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Abstract: Having reliable water monitoring networks is an essential component of water resources
and environmental management. A standardized process for the design of water monitoring
networks does not exist with the exception of the World Meteorological Organization (WMO) general
guidelines about the minimum network density. While one of the major challenges in the design of
optimal hydrometric networks has been establishing design objectives, information theory has been
successfully adopted to network design problems by providing measures of the information content
that can be deliverable from a station or a network. This review firstly summarizes the common
entropy terms that have been used in water monitoring network designs. Then, this paper deals
with the recent applications of the entropy concept for water monitoring network designs, which
are categorized into (1) precipitation; (2) streamflow and water level; (3) water quality; and (4) soil
moisture and groundwater networks. The integrated design method for multivariate monitoring
networks is also covered. Despite several issues, entropy theory has been well suited to water
monitoring network design. However, further work is still required to provide design standards and
guidelines for operational use.

Keywords: entropy; water monitoring; network design; hydrometric network; information theory;
entropy applications

1. Introduction

Water monitoring networks account for all aspects of the water-related measurement system
including precipitation, streamflow, water quality, groundwater, soil moisture, etc. [1–3]. Adequate
water monitoring networks and quality data from them comprise one of the first and primary steps
towards efficient water resource management. The basic principles of water monitoring network
design have simply been a number of monitoring stations, locations of the stations and data period
or sampling frequency [4,5]. Recent technological advances have allowed gradual transitions from
manual sampling to the automated observations, while some water quality parameters still require
field and/or lab analyses of water or other environmental samples. One may expect that the more
data we collect, the more water resource problems are solved efficiently. However, this is not always
true because irrelevant, inadequate or inefficient data in the wrong location or at the wrong time can
inhibit the quality of a dataset [1,6,7]. More seriously, the decline of water monitoring networks has
been a general trend due to financial limitations and changes of monitoring priority [8–10]. Therefore,
determining the adequate number of monitoring stations and their locations has become critical to
network design. However, a standardized methodology for a proper water monitoring network design
process has not been drawn yet due to the practical and socioeconomic complexity in diverse design
cases [1,11].
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The existing reviews have investigated the broad range of the water monitoring network
design methodologies, such as statistical analysis, spatial interpolation, application of information
theory, optimization techniques, physiographic analysis, user survey or expert recommendations
and combinations of multiple methods [4,6,10–15]. A prior comprehensive review by Mishra
and Coulibaly [10] reviewed evidence of declining hydrometric network density, highlighted the
importance of quality data from well-designed networks and considered a range of approaches by
which networks were designed. They also compared statistical, spatial interpolation, physiographic,
sampling-driven and entropy-based approaches to hydrometric network design. Mishra and
Coulibaly [10] were able to draw several conclusions about the importance of high quality hydrometric
data for water resource management that remain valid. They also concluded that one of the most
promising approaches for network design was the application of entropy methods highlighting
early studies using the principle of maximum entropy and information transfer. Therefore, this
review focuses on the recent studies that have applied information theory. Information theory was
initially developed by Shannon in 1948 [16] to measure the information content in a dataset and
has been applied to solve water resource problems. Recently, its applications extended to water
monitoring network design by adopting the concept that the entropy would be able to explain the
inherent information content in a monitoring station or a monitoring network. The basic objective has
naturally been to have the maximum amount of information. In other entropy approaches, stations
in a monitoring network would have the least sharable or common information, which is called
transinformation. To achieve this, the stations should be as independent from each other as possible.

The scope of this paper includes water monitoring network design and evaluation studies that (1)
applied entropy theory in the design process and (2) were published after the existing comprehensive
review by Mishra and Coulibaly in 2009 [10]. To the best of our knowledge, no review exists that has
focused on entropy applications to water monitoring network design previous to the 2009 study by
Mishra and Coulibaly [10]. However, there has been considerable progress in the application of entropy
theory to monitoring network design following the previous review, including new entropy-based
measures, optimization techniques and approaches to estimating information content at ungauged
stations. Therefore, a need was identified to consolidate knowledge and recent advances on the subject.
For publications prior to 2010, the reader is referred to Mishra and Coulibaly [10]. This review firstly
describes entropy concepts and various terms that are typically used in network design. The previous
studies are then summarized by categorizing the type of networks; i.e., precipitation, streamflow and
water level, soil moisture and groundwater and water quality monitoring networks. The integrated
design method for multiple types of networks is also reviewed. We define some terminology hereafter
to ensure a common understanding for the readers.

The term network evaluation is used when the network quality is assessed without changing any
station, while network design is a general term that suggests some changes in stations. Specifically,
network design includes network reduction, network expansion and network redesign. Network
reduction is applied where some monitoring stations should be removed from the network. On the
other hand, if financial flexibility meets the monitoring needs, further stations can be added to the
existing network, called network expansion. Network redesign refers to rearranging stations without
changing the number of stations. The term optimal network is to be used only if the network consists
of optimal locations of stations that are identified by the actual use of an optimization technique.

2. Definitions of Entropy Terms as Applied to Water Monitoring Networks

2.1. Entropy Concept

In thermodynamics, entropy has been understood as a measure of disorder or randomness of
a system. Shannon [16] extended the entropy concept to information theory by recognizing that
uncertainty in a system will be decreased when information is added to the system. Therefore, the
term entropy in information theory introduced by Shannon [16] in 1948 describes the amount of
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information content in a random variable. The likelihood of an event is typically given by probability
p. If a probability of an event is very high, such as 0.9999 or one, one will not be surprised, but can
certainly anticipate the outcome. On the other hand, any low probability event is highly uncertain,
so that a considerable amount of information can be given if this happens. Hence, the information
from an event that occurred is inversely related to its probability, 1/p [17]. Suppose that there are two
independent events A and B with their probabilities pA and pB, respectively. The probability of the
joint occurrence of the events A and B can be pA pB, and the information gained by the joint event
is then 1/(pA pB). However, the sum of information from each individual event is not equal to the
information from the joint event, that is:

1
pA pB

6= 1
pA

+
1
pB

(1)

The only transition that will make both sides of Equation (1) be equal is the logarithm [17–19],
which can be written as:

log
1

pA pB
= log

1
pA

+ log
1
pB

= − log pA − log pB (2)

Likewise, Tribus [20] showed that the uncertainty of an event with probability p is − log p, which
became a basis of the Shannon entropy, which is further described hereafter.

