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Abstract: We study the optimal performance of Feynman’s ratchet and pawl, a paradigmatic model
in nonequilibrium physics, using ecological criterion as the objective function. The analysis is
performed by two different methods: (i) a two-parameter optimization over internal energy scales;
and (ii) a one-parameter optimization of the estimate for the objective function, after averaging
over the prior probability distribution (Jeffreys’ prior) for one of the uncertain internal energy
scales. We study the model for both engine and refrigerator modes. We derive expressions for the
efficiency/coefficient of performance (COP) at maximum ecological function. These expressions from
the two methods are found to agree closely with equilibrium situations. Furthermore, the expressions
obtained by the second method (with estimation) agree with the expressions obtained in finite-time
thermodynamic models.
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1. Introduction

The subject of optimization in finite-time thermodynamics has received a lot of attention
recently [1–23]. Here, the interest is to optimize the performance of heat devices operating with
non-zero rates of, say, heat transfer, or energy conversion. The most commonly used optimization
criteria are power output [1], Ω criterion [24] and ecological criterion [25]. Some authors also use
minimum entropy production criterion to optimize the performance of heat devices [26,27].

A standard method of optimization assumes a complete knowledge of the model, in the sense
that the variables over which optimization is performed, such as intrinsic energy scales [28,29],
or the intermediate temperatures of the working medium [30], or the times spent on the thermal
contacts with the reservoirs [9], take on definite values; one just has to tune them to specific value(s)
in order to optimize the objective function. Recently, one of the authors and coworkers [31–35]
introduced a novel method of optimization, by which some variables can be assigned values, only in
a probabilistic sense. This approach is based on interpreting the limited prior information about
the system in the sense of subjective probability [36,37], and a prior distribution quantifies the
uncertainty in these parameters. Then, an averaging procedure is performed on the target function
using this distribution so as to eliminate these parameters. Following this approach, Curzon-Ahlborn
efficiency for engine as well as coefficient of performance (COP) for the refrigerator [38,39] have been
reproduced. In particular, for the problem of maximum work extraction from finite source and sink,
the behavior of efficiency at maximum estimate of work shows universal features near equilibrium [34],
e.g., η = ηc/2 + η2

c /8 + O[η3
c ], where ηc is Carnot efficiency. Similarly, other expressions for efficiency
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at maximum power, such as in irreversible models of stochastic engines [40–42], which obey a different
universality near equilibrium, can also be reproduced from the inference based approach [32,43]. Thus,
the latter approach provides an effective way of analyzing the performance of energy conversion
systems. Here, the limited information can be interpreted in the sense of a limited control of the
observer over the system [43]. Thus, this approach also points towards an entirely different origin
of the figures of merit at optimal performance, which are usually obtained by an exact tuning of the
variable parameters.

In this paper, we apply and compare the two approaches mentioned above for optimization,
the standard two-parameter optimization, and the alternate, one-parameter optimization that also
involves estimation based on prior information. We use Feynman’s ratchet model [44–46] as the
paradigmatic example for our investigation. The previous study [38] analyzed the power output in
engine mode and corresponding criterion for refrigerator mode for this model. In this paper, we analyze
the ecological criterion proposed by Angulo-Brown [25,47] E = P − T2Ṡtot for an endoreversible
Carnot heat engine, where P is the power output, T2 is the temperature of the cold reservoir and
Ṡtot is total rate of entropy production. The optimization of the ecological function represents the
best compromise between the power output P and the loss of power T2Ṡtot, due to the entropy
production. Furthermore, Yan and Chen [48] optimized an endoreversible Carnot refrigerator under
the ecological criterion E = Q̇2 − ζcT0Ṡtot, where Q̇2 is rate of refrigeration, ζc is Carnot COP and T0 is
environment temperature.

The paper is organized as follows. In Section 2, we describe the model of Feynman’s ratchet
as heat engine and discuss its optimal performance with ecological criterion [49–52]. In Section 2.1,
two-parameter optimization of the ratchet is carried out. In Section 2.2, the approach based on prior
information is applied to the case when the efficiency of the engine is fixed, but one of the internal
energy scales is uncertain. The analysis is extended to the refrigerator mode, in Section 3 where we
discuss performance based on two-parameter optimization of the ecological criterion as well as the
estimation based on prior information. The final Section 4 is devoted to results and conclusions.

