of parameters used, the application of these methods may
be limited. Later, using normal x-y coordinate system, Cui and Singh [13] obtained the 2-D velocity
distribution equation as:

u = −λ∗
λ1

+
1

λ1

m
m− 1

[
λ1F(u) + (

m− 1
m

λ∗)

m
m−1
]m−1

m

(65)

where the CDF, F(u), is defined as Equation (54). As defined in the case of one-dimensional velocity
distribution, the dimensionless entropy parameter G is also used here as:

G =
λ1umax

λ1umax + λ∗
(66)

Parameter G is found to be related to the ratio of mean and maximum velocity and a quadratic
relation is obtained by computing from observed mean and maximum velocity values as [13]:

u
umax

= Ψ(G) = 0.554G2 − 0.077G + 0.568 (67)
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Now, with the use of Equation (67), the general velocity distribution Equation (65) can be cast as:

u
umax

= 1− 1
G

(
1−

[
(1− G)

m
m−1 +

(
1− (1− G)

m
m−1
)

F(u)
]m−1

m
)

(68)

Equation (68) is the general 2-D velocity distribution equation in terms of parameter G and
maximum velocity.

6.4. Suspended Sediment Concentration

The sediment concentration distribution can also be derived using Tsallis entropy. For deriving
the one-dimensional sediment concentration distribution, the constraint equation is derived using the
mean concentration, such that g1(c) = c and limits of integration are a = c0 (maximum concentration at
the bed surface or flow depth D = 0) and b = 0 at the water surface, as [16]:

f (c) =
[

m− 1
m

(λ∗ + λ1c)
] 1

m−1
(69)

where λ∗ =
1

m−1 + λ0. Equation (69) is the least-biased entropy-based probability density function of
sediment concentration, which is fundamental to determining the sediment concentration distribution.
The dimensionless sediment concentration can then be obtained as:

c
c0

= 1− 1
N

(
1−

{
(1− N)

m
m−1 +

[
1− (1− N)

m
m−1
]

F(c)
}m−1

m
)

(70)

where N is a dimensionless parameter as a function of maximum concentration and the Lagrange
multipliers expressed as:

N =
λ1c0

λ1c0 + λ∗
(71)

By plotting the empirical observations of the mean over the maximum concentration values and
corresponding N values, the implicit function can be regressed as a quadratic polynomial as:

c
c0

= 0.176 + 0.5083N − 0.1561N2 (72)

with a coefficient of determination as 0.99. Thus, N can be used for deriving sediment concentration
distribution instead of solving nonlinear equations for λ1 and λ∗.

6.5. Sediment Discharge

The suspended sediment discharge can be computed simultaneously by integrating sediment
concentration and velocity over the cross-section where the velocity distribution and sediment
concentration can be obtained empirically as well as using the Tsallis entropy theory. That is, suspended
sediment discharge can be derived using different combinations of entropy-based and empirical
methods for velocity and sediment concentration distributions. Thus, the suspended sediment
discharge can be computed with the use of entropy in three ways: (1) velocity distribution by a standard
formula and concentration distribution by an entropy-based equation; (2) velocity distribution by
an entropy-based equation and concentration distribution by a standard formula; and (3) velocity
distribution and concentration distribution both by entropy-based equations. In the discussion that
follows, only the combination where both are derived using Tsallis entropy is considered.
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The Tsallis entropy-based velocity distribution [13], given by Equation (68) and sediment
concentration [16], given by Equation (70), are integrated from bottom of the channel to the water
surface to obtain the suspended sediment discharge, as:

qs = umaxc0

D∫
0

[
1− 1

N

(
1− ((1 + 0.5 ln N)F(c)− 0.5 ln N)2/3

)]
[
1− 1

G (1− ((1 + 0.5 ln G)F(u)− 0.5 ln G)2/3
]
dy

(73)

To get an explicit solution of Equation (73) is difficult; however, it can be simplified with the use
of mean values. The first term in the integration can be replaced by mean sediment concentration and
the second term can be replaced by mean velocity, such that Equation (73) reduces to

qs = Dumaxc0(0.554G2 − 0.777G + 0.568)(0.554N2 − 0.777N + 0.568) (74)

which provides a simple method to compute sediment discharge. Entropy parameters G and N are
fixed for each channel cross-section [17]. Thus, once the entropy parameters have been obtained
for some known cross-section, with observed maximum velocity and sediment concentration, the
sediment discharge can be obtained with ease.