2.2. Marginal Entropy

When information is provided in a system, one can expect that the uncertainty of the system
would be reduced; therefore, the amount of information that was given to a system by knowing a
variable is called marginal entropy. If a random variable X is expected to have N outcomes with a
probability distribution P = {p1, p2, · · · , pN}, the (weighted) average information provided by the N
joint events is given by:

H(X) = −p1 log p1 − p2 log p2 − · · · − pN log pN = −
N

∑
i=1

pi log pi,
N

∑
i=1

pi = 1, pi ≥ 0 (3)

where H(X) is the marginal entropy of a random variable X. Any base of the logarithm can be used
in Equation (3), the choice depending on the problem given. In binary questions (i.e., yes or no
questions), the base of two should be used, and the corresponding unit of entropy is bit. Similarly,
unit trit for base 3, unit nat for base e and unit decibels or decit for base 10 are some example units of
information. Recall that this review covers entropy applications for hydrometric network design, and
the expected answer of the design process can be either “use/include/install the station” and “do not
use/include/install the station” for the network to be optimal. Therefore, the logarithm in Shannon
entropy calculation for hydrometric network design is most appropriate with a base of two. Then, the
H(X) value from Equation (3) will be understood as the information contents of a station X that can be
delivered if installed.

If a variable K has a known value, the probability of an event will be one, while all the other
alternative probabilities are zero. The information content in the variable K, H(K), will be zero from
Equation (3) representing that there is no uncertainty or a certain outcome. On the other hand, if a
variable U has a uniform distribution (i.e., probability of each event is equal, 1/N), the entropy of the
variable U will be:

H(U) = log N (4)

The value of Equation (4) is often called as maximum entropy or saturated entropy. These two
entropies, H(K) and H(U), define the minimum and maximum boundaries of entropy values, that is:

0 ≤ H(X) ≤ log N (5)
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2.3. Multivariate Joint Entropy

While the marginal entropy described in Section 2.2 explains a univariate entropy, one can imagine
how to calculate entropy values in a bivariate or a multivariate case. The total information contents
from N variables can be calculated by using joint probability instead of univariate probability in
Equation (3), given by:

H(X1, X2, · · · , XN) = −
n1

∑
i1=1

n2

∑
i2=1
· · ·

nN

∑
iN=1

p
(
x1,i1 , x2,i2 , · · · , xN,iN

)
log2 p

(
x1,i1 , x2,i2 , · · · , xN,iN

)
(6)

where H(X1, X2, · · · , XN) is the joint entropy of N variables, p
(
x1,i1 , x2,i2 , · · · , xN,iN

)
is the joint

probability of N variables and n1, n2, · · · , nN are the numbers of class intervals of corresponding
variable distributions [21]. If all variables are stochastically independent, the joint entropy from
Equation (6) will be equal to the sum of marginal entropies, which becomes the maximum value of
joint entropy. Therefore, the joint entropy is bounded by [21]:

0 ≤ H(X1, X2, · · · , XN) ≤
N

∑
i=1

H(Xi) ≤ N log2 N (7)

2.4. Conditional Entropy

Conditional entropy explains a measure of information content of one variable that is not
deliverable by other variables. If two random variables, A and B, are correlated, providing information
from one variable may clear some uncertainty that the other variable has. In the case of no correlation
between variables, the conditional entropy is equal to marginal entropy. That is:

H(A|B) = H(A, B)− H(B) ≤ H(A) (8)

where H(A|B) is conditional entropy of the variable A when the information contents of the variable
B is given. One can rewrite Equation (8) as:

H(A, B) = H(A|B) + H(B) = H(B|A) + H(A) (9)

Furthermore, conditional entropy can be also presented mathematically using joint and
conditional probabilities and Bayes theorem as:

H(A|B) = −
NA

∑
i=1

NB

∑
j=1

p
(
ai, bj

)
log p

(
ai
∣∣bj

)
= −

NA

∑
i=1

NB

∑
j=1

p
(
ai, bj

)
log

p
(
ai, bj

)
p
(
bj
) (10)

2.5. Transinformation

The two variables, A and B, described in Section 2.4 will have some common or shared information,
which is called transinformation or mutual information, because they are correlated.

T(A, B) = H(A)− H(A|B) = H(B)− H(B|A) = T(B, A) (11)

where T(A, B) is transinformation between the variables A and B. The larger the transinformation is, the
higher those variables depend on each other. In other words, the transinformation indicates how much
information content is transferrable from other variables. Similar to Equation (10), transinformation
shall be written as [19]:

T(A, B) =
NA

∑
i=1

NB

∑
j=1

p
(
ai, bj

)
log

p
(
ai
∣∣bj

)
p(ai)

=
NA

∑
i=1

NB

∑
j=1

p
(
ai, bj

)
log

p
(
ai, bj

)
p(ai)p

(
bj
) (12)
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Transinformation is typically used for measuring mutual information between two variables or
two groups of variables as the generalized form for multivariate transinformation is given as:

T[(X1, X2, · · · , Xk); (Xk+1, Xk+2, · · · , XN)]

= H(X1, X2, · · · , Xk)− H[(X1, X2, · · · , Xk)|(Xk+1, Xk+2, · · · , XN)]
(13)

2.6. Total Correlation

While transinformation and mutual information have the same definition, total correlation is
not equivalent to them as the total correlation is a simple estimate that defines the amount of shared
information typically of multiple variables. Simply, the total correlation is defined by the difference
between the sum of marginal entropy of N variables and their joint entropy [22,23], which is given as:

C(X1, X2, · · · , XN) =
N

∑
i=1

H(Xi)− H(X1, X2, · · · , XN) (14)

If N = 2 in Equation (14), the total correlation will be equal to the transinformation or mutual
information. However, the transinformation is only meaningful to two random variables as shown
in Equations (11) to (13); therefore, the total correlation and the transinformation values would be
different if N > 2.