2. Optimal Performance of the Heat Engine

The model of Feynman’s ratchet [44] consists of a vane, immersed in a hot reservoir at temperature
T1, and connected through an axle with a ratchet in contact with a cold reservoir at T2. The ratchet is
restricted to rotate in one direction due to a pawl, which, in turn, is connected to a spring. Let ε2 be the
amount of energy to overcome the elastic energy of the spring. Let the wheel rotate an angle δ in each
step and the torque induced by the weight be Z. Then, the system requires a minimum of ε1 = ε2 + Zδ

energy to lift the weight hanging from the axle. Hence, the rate of forward jumps of the ratchet is
given as RF = r0e−ε1/T1 , where r0 is a rate constant and we have set Boltzmann’s constant kB = 1.
In other words, temperature has the dimensions of energy. Similarly, the rate of the backward jumps is
RB = r0e−ε2/T2 . One may regard Zδ and −Zδ as the work done by and on the system, respectively.
Then, the rates of heat absorbed from the hot and the cold reservoirs are given as

Q̇1 = r0ε1

(
e−ε1/T1 − e−ε2/T2

)
, (1)

Q̇2 = r0ε2

(
e−ε1/T1 − e−ε2/T2

)
. (2)

The power output is defined as: P = Q̇1 − Q̇2. Then, the efficiency of the engine is given by

η =
P

Q̇1
= 1− ε2

ε1
. (3)



Entropy 2017, 19, 576 3 of 11

The rate of total entropy production in this energy conversion is:

Ṡtot = −
Q̇1

T1
+

Q̇2

T2
. (4)

Then, the ecological criterion has been defined as [25]:

E = P− T2Ṡtot. (5)

2.1. Two-Parameter Ecological Optimization of Heat Engine

Here, we scale the parameters ε2 and Z for simplification. Let ε = ε2/T2 and z = Zδ/T1. In terms
of ε and z, we can write:

η =
z

z + ε(1− ηc)
, (6)

P = roT1z
[
e−ε(1−ηc)−z − e−ε

]
, (7)

Q̇1 = roT1 [z + ε(1− ηc)]
[
e−ε(1−ηc)−z − e−ε

]
, (8)

Q̇2 = Q̇1 − P. (9)

Then, the ecological function E can be written as:

E = roT1 [(2− ηc)z− ηc(1− ηc)ε]
[
e−ε(1−ηc)−z − e−ε

]
. (10)

On optimizing E with respect to ε and z, i.e., setting ∂E/∂ε = 0 and ∂E/∂z = 0, we get the
following two equations respectively:[

eεηc−z(ηc − 1) + 1
]
[(2− ηc)z− ηc(1− ηc)ε] = ηc(1− ηc)

[
eεηc−z − 1

]
, (11)

eεηc−z[(2− ηc)z− ηc(1− ηc)ε] = (2− ηc)
[
eεηc−z − 1

]
. (12)

Upon dividing Equation (11) by Equation (12), we can obtain

εηc − z = ln
[
(2− ηc)

2(1− ηc)

]
≡ k. (13)

Eliminating eεηc−z from Equation (12) by using Equation (13), we get

(2− ηc)z− ηc(1− ηc)ε = ηc. (14)

The solution of Equations (13) and (14) is

z∗ = ηc + (1− ηc)k; ε∗ = 1 +
(2− ηc)k

ηc
. (15)

Substituting from Equation (15) into Equation (6), we obtain the efficiency at the maximum
ecological function

η∗ =
ηc + (1− ηc)k

ηc + 2(1− ηc)k
ηc. (16)

Close to equilibrium (small values of ηc), η∗ behaves as follows:

