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Following the publication of our paper [1], we uncovered a mistake in the derivation of two
formulas in the manuscript. This error does not affect any of the empirical results or conclusions of
the article.

The following incorrect text on Page 9 should be replaced:

These bounds have particularly simple forms when all of the mixture components have
equal covariance matrices, i.e., Σi = Σ for all i. In this case, the lower bound of Equation (10)
can be written as

ĤCα
=

d
2
−∑

i
ci ln ∑

j
cj
[
pj(µi)

]α(1−α) .

This is derived by combining the expressions for Cα, Equation (14), the entropy of
a Gaussian, Equation (13), and the Gaussian density function. For a homoscedastic
mixture, the tightest lower bound among the Chernoff α-divergences is given by α = 0.5,
corresponding to the Bhattacharyya distance,

ĤBD =
d
2
−∑

i
ci ln ∑

j
cj
[
pj(µi)

] 1
4 .

(This is derived above in Section 3.2.)

The replacement text should read:

These bounds have simple forms when all of the mixture components have equal covariance
matrices; i.e., Σi = Σ for all i. First, define a transformation in which each Gaussian
component pj is mapped to a different Gaussian p̃j,α, which has the same mean but where
the covariance matrix is rescaled by 1

α(1−α)
,

pj := N
(
µj, Σ

)
7→ p̃j,α := N

(
µj,

1
α(1− α)

Σ

)
.

Then, the lower bound of Equation (10) can be written as

ĤCα
=

d
2
+

d
2

ln (α(1− α))−∑
i

ci ln ∑
j

cj p̃j,α(µi) .

This is derived by combining the expressions for Cα, Equation (14), the entropy of
a Gaussian, Equation (13), and the Gaussian density function. For a homoscedastic
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mixture, the tightest lower bound among the Chernoff α-divergences is given by α = 0.5,
corresponding to the Bhattacharyya distance,

ĤBD =
d
2
+

d
2

ln
1
4
−∑

i
ci ln ∑

j
cj p̃j,0.5(µi) .

(This is derived above in Section 3.2.)
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