2.7. Other Entropy Terms

The entropy terms described above (i.e., marginal entropy, joint entropy, conditional entropy,
transinformation and total correlation) are the basic measures that have been typically used in entropy
applications to water monitoring network design. While many studies developed specific approaches
and applied for case studies using the basic entropy terms, some have extended the terms beyond them
by deriving from or combining the basic measures. The detailed descriptions of the extended entropy
terms are not included in this review, but briefly explained when needed in Section 3. Interested
readers may refer to the original references.

3. Applications of Entropy to Water Monitoring Network Design

This section summarizes the recent applications of entropy theory to design water monitoring
networks. The review was categorized by the types of networks, such as precipitation, streamflow or
water level, soil moisture or groundwater and water quality networks. Then later, a hybrid design
method for multivariate water monitoring networks was discussed. Table 1 presents brief summaries
including network types, methods and key findings of the selected research articles that applied
entropy theory for designing the water monitoring network and were published in 2010 or after to
cover the most recent contributions since the existing review [10].
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Table 1. Summary of significant contributions to water monitoring network design using entropy (author alphabetical order).

Authors/Year Network Types Study Areas Methods/Entropy Measures Key Findings

Alameddine et al.,
2013 [24] Water quality Neuse River Estuary, NC,

USA

-Total system entropy
-Standard violation entropy
-Multiple attribute decision
making process
-Analytical hierarchical process

-Networks designed using total system entropy and
violation entropy of dissolved oxygen were similar
-When measured water quality parameters have a low
probability of violating water quality standards, their
violation entropy is less informative

Alfonso et al.,
2010 [25] Water level Pijnacker Region, The

Netherlands
-Directional information
transfer (DIT)

-Introduced total correlation for determining multivariate
dependence in water monitoring network design
-Information content and redundancy is dependent on the
DIT between monitoring stations (DITXY or DITYX)

Alfonso et al.,
2010 [26] Water level Pijnacker Region, The

Netherlands

-Max(Joint Entropy) min(Total
Correlation)
-Non-dominated Sorting
Genetic Algorithm II (NSGA-II)

-Total correlation should be combined with joint entropy to
get most information out of monitoring network

Alfonso et al.,
2013 [27] Streamflow Magdalena River, Colombia

-Max(Joint Entropy) min(Total
Correlation)
-Rank-based iterative approach

-Rank method is useful in finding extremes on Pareto front
-When iteratively selecting stations, the information content
of the network is not guaranteed to be maximum if the
network contains the station with the most information

Alfonso et al.,
2014 [28] Water level North Sea, The Netherlands

-Max(Joint Entropy) min(Total
Correlation)
-Ensemble entropy
-NSGA-II

-By creating an ensemble of solutions through varying the
bin size of the initial Pareto optimal solution set, the authors
highlight the uncertainty related to choosing bin size

Boroumand and
Rajaee, 2017 [29] Water quality San Francisco Bay, CA, USA -Transinformation-distance

(T-D) curve

-Using T-D curve they were able to reduce the network from
37 to 21 monitoring stations.
-New network covered entire study area without having
redundant data

Brunsell, 2010
[30] Precipitation Continental United States

-Relative entropy
-Wavelet multi-resolution
analysis

-The temporal scaling regions identified (1) synoptic,
(2) monthly to annual, (3) interannual patterns
-Little correlation between relative entropy and annual
precipitation except for breakpoint at 95◦ W Lat

Fahle et al., 2015
[31]

Water
level/Groundwater

level
Spreewald region, Germany

-MIMR, max(Joint Entropy +
Transinformation − Total
Correlation)
-Subsets of time series data

-Found using subsets of the available time series data could
better identify important stations
-Showed water levels across network react similarly during
high precipitation and are more unique during dry periods
-Consequently method can allow for design of network
which focuses on floods or droughts
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Table 1. Cont.

Authors/Year Network Types Study Areas Methods/Entropy Measures Key Findings

Hosseini and
Kerachian, 2017

[32]
Groundwater level Dehgolan plain, Iran

-Marginal entropy
-Data fusion of spatiotemporal
kriging and ANN model
-Value of information (VOI)

-Network reduction from 52 to 42 (35 high priority and 7
low priority) stations while standard deviation of average
estimation error variance stayed the same
-Found sampling frequency of high priority stations should
be every 20 days and low priority should be every 32, based
on analysis of stations selected using VOI

Hosseini and
Kerachian, 2017

[33]
Groundwater level Dehgolan plain, Iran

-Bayesian maximum entropy
(BME)
-Multi-criteria decision making
based on ordered weighted
averaging

-Network reduction from 52 to 33 stations while standard
deviation of average estimation error variance stayed the
same
-Sampling frequency increased from 4 weeks to 5 weeks

Keum and
Coulibaly, 2017

[34]
Precipitation/Streamflow

Columbia River basin, BC,
Canada. Southern Ontario,

Canada

-Dual Entropy and
Multiobjective Optimization
(DEMO) to max(Joint Entropy)
and min(Total Correlation)

-Found that networks obtain significant amount of
information from 5 to 10 years of data periods, and total
correlation tends to be stabilized within 5 years by applying
daily time series
-Recommended minimum 10 years data periods for
designing precipitation or streamflow networks using daily
time series

Keum and
Coulibaly, 2017

[35]
Integrated Southern Ontario, Canada

-DEMO to max(Joint Entropy),
min(Total Correlation), and
max(Conditional Entropy)
-Sturge, Scott and rounding
binning methods

-Precipitation and streamflow networks were designed
simultaneously.
-Binning methods were compared and concluded that the
optimal networks can be altered due to the binning methods

Kornelsen and
Coulibaly, 2015

[36]
Soil Moisture Great Lakes Basin,

Canada-USA

-DEMO to Max(Joint Entropy)
min(Total Correlation)
-SMOS satellite data

-Optimum networks were different for ascending and
descending overpasses
-Combining overpass data resulted in complimentary
spatial distribution of stations

Leach et al., 2015
[37] Streamflow

Columbia River basin, BC,
Canada. Southern Ontario,

Canada

-DEMO to Max(Joint Entropy)
min(Total Correlation)
-Streamflow signatures
-Indicators of hydrologic
alteration (IHA)

-Found that including streamflow signatures as design
objective increases network coverage in headwater areas.
-Found including IHAs increases network coverage in
downstream and urban areas.