η∗ =
3ηc

4
+

η2
c

32
+

19η3
c

768
+O(η4

c ). (17)
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Note that the above value of efficiency depends only on ηc, or the ratio of the reservoir temperatures.
The behavior of η∗ close to equilibrium will be discussed below. Equation (16) is plotted in Figure 1.
Similarly, from Equation (10), we obtain the maximum value of the ecological function

E∗ =
roT1η2

c [2(1− ηc)]2(1−ηc)/ηc

e(2− ηc)(2−ηc)/ηc
. (18)
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Figure 1. The efficiency at maximum ecological function, obtained from two different methods,
is plotted versus ηc. The dashed curve represents the efficiency obtained from two-parameter
optimization (Equation (16)). The solid curve is the corresponding efficiency when prior information
approach is used (Equation (26)). The bottom straight line is 3ηc/4. See also Equation (27).

2.2. Prior Information and Estimation for Heat Engine

Now, we consider a situation where the efficiency of the engine has some pre-specified value η,
but the energy scales (ε1, ε2) are not given to us in a priori information. Since η is known, the problem
is reduced to a single uncertain parameter, due to Equation (3). One can cast the problem either in
terms of ε1 or ε2. In terms of the latter, we can write ecological function as

E(η, ε2) =
r0ε2

(1− η)
(2η − ηc)

(
e−ε2/(1−η)T1 − e−ε2/T2

)
. (19)

Based on the notion of prior information in Bayesian statistics, we assign a prior probability
distribution for ε2 in some arbitrary, but finite range of positive values: [εmin, εmax]. Later, we consider
an asymptotic range in which the analysis becomes simplified and we observe universal features.

Now, consider two observers A and B who respectively assign a prior for ε1 and ε2. Taking the
simplifying assumption that each observer is in an equivalent state of knowledge, we can
write [34,37,38]

Π(ε1) = Π(ε2)

∣∣∣∣dε2

dε1

∣∣∣∣ , (20)

where Π is the prior distribution function, taken to be of the same form for each observer. At a fixed
known value of efficiency, it implies that Π(ε2) ∝ 1/ε2. This is also well known as Jeffreys prior for
a one-dimensional scale parameter [36,37,53].

Now, we define the expected value of function E, over this prior, as

E(η) =
∫ εmax

εmin

E(η, ε2)Π(ε2)dε2

=
C

(1− η)
(2η − ηc)

∫ εmax

εmin

(
e−ε2/(1−η)T1 − e−ε2/T2

)
dε2, (21)
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where

C = r0

[
ln
(

εmax

εmin

)]−1
. (22)

Upon performing the integration, we get

E(η) = CT1(2η− ηc)
(

e−εmin/(1−η)T1 − e−εmax/(1−η)T1
)
+

CT2(2η − ηc)

(1− η)

(
e−εmax/T2 − e−εmin/T2

)
. (23)

We are interested in the value of the efficiency at maximum of E. Hence, on optimizing E(η) with
respect to η, we get

∂E
∂η ≡ 2T1

(
e−εmin/(1−η)T1 − e−εmax/(1−η)T1

)
+ T2(2−ηc)

(1−η)2

(
e−εmax/T2 − e−εmin/T2

)
− 2η−ηc

(1−η)2

(
εmine−εmin/(1−η)T1 − εmaxe−εmax/(1−η)T1

)
= 0.

(24)

Now, we consider the asymptotic limit [31,38], in which the maximal allowed range for ε2 is
considered. In particular, we require εmax >> T1 and εmin << T2. In this limit, Equation (24)
reduces to:

2T1 −
2T2

(1− η)2 +
T2ηc

(1− η)2 = 0. (25)

Putting T2/T1 = 1− ηc and solving Equation (25) for η, we get

η̃ = 1−
√

(1− ηc)(2− ηc)

2
. (26)

The above expression is identical to the one obtained by Angulo-Brown [25].
Although the above expression for η̃ is different from the one obtained via the two-parameter

optimization [Equation (16)], we note that, near equilibrium, i.e., ηc close to zero,

η̃ =
3ηc

4
+

η2
c

32
+

3η3
c

128
+O(η4

c ), (27)

which shows the same universality up to the second order in ηc [54], as Equation (17). The interpretation
of this result viz-à-viz the result from exact optimization is the following. If the experimentalist is
unable to tune an internal parameter, or has a limited control over it, then it makes sense to consider
an expected value of E, suitably averaged over the uncertain parameter. Then, it has been observed in
the above that this average value, E, takes its maximum value at a certain efficiency η̃, which is also
the one obtained in purely thermodynamic models. We observe that the behavior of η̃ is very similar
to η∗, as a function of ηc close to equilibrium.