6.6. Flow-Duration Curve

The flow-duration curve (FDC) is used for predicting the distribution of future flows, forecasting
of future recurrence frequencies, determining low-flow thresholds for defining droughts, generating
hydropower, constructing load-duration curves, determining power-duration curves and comparing
watersheds. For deriving an FDC, it is assumed that temporally-averaged discharge Q is a random
variable, varying from a minimum value Qmin to a maximum value Qmax, with a probability density
function (PDF) denoted as f (Q). The time interval for which the discharge is averaged depends on the
purpose of constructing an FDC but it is often taken as one day. Considering g1(x) = mean Q = Qmean,
the PDF of Q can be derived as [79]:

f (Q) =

[
m− 1

m

(
1

m− 1
− λ0 − λ1Q

)] 1
m−1

(75)

It is interesting to note that at Q = 0, f (Q) becomes {[(m− 1)/m][(1/(m− 1))− λ0]}1/(m−1).
Similar to velocity distribution, a dimensionless parameter M can be defined as:

M =
λ1Qmax

λ1Qmax − λ∗
(76)

It was found [79] that M is linearly related to the ratio between the mean flow and the maximum
flow, which, using regression, can be written as:

M = 2.246− 4.891
Q

Qmax
(77)

with the squared correlation coefficient of 0.9972. The FDC can be expressed as:

Q
Qmax

= 1− 1
M − (1− 1

M )
{
−( 1

λ∗
)

m
m−1 λ1(

m
m−1 )

1
m−1 F(Q) + 1

}m−1
m

= 1− 1
M

(
1−

{( m
m−1

) m
m−1 M

Qmax
[F(Q)− 1] + 1

}m−1
m
) (78)
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7. Conclusions

A survey of the literature shows that the Tsallis entropy theory has great potential to address
a wide range of problems in water engineering and in many other fields, as reviewed in this paper;
see also [80–85] for some more recent studies. As generalization of the Shannon entropy, the Tsallis
entropy can be applied in generalized equilibrium and statics in physics. The advantage of using
the theory is that it can combine statistical information with physical laws, permits deriving physical
relations as functions of time or space and derives probability distributions in terms of the specified
constraints. However, analysis using the Tsallis entropy theory becomes complicated when one or
two constraints are involved and it is more difficult to obtain the analytical expressions. Besides,
the m-statistic must be carefully chosen when applying the Tsallis entropy, since it sometimes
involves complex operations. Although entropy is a thermodynamic quantity, development of the
thermodynamic basis of entropy-based relations has not been accomplished yet. Until now, the
Tsallis entropy has been applied to determine frequency distributions, network evaluation, hydraulic
geometry, evaporation, velocity distribution, sediment concentration distribution, flow duration curves
and several other problems, as reviewed above. The outcomes are certainly encouraging. Until now,
as we have reviewed in this paper, the Tsallis entropy theory has been applied in water engineering
particularly with the principle of maximum entropy (POME). There is, however, also potential to
combine the Tsallis entropy with the minimum relative (cross) entropy, for the condition that prior
assumptions can be made. There is no question that the Tsallis entropy theory has a much greater
potential to study a wide spectrum of problems in water engineering. It is hoped that this review will
stimulate further interest in this fascinating field.
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Notation

B channel width
c sediment concentration
Cr constraint
D water depth
E evaporation
f (x) probability density function
G ground heat flux
H entropy
∆I(xi) gain in information
k = (1 − m)/m
m Tsallis entropy index
n Manning’s n
N natural number representative
pi probability
Q flow
qs sediment discharge
R net radiative
Sj entropic measure of redundancy
u velocity
x transverse direction
y vertical dimension
σ2 variance
λi Langrange multiplier
µ1 first moment
µ2 second moment
w surface soil moisture
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