Leach et al., 2016
[38] Groundwater level Southern Ontario, Canada

-DEMO to Max(Joint Entropy)
min(Total Correlation)
-Annual recharge

-Found that considering spatial distribution of annual
recharge can improve network coverage
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Table 1. Cont.

Authors/Year Network Types Study Areas Methods/Entropy Measures Key Findings

Lee, 2013 [39] Water quality Hagye Basin, South Korea
-Marginal entropy analogous
cost function
-Genetic algorithm

-Developed computationally efficient way to design a
monitoring network in an ungauged basin

Lee et al., 2014
[40] Water quality Sanganmi Basin, South

Korea
-Multivariate transinformation
-Genetic algorithm

-Developed method based on maximizing information
content to design a water quality monitoring network in a
sewer system

Li et al., 2012 [41] Streamflow/Water level Brazos River basin, USA.
Pijnacker, The Netherlands

-MIMR, max(Joint Entropy +
Transinformation − Total
Correlation)

-Developed maximum information minimum redundancy
method (MIMR)
-Found it to better at locating high information content
stations for a monitoring network

Mahjouri and
Kerachian, 2011

[42]
Water quality Jajrood River, Iran

-Information transfer index (ITI)
distance and time curves
-Micro genetic algorithm (MGA)

-The MGA was used to find the optimal combination of
monitoring stations which minimize the temporal and
spatial ITI
-Found that the sampling frequency and number of stations
could be increased in the monitoring network

Mahmoudi-Meimand
et al., 2016 [43] Precipitation Karkheh, Iran

-Transinformation entropy
-Kriging error variance
-Weighted cost function to select
from Monte Carlo generated
networks

-Consideration of spatial analysis error and
transinformation entropy improved network design

Masoumi and
Kerachian, 2010

[44]
Groundwater quality Tehran, Iran

-Transinformation-distance
(T-D) curve
-Transinformation-time (T-T)
curve
-C-mean clustering
-Hybrid genetic algorithm
(HGA)

-Developed different T-D curves based on homogeneous
clusters of existing monitoring stations
-Used HGA to find optimal network with maximum spatial
coverage and minimum transinformation
-Showed that sampling frequency could be optimized in the
same way

Memarzadeh et
al., 2013 [45] Water quality Karoon River, Iran

-Information transfer index (ITI)
distance curve
-Homogenous zone clustering
-Dynamic factor analysis (DFA)

-Increased monitoring network without increasing
redundant information
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Table 1. Cont.

Authors/Year Network Types Study Areas Methods/Entropy Measures Key Findings

Mishra and
Coulibaly, 2010

[46]
Streamflow Selected basins across

Canada

-Transinformation index
-Marginal, joint, and
transinformation

-Used information theory to highlight critical areas across
Canada in need of monitoring
-Found that several watersheds are information deficient
and would benefit from increased monitoring

Mishra and
Coulibaly, 2014

[47]
Streamflow Selected basins across

Canada

-Transinformation index
-Seasonal streamflow
information (SSI)

-Evaluated and highlighted the effects of seasonal climate
on streamflow network design

Mondal and
Singh, 2012 [48] Groundwater level Kodaganar River basin,

India

-Marginal entropy, joint entropy,
transinformation
-Information transfer index (ITI)

-Identified high priority monitoring stations using marginal
entropy
-ITI was used to evaluate monitoring network, showed that
it could be reduced

Samuel et al.,
2013 [49] Streamflow St. John and St. Lawrence

River basins, Canada

-Combined
Regionalization-DEMO
-Max(Joint Entropy) min(Total
Correlation)

-Proposed combined regionalization dual entropy
multi-objective optimization approach to design of
minimum optimal network that meets World
Meteorological Organization (WMO) guidelines
-Found that the location of new monitoring stations added
to a network depends on the current network density

Santos et al., 2013
[50] Precipitation Portugal

-ANN sensitivity analysis
-Mutual Information criteria
-K-means with Euclidean
distance

-Compared three clustering methods to reduce station
density
-Best method was case dependent
-All subset networks reproduced spatial precipitation
pattern

Stosic et al., 2017
[51] Streamflow Brazos River, TX, USA -Joint permutation entropy

-Used joint permutation entropy to account for ordering of
time series data to better account for station information
-Found that the most efficient measurement window was
seven days when compared to daily and monthly

Su and You, 2014
[52] Precipitation Shihmen Reservoir Taiwan

-Developed 2D
transinformation-distance (T-D)
model
-T-D model used to interpolate
network information

-Network designed by maximizing additional information
provided by station given regionalized transinformation
-Temporal scale has significant influence on information
delivery
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Table 1. Cont.

Authors/Year Network Types Study Areas Methods/Entropy Measures Key Findings

Uddameri and
Andruss, 2014

[53]
Groundwater level

Victoria County
Groundwater Conservation

District, TX, USA

-Marginal entropy
-Monitoring priority index
(MPI)

-Compared MPI found using kriging to MPI found using
marginal entropy
-Showed entropy derived MPI to be more conservative
measure

Wei et al., 2014
[54] Precipitation Taiwan University

Experimental Forest, Taiwan

-Joint Entropy of hourly,
monthly, dry/wet months and
annual rainfall at 1, 3, 5 km
grids

-Station priority changes at different spatiotemporal scales
-Temporal scales have more significant changes on joint
entropy values than spatial scales
-Long time and short spatial scales require fewer stations for
stable joint entropy

Werstuck and
Coulibaly, 2016

[55]
Streamflow Ottawa River Basin, Canada

-Transinformation index
-DEMO to Max(Joint Entropy)
min(Total
Correlation)-Streamflow
signatures
-Indicators of hydrologic
alteration (IHA)