3. Optimal Performance as a Refrigerator

In this section, we consider the function of Feynman’s ratchet as a refrigerator [38,55–58]. We will
optimize the corresponding ecological criterion [48]: E = Q̇2 − ζcT1Ṡtot. The rate of refrigeration and
rate of heat added to the hot reservoir are given respectively as:

Q̇2 = r0ε2

(
e−ε2/T2 − e−ε1/T1

)
, (28)

Q̇1 = r0ε1

(
e−ε2/T2 − e−ε1/T1

)
. (29)

Furthermore, for refrigerator, we have:

Ṡtot =
Q̇1

T1
− Q̇2

T2
. (30)
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The COP for given values of ε1 and ε2 is: ζ = Q̇2/(Q̇1 − Q̇2) = ε2/(ε1 − ε2), and Carnot COP is
ζc = T2/(T1 − T2).

3.1. Two-Parameter Ecological Optimization for the Refrigerator

In terms of ε and z, the scaled parameters introduced in Section 2.1, the ecological function for
refrigerator is given by

E = ro

[
e−ε − e−εζc/(1+ζc)−z

]
[2T2ε− ζcT1z] . (31)

On optimizing E with respect to ε and z, that is, setting ∂E/∂ε = 0 and ∂E/∂z = 0, we get the
two following equations, respectively,[

1− ζc

1 + ζc
eε/(1+ζc)−z

]
[2T2ε− ζcT1z] = 2T2

[
1− eε/(1+ζc)−z

]
, (32)

eε/(1+ζc)−z [2T2ε− ζcT1z] = ζcT1

[
1− eε/(1+ζc)−z

]
. (33)

Comparing Equations (32) and (33), we can obtain

ε

1 + ζc
− z = ln

(
1 + ζc

2 + ζc

)
≡ k′. (34)

Using Equations (33) and (34), we get 2ε − (1 + ζc)z = 1. Finally, we obtain the following
optimum solution:

z∗ =
1− 2(1 + ζc)k′

(1 + ζc)
; ε∗ = 1− (1 + ζc)k′. (35)

Now, COP of the refrigerator can be written as

ζ =
εζc

z(1 + ζc)
. (36)

Using Equation (35) in Equation (36), we derive COP at the maximum ecological function

ζ∗ =
1− (1 + ζc)k′

1− 2(1 + ζc)k′
ζc. (37)

We can write series expansion of ζ∗ with respect to ζc as follows

ζ∗

ζc
=

2
3
+

1
18ζc

− 2
27ζ2

c
+ O

(
1
ζc

)3
. (38)

Substituting Equation (35) in Equation (31), we get the maximum ecological function

E∗ = roT2(1 + ζc)1+ζc

e(2 + ζc)2+ζc
. (39)

3.2. Prior Information and Estimation for Refrigerator

Similar to the case of the heat engine, we now obtain, using the prior based approach, the COP at
optimal performance of Feynman’s ratchet as refrigerator. Again, we suppose that the figure of merit ζ

is fixed at some value and ε2 is uncertain, within the range [εmin, εmax]. Then, Jeffreys prior for ε2 can
be argued, similar to Equation (20). In terms of ζ and one of the scales say, ε2, the ecological-criterion
E = Q̇2(2 + ζc)− ζcQ̇1 is given by
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E = r0

(
2− ζc

ζ

)
ε2

(
e−ε2/T2 − e−ε2(1+ζ)/ζT1

)
. (40)

Then, we define the expected value of E as

E(ζ) =
∫ εmax

εmin

E(ζ, ε2)Π(ε2)dε2 (41)

= C
(

2− ζc

ζ

) ∫ εmax

εmin

(
e−ε2/T2 − e−ε2(1+ζ)/ζT1

)
dε2, (42)

where C is given by Equation (22). Upon integrating the above equation, we get

E(ζ) = CT2

(
2− ζc

ζ

) (
e−εmin/T2 − e−εmax/T2

)
+CT1

(
2− ζc

ζ

)
ζ

(1+ζ)

(
e−εmax(1+ζ)/ζT1 − e−εmin(1+ζ)/ζT1

)
.