-Compared regionalized data from McMaster
University-Hydrologiska Byråns Vattenbalansavdelnin
(MAC-HBV) and Inverse Distance Weighting—Drainage
Area Ratio (IDW-DAR) and found IDW-DAR to be more
adequate for generating synthetic time series for potential
monitoring stations
-Critical areas highlighted by TI index method were the
same areas where additional stations were added using
DEMO method

Werstuck and
Coulibaly, 2017

[56]
Streamflow Ottawa River Basin, Canada

-Transinformation index
-DEMO to max(Joint Entropy)
min(Total Correlation)

-Transinformation index analysis is not significantly
affected by scaling
-Scaling effects are noticeable when DEMO method was
applied

Xu et al., 2015
[57] Precipitation Xiangjiang River Basin,

China

-Mutual Information (MI) of
rain gauges
-Designed network by
min(Σ[MI]), min(bias),
max(NSE)
-Resampled rainfall used in
Xinanjiang and SWAT models

-Lumped model performance was stable with different
Pareto optimal networks
-Distributed model performance improves with number of
stations

Yakirevich et al.,
2013 [58] Groundwater quality OPE3 research site,

Maryland, USA

-Principle of minimum cross
entropy (POMCE)
-Hydrus-3D

-Using POMCE with two variants of Hydrus-3D, additional
monitoring stations were added where the difference
between the models was greatest
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3.1. Precipitation Networks

The design of a representative precipitation monitoring network is an important and still
challenging task for which an entropy approach is well suited. High quality precipitation information is
necessary for streamflow and flood forecasting, surface water management, agricultural management,
climate process understanding and many other applications. However, precipitation is well known to
be highly variable in both space and time [59] and often statistically represented by highly skewed
distributions [60] making the application of parametric analysis methods difficult. These challenges
also extend to entropy-based approaches for precipitation monitoring. For example, the marginal
entropy has been found to be well correlated with total precipitation in northern Brazil because the
probability distribution in regions with higher rainfall tended to be more uniform and less skewed [61].
In contrast, Mishra et al. [59] found that the marginal disorder index (MDI), which is the ratio of
observed entropy to the maximum possible entropy at a given site, was inversely related to mean
annual rainfall in the U.S. state of Texas, where MDI was found to vary seasonally. Brunsell [30]
studied the entropy from monitoring stations across the United States where little correlation was
found between precipitation and marginal entropy with the exception of a breakpoint in entropy at
−95◦ longitude corresponding to high temporal variability precipitation patterns. It has also been
noted by several studies that the temporal sampling of precipitation is an important consideration
for calculating entropy and for designing precipitation networks [54,59]. At finer timescales (hourly
to daily), precipitation is highly variable resulting in higher overall entropy, whereas longer time
periods (monthly to annual) have less variability resulting in lower marginal entropy [30,52,59].
The dependence on spatial and temporal scales has also been identified in a network design application.
Wei et al. [54] prioritized potential stations in Central Taiwan to maximize the joint entropy of the
network at hourly, monthly and annual temporal scales, as well as 1-, 3- and 5-km spatial scales.
They found that priority stations changed with both spatial and temporal scales, where changes
in temporal scales resulted in more significant changes in station priority than spatial-rescaling.
The decrease in entropy at longer timescales also had an impact on station density where fewer
stations were required to reach a stable joint entropy value for longer time scales [54]. These findings
demonstrate the important first consideration of network objectives when determining the spatial and
temporal sampling used to calculate entropy. However, the research on this topic is still limited, and
more work is needed to provide robust guidance on sampling strategies.

Several approaches have been proposed to design or redesign a precipitation monitoring network
using one or more entropic measures. Many of these approaches are initialized by building a network
around a central station usually selected as the station with the highest marginal entropy [43,62–64].
In urban Rome, Ridolfi et al. [62] selected stations for the precipitation network by sequentially finding
the next station that minimized the conditional entropy of the network and adding that station to the
network. A similar approach was taken by Yeh et al. [63] to expand a precipitation network in Taiwan.
Hourly rainfall data were normalized with a Box-Cox transform and kriging used to interpolate rainfall
to candidate grid cells. The joint entropy of the network was calculated using an analytic equation
for joint entropy valid for normal data [65], and stations were added sequentially that had the lowest
conditional entropy with the rest of the network. The final number of stations needed by the network
was accepted when 95% of the network information was captured [63]. Awadallah [64] applied
multiple entropy measures sequentially to add stations to a precipitation network. The first new
stations were selected as those with the highest entropy. The second station was chosen to minimize
the mutual information and the third as the station that maximized conditional entropy.

The aforementioned approaches all sequentially add single stations to a monitoring network
based on a single criterion. Mahmoudi-Meimand et al. [43] presented a methodology to add stations
to a network based on a multi-variate cost function. Precipitation data were spatially interpolated
from existing stations using the kriging approach where the kriging error associated with the rainfall
estimation is calculated as the kriging error variance. Their method selected the station that maximized
transinformation entropy and minimized error variance using a weighted average of both measures as
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an objective [43]. This approach balanced the information content in the network with the errors in the
interpolation method. Xu et al. [57] used a multi-objective approach to simultaneously select a subset
of stations that minimized the sum of pairwise mutual information, minimized bias and maximized
Nash–Sutcliffe efficiency. Solutions were generated via Monte Carlo sampling, and network solutions
falling along the Pareto front were found as compromise solutions. Coulibaly and Keum [66] and
Samuel and Coulibaly [67] also used a multi-objective approach to add stations to snow monitoring
networks in Canada. Their approach used a genetic algorithm to find networks that maximized the
joint entropy and minimized the total correlation of the network to form a Pareto front of optimal
network designs, some of which also included network cost in the optimization [35,67].

A challenge to an entropy-based approach to adding stations to a precipitation network is the
requirement to have data available for candidate points. For precipitation, this can be challenging
because data at shorter time scales in particular are well known to be non-normal. Most studies use
the kriging approach for interpolation [43,63,64] and address the need for normally distributed data
using a Box-Cox transform. Samuel and Coulibaly [67] addressed the interpolation problem by using
the external data from the Snow Data Assimilation System (SNODAS) for candidate stations. Su and
You [52] presented a unique approach to adding stations that maximized the information content of the
network. In most literature cases, entropic measures at ungauged sites are determined by interpolating
observations of precipitation across a watershed. Su and You [52] calculated the transinformation
between neighbouring stations to develop a 2D transinformation-distance relationship. In contrast
to transferring data to ungauged stations, this approach transferred transinformation to ungauged
stations and selected a site with the maximum transinformation. This approach should be further
tested and contrasted with the data transfer approach.

As previously stated, precipitation data are of critical importance for a variety of applications.
Despite this, few studies have explored the impact of precipitation networks designed with an entropy
approach for actual water resource applications. Applications found in the literature have taken the
reasonable approach of using entropy to reduce network density for comparison to a network that
included all stations. In Portugal, Santos et al. [50] compared artificial neural networks, K-means
clustering and mutual information (MI) criteria for reducing the density of a precipitation network for
drought monitoring at different time scales. They found the best performing reduction method was
case dependent depending on the region and time scale applied, but noted that all methods performed
well. They also found that all subset networks could reliably reproduce the spatial precipitation
pattern. Xu et al. [57] used the multi-objective approach previously described to select a subset of
precipitation stations from a dense network in the Xiangjiang River Basin in China. Rainfall from the
subset networks was used to force the lumped Xinanjiang hydrological model [68] and the distributed
SWAT hydrological model [69]. The author’s found that lumped model performance became stable
with a subset of 20 to 25 stations, whereas the distributed model's performance continued to increase
as more stations were added to the network [57]. These analyses are important to demonstrate
the utility of precipitation networks and the advantages of entropy-based approaches in designing
precipitation networks.

3.2. Streamflow and Water Level Networks

Water quantity monitoring, such as streamflow rates and water level, is one of the essential
tasks for water management to prevent damage to nature and human beings from flooding.
A successful floodplain management or flood forecasting and warning system can be feasible through
expert forecasters who implement well-calibrated models and reliable tools using quality data [70].
The design of water quantity monitoring network has been well implemented because of not only the
good performance of entropy-based methods, but also the unaffectedness by the zero effect, which
is caused by discontinuity of probability density function due to zero values in data, except for the
ephemeral or intermittent streams. To deal with the zero effect in entropy calculations, Chapman [71]
and Gong et al. [60] separated the marginal entropy Equation (3) to nonzero terms and zero values,
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which are certain. While Gong et al. [60] summarized the possible issues in entropy calculations from
hydrologic data as effects due to zero values, histogram binning including skewness consideration and
measurement errors, some studies noticed that the length and the location of time window also affect
entropy calculations and the corresponding network design. Fahle et al. [31] observed the temporal
variability of station rankings by shifting the time window for the design of water level network of a
ditch system in Germany. Mishra and Coulibaly [47] also found the dependency of the seasonality on
the efficiency of hydrometric networks. Stosic et al. [51] found an inverse relationship between the
network density and sampling time interval as the larger number of monitoring stations is required if
the time interval is shorter and vice versa. Keum and Coulibaly [34] analyzed the temporal changes of
entropy measures and optimal networks by applying daily time series for streamflow network design.
They found that the information gain of a monitoring network is not significant when the length of
time series is longer than 10 years, and the total correlation tends to stabilize within five years of data.
The optimal networks using the data lengths of 5, 10, 15 and 20 years also show that there are no
significant differences in the results from 10 years or longer while the optimal network using five
years of data was evidently different from others. Werstuck and Coulibaly [56] analyzed scaling effects
by considering two study areas. Specifically, one study area is a small watershed, which is a part of
another study area. After applying the transinformation analysis and the multi-objective optimization,
they concluded that the optimal networks tend to be affected by scaling while transinformation index
does not.

Mishra and Coulibaly [46] evaluated the effects of the class intervals and the infilling missing
data by applying the linear regression method to daily time series and concluded that the station
rankings based on the transinformation values were not significantly changed. Li et al. [41] also
investigated the changes of station rankings based on the maximum information minimum redundancy
(MIMR) approach and obtained the similar conclusion. However, Fahle et al. [31] and Keum and
Coulibaly [35] drew the opposite opinion that station rankings can be affected by the binning method
that defines the class intervals. The conflict comes from the selection of the binning methods compared.
The former group applied different parameters to a single binning method, the mathematical floor
function. However, the latter group compared other binning methods with the floor function.
Considering that Alfonso et al. [25] found that the design solutions were not common in some cases
from the sensitivity analysis of the parameter of the mathematical floor function, it is not recommended
to use a specific binning method without any consideration.

As discussed in the review of precipitation networks in Section 3.1, network redesign and network
expansion require data at candidate locations, which are ungauged. Alfonso et al. [27] applied a
one-dimensional hydrodynamic model to generate the discharge time series. The model estimated
discharge at each segment, which divides rivers with approximately 200 m increments longitudinally.
The use of hydrodynamic model enabled to determine the critical monitoring locations in the main
stream and its tributaries. On the other hand, Samuel et al. [49] combined regionalization techniques
with entropy calculation in order to estimate the discharge at candidate locations. They compared the
performance of various regionalization methods including not only a conceptual hydrologic model, but
also spatial proximity, physical similarity and their combinations with drainage area ratio. Based on the
performance statistics by applying multiple basins, inverse distance weighting coupled with drainage
area ratio performed the best, and this conclusion has been adopted in several studies [34,35,37,55].

Some studies have extended the entropy applications for the streamflow monitoring network
design. Stosic et al. [51] proposed the concept of permutation entropy, which is able to differentiate
based on the order of sequential observations, as well as the histogram frequency in basic Shannon
entropy measures. Even though histograms from two different observations are the same, the
permutation entropy value tends to be higher if there are more variations between time steps. However,
the network design studies using the permutation entropy are still limited. On the other hand,
Leach et al. [37] applied additional features to the network design. While the common objectives in
water monitoring network design using an optimization technique are to maximize the information
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and to minimize the redundancy in the network, they additionally considered the physical properties
of watersheds, such as the streamflow signatures [72,73] and the indicators of hydrologic alterations
(IHAs) [74,75]. After the comparison of the optimal streamflow monitoring networks with and without
considerations of the streamflow signatures and IHAs, it was concluded that inclusion of basin physical
characteristics yielded a better coverage of the selected locations of the optimal networks.