(43)

Then, the maximum of E with respect to ζ, is evaluated as

∂E
∂ζ ≡

ζcT2
ζ2

(
e−εmin/T2 − e−εmax/T2

)
+ (2+ζc)T1

(1+ζ)2

(
e−εmax(1+ζ)/ζT1 − e−εmin(1+ζ)/ζT1

)
+ 2ζ−ζc

ζ2(1+ζ)

(
εmaxe−εmax(1+ζ)/ζT1 − εmine−εmin(1+ζ)/ζT1

)
= 0.

(44)

In the asymptotic limit mentioned earlier, the above equation reduces to

ζcT2

ζ2 =
(2 + ζc)T1

(1 + ζ)2 . (45)

Putting T1/T2 = (1 + ζc)/ζc and solving for ζ, we get

ζ̃ =

(
1 + ζc

ζc

√
2 + ζc

1 + ζc
− 1

)−1

. (46)

This is the same equation as obtained by Yan [48] when we take the environment temperature
equal to the temperature of the hot reservoir. In a near-equilibrium regime, the Carnot COP ζc in
addition to ζ∗ become large in magnitude. One can then write the series expansion for ζ∗ relative to ζc

as follows:
ζ∗

ζc
=

2
3
+

1
18ζc

− 17
216ζ2

c
+O

(
1
ζc

)3
, (47)

which is similar to the Equation (38) up to the first two terms. In Figure 2, we compare the expressions
from Equations (37) and (46). Before closing, we point out that, upon performing the same analysis
in terms of ε1 as the uncertain scale, we obtain a similar behavior in the asymptotic range of values,
and the same figures of merit as η̃ and ζ̃ are obtained with the choice of Jeffreys’ prior.
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Figure 2. The COP (relative to ζc) at maximum ecological function, obtained from two different
methods, is plotted versus 1/ζc. The dashed curve represents the COP obtained from two-parameter
optimization (Equation (37)). The solid curve is the corresponding COP when prior information
approach is used (Equation (46)).

4. Conclusions

We studied optimization of performance in Feynman’s ratchet model using the ecological criterion.
Earlier studies focused on optimization of power output (for engine mode) and the so-called χ-criterion
(for refrigerator mode). Our choice of the objective function is motivated by the fact that it represents
the best compromise between, say, the power output and power loss in the engine mode. We performed
our analysis by recourse to two methods: (i) the standard approach of two-parameter optimization
over the two internal energy scales. We derived explicit expressions for the efficiency and coefficient of
performance at the maximum of ecological criterion; (ii) we also performed an estimation over one
uncertain energy scale followed by a single-parameter optimization. The latter approach is based on
the quantification of (limited) prior information as in the Bayesian probability theory. Here, we are
also able to find exact expressions for efficiency in some well-defined asymptotic limit. Remarkably,
we obtain the well-known expressions of finite-time thermodynamic models where ecological function
is optimized. Furthermore, we observe that the behavior of efficiency as predicted in the two methods
is quite similar. In fact, close to equilibrium, the corresponding expressions match up to the second
term. These observations are analogous to the ones made on the same model using optimization of
a different objective function, such as power output. Since the presence of limited information may
also be interpreted in the sense of limited control over the system, the agreement of figures of merit
by the two methods suggests that an exact knowledge of the variable parameters is not essential to
infer the optimal behavior. Thus, the present results provide further evidence that the estimation
based approach can provide a robust and effective method to indicate the figures of merit at optimal
performance of heat devices.
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