3.3. Soil Moisture and Groundwater Networks

Soil moisture is a critical water variable as the interface between the atmosphere and subsurface.
Unfortunately, the monitoring of soil moisture is very sparse compared to its spatial variability.
To design an optimum network for monitoring soil moisture in the Great Lakes Basin, Kornelsen and
Coulibaly [36] proposed using data from the Soil Moisture and Ocean Salinity (SMOS) satellite [76] to
design a soil moisture monitoring network using the DEMO algorithm of Samuel et al. [49]. Grid cells
were selected to add monitoring stations that optimally maximized joint entropy while minimizing
total correlation using only the satellite data. The ascending and descending overpasses were found to
contain different information, and the spatial distribution of a network designed with both overpasses
was found to contain complimentary features from both datasets [36].

Groundwater monitoring allows for a better understanding of the hydrogeology in an area. This is
achieved through groundwater quality and quantity monitoring. Groundwater quality monitoring
is used to detect contaminant plumes or for long-term monitoring (LTM) of post remediation effects,
and groundwater quantity monitoring is used to determine available water for drinking, irrigation
and industry. However, monitoring groundwater is inherently difficult due to physical barriers
between observers and the water. Through the understanding of subsurface flow physics and with
flow and contaminant transport models such as MODFLOW, MODPATH and MT3D [77–79], we
can simulate the behaviour of groundwater. Unfortunately, our simulations are not always accurate,
and the models require real-world observations to be calibrated and validated. Due to constraints
such as accessibility and financial cost, it is not feasible to monitor at every possible location in
an area of interest. It is instead ideal for an optimal monitoring network to be designed to allow
for the best placement of monitoring stations and to determine the ideal measurement frequencies.
The merit of using information theory entropy has been shown in several cases of groundwater
network design [31–33,38,44,48,53,58].

Various methods that utilize information theory entropy have been developed for use in designing
optimal groundwater monitoring networks. These include the use of entropy measures in both single
and multi-objective optimization problems and are used in network reduction [32,33], expansion [38,58]
and redesign [44], as well as have been used to highlight vulnerable areas in an area that should be
monitored [53]. In identifying vulnerable areas in the Victoria County Groundwater Conservation
District (VCGCD) in Texas, USA, Uddameri and Andruss [53] developed a monitoring priority index
(MPI) based on a weighted stakeholder preference to highlight the areas of interest. They compared
kriging standard deviation and marginal entropy as metrics to characterize groundwater variability
and found entropy to be the more conservative metric.

In areas where there is excessive monitoring, Mondal and Singh [48] showed the information
transfer index (ITI), the quotient of joint entropy and transinformation, could be used to evaluate the
existing monitoring network. Through this evaluation, redundant monitoring stations (wells) could
be identified and removed from the groundwater monitoring network. It may also be the case that
the existing groundwater monitoring network is not adequate and additional monitoring stations
are needed. Yakirevich et al. [58] developed a method that utilizes minimum cross entropy (MCE) to
sequentially add monitoring stations to a network. MCE was used as a metric to quantify the difference
between two variants of a Hydrus-3D model [80], and the monitoring stations were added to the
network where the difference between models was largest. A multi-objective approach for adding
monitoring stations to a groundwater monitoring network was applied by Leach et al. [38], which
utilized two entropy measures, total correlation and joint entropy and a metric used to quantify the
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spatial distribution of annual recharge; the results of which were used to develop maps that highlight
areas in which additional monitoring stations should be added. The majority of network design
experiments look at the entire available time series when calculating entropy measures; however,
Fahle et al. [31] showed that using a combination of MIMR and subsets of the data series could be
more ideal. The subsets were used to represent the intra-annual variability of groundwater levels.
This method identified locations which were consistently important through each subset and found
that monitoring stations showed similarities during wet periods and uniqueness during dry periods.
Fahle et al. [31] also suggest that a consequence of using subsets of data allows for the design of a
network, which can be focused on floods or droughts.

One issue that can arise with entropy-based methods is the need for lengthy data series to produce
accurate measures of entropy. Unfortunately, the area of interest for new monitoring stations will not
have available data for all possible locations. To work around this limitation transinformation-distance
(T-D) curves have been applied in the design of optimal groundwater monitoring networks [44,81].
In these studies, T-D curves were developed for sub areas within the desired study area based in
different clustering methods. Additionally, Masoumi and Kerachian [44] showed that this method
could be applied temporally as transinformation-time curves which could then be used to optimize the
temporal sampling frequency of the stations. It should be noted that both previously mentioned studies
were applied in the same study area using slightly different methods for clustering monitoring stations,
and both produced different groundwater monitoring networks that could be considered optimal.
This highlights an issue with optimal monitoring network design in that it can be subjective and does
not have a singular solution. A comparison of Hosseini and Kerachian [32,33] also illustrates this
issue, where through the use of different entropy measures, marginal entropy and Bayesian maximum
entropy and optimization techniques, one experiment found the optimal monitoring network included
42 monitoring stations while the other only included 33 stations.

3.4. Water Quality Networks

The importance of water quality monitoring networks is their ability to assist in identifying those
parameters that exceed water quality standards. Several water quality monitoring strategies, including
two methods that utilized entropy measures [42,45], were recently reviewed by Behmel et al. [15].
This review found that identifying a single approach to water quality monitoring network design
would be virtually impossible. Despite this, various applications of the transinformation-distance
curve methods have shown promise in the optimal redesign and reduction of water quality monitoring
networks [29,42,45]. Lee [39] found that by maximizing the multivariate transinformation between
chosen and unchosen stations, using the storm water management model to simulate the total
suspended solids and a GA for optimization, an optimal water quality network could be designed
for a sewer system. Banik et al. [82] compared information theory, detection time and reliability
measures for the design of a sewer system monitoring network through both single and multi-objective
optimization approaches. It was shown that for a small monitoring network, the methods had similar
performances, while the single objective detection time-based method had slightly better performance
when the number of monitoring station is larger. Alameddine et al. [24] used exceedance probabilities
to determine violation entropy of dissolved oxygen and chlorophyll-a in the Neuse River estuary.
Along with violation entropy, the total system entropy was used as a measure to identify areas of
importance of monitoring. A multi-objective optimization scheme based on expert assigned weights
was used to develop a compromise solution from the three entropy measures. Ultimately, the method
allowed for the identification of high uncertainty areas, which would benefit from future water
quality monitoring. Data availability is an issue when using entropy methods, particularly when
attempting to use them in the design of a monitoring network in an ungauged basin. To address this,
Lee et al. [40] developed a method that uses a measure analogous to marginal entropy. This method
uses characteristics of the basin such as the length and number of reaches in the river network as part
of the cost function, which is then optimized using a combined GA and filtering algorithm. This was
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shown to be a computationally-efficient method for use in optimal network design of an ungauged
river basin.

3.5. Integrated Network Design

To the best of our knowledge, almost all of the previous studies about water monitoring network
design have focused on a specific network type (i.e., considering a single hydrologic variable in each
study) as reviewed in the previous sections. However, considering that hydrologic processes are
interconnected in a water cycle, there are causes and effects between hydrologic variables. For instance,
if a noticeable amount of precipitation occurs, streamflow or groundwater level is likely increased;
hence, the information content of a variable may affect that of other variables. Keum and Coulibaly [35]
developed a multivariate network design method by taking conditional entropy as the measure of
information that is independent to a given variable. In their study, the method designed precipitation
and streamflow monitoring networks simultaneously. Specifically, the method followed the traditional
multi-objective approach that maximizes joint entropy and minimizes total correlation, but added
another objective that maximizes conditional entropy of streamflow network given precipitation
network to mimic the direction of the water cycle as streamflow may fluctuate due to precipitation.
After comparing the integrated design with the single-variable design, their results showed that the
effectiveness of network integration mostly came from reducing the number of additional precipitation
stations. It was also found that the integrated network design approach allows adding a precipitation
station at a location that will benefit the stream gauge network.

4. Conclusions and Recommendations

It is evident that successful water management cannot be achieved without proper water
monitoring networks. Although there has been much progress in network design methods and
applications, a standardized design methodology has not yet emerged. After the pioneering invention
of information theory in the 1940s, entropy concepts have been applied in various applications with
recent efforts on network design problems. The unique benefit of this approach is that a water
monitoring network can be evaluated or designed based on the information the network monitors,
which is in contrast to the set station densities proposed by WMO guidelines; the advantage of the
former being that a network could be better tailored to specific applications or optimized to provide
the most gain at densities lower than those suggested in WMO guidelines. In addition, when combined
with multi-objective optimization techniques, users’ specific criteria can be included in the optimal
network design process.

This manuscript provides a comprehensive review of the recent research attainments and their
applications in entropy-based water monitoring network design. The literature has demonstrated the
use of various information theory measures and adaptations thereof for use in network design with
an emerging consensus that the goal of these network design methods is to select the stations that
provide the most information to the monitoring network while simultaneously being independent
of each other. Through rigorous testing, information theory has proven to be a robust tool to use
when evaluating and designing an optimal water monitoring network. However, when it comes to
evaluating the optimal design, there are still issues that need to be addressed.

The first is that an optimal monitoring network design can be found based on specified design
criteria; however, the practical application of the new optimal monitoring network is rarely evaluated
in a hydrologic or other model [11,57]. This type of numerical experiment is an important requirement
to evaluate the utility of a network rather than just identifying its optimality or information content.
Further, it is an important exercise to identify the benefits of entropy-based network designs in order
to convince decision makers of the importance of adopting entropy approaches.

Another issue with the optimal network is that it can be subjective, based on choices made
in the calculation of entropy and the design method chosen, especially when additional objective
functions are considered in the design. This extends to the method selected for finding the optimal
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monitoring network, whether it is found using an iterative method where one station is added at
a time or a collection of stations is added all at once. Research has also shown that data length,
catchment scale and ordering can influence the design of an optimal network [31,34,51]. Finally, when
using discrete entropy, the binning method has been shown to influence the final network design [35].
The influence of binning on entropy calculation has received greater attention in other geophysical
network design applications [83–85], and similar consideration should be given in the field of water
resources, particularly owing to the unique and difficult nature of water variables (e.g., streamflow,
precipitation) spatial and temporal distribution [30,60]. Thus, explicit consideration is needed when
choosing the bins based on the intended application of the monitoring network and further research
to provide guidance specific to water monitoring networks. Therefore, despite the possibility of
finding an optimal network design in a formal sense, the subjectivity induced by the designer’s
choices, and the lack of standardized design methods, must be recognized. Future research should
focus on comparative studies among multiple entropy design methods, discretization approaches and
data characteristics. The current literature provides many novel entropy design approaches and the
evolution of concepts, but rigorous comparisons are critical to provide generic guidelines for network
design. Despite the potential sources of subjectivity identified, entropy methods remain one of the
most objective approaches for network design.

In particular, more work is needed on spatial and temporal scaling of data for entropy calculation
to provide robust guidance to decision makers. Many new methods and optimization techniques
have been reviewed herein, but few examples were found in the literature that explored the data
characteristics used in those techniques. Further research is required to provide guidance on the proper
length of data in water monitoring network design [34], the sampling frequency of the data [54] and the
spatial scale at which information should be measured for various monitoring network applications.

The aforementioned issues are considered crucial gaps that need to be filled to enable practical
recommendations or guidelines for a widespread adoption of entropy approaches for designing
optimal water monitoring networks. In addition, the comparative studies of entropy-based methods
reviewed herein should be robustly compared to network design methods from other disciplines,
such as geostatistics, to identify areas of equivalence and disparity [10]. Considerable advances
have occurred over the past decade as reviewed herein, and measures derived from Shannon’s base
equation [16] have reached a high level of maturity for the task of network design. We challenge
the research community to put a similar creativity into the joint consideration of the nexus of data
characteristics, network design and applications, all of which are intricately linked.
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