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Abstract: We consider the problem of diffusion on temporal networks, where the dynamics of each
edge is modelled by an independent renewal process. Despite the apparent simplicity of the model,
the trajectories of a random walker exhibit non-trivial properties. Here, we quantify the walker’s
tendency to backtrack at each step (return where he/she comes from), as well as the resulting effect
on the mixing rate of the process. As we show through empirical data, non-Poisson dynamics may
significantly slow down diffusion due to backtracking, by a mechanism intrinsically different from the
standard bus paradox and related temporal mechanisms. We conclude by discussing the implications
of our work for the interpretation of results generated by null models of temporal networks.
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1. Introduction

Random walks (RWs) play a key role in network theory [1]. RWs are at the core of algorithms
to explore the network structure and to uncover its important features, such as the centrality of
the nodes [2,3]) or the presence of communities and modules [4,5]. RWs are also often used as
a simplified model for the diffusion of an entity, e.g., people in a network of places, a virus or
information on a social network, etc., and several works have focused on the impact of static properties
of a network, e.g., its degree distribution, on the dynamical properties of a RW [6]. Driven by
the availability of longitudinal data of empirical networked systems, and the increased importance
of temporal networks [7,8], it is only much more recently that researchers have considered how
the temporal properties of a network affect diffusion. Empirical observations have shown that
temporal properties of networks strongly differ from classical homogeneous Poisson processes, due to
their non-stationarity [9], correlations between the activation times of network entities [10–12] and
fat-tailed inter-event times of activations [13]. A central question is to understand the mechanisms
that either accelerate or slow down the diffusion, for instance through the characteristic time for
the dynamics to converge to the equilibrium state. This question has been considered by means of
numerical simulations, by simulating a diffusive process on empirical temporal network data [14],
and comparing its speed with the same process run on randomized null models [15]. A theoretical
approach, which we also adopt here, consists in neglecting correlations between activations of different
edges, and modelling their dynamics as independent renewal processes [16,17]. In the taxonomy
of RWs on networks, this corresponds to the popular edge-centric passive RW [1]. In particular,
we explore in detail the implications of an apparently paradoxical situation [17,18]: despite the fact
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that edges are independent processes, they cease to be independent along the path of a walker when
the inter-event time distribution is non-exponential, which may lead to biases in its dynamics and
non-Markovian trajectories.

In this paper, we illustrate and analyse this effect for a specific dependency pattern between
successive jumps, namely the tendency for the random walker to backtrack, i.e., return to the
previously visited node more than a purely Markovian walker would. Our contributions are
twofold. We first compute the backtrack probability as a function of the shape of the inter-event time
distribution. Second, we estimate the impact of the resulting bias to backtrack on the mixing rate of
the process. Taken together, these results allow to quantify a mechanism that may either slow down or
accelerate diffusion, by changing the number of steps leading to mixing, which is inherently different
from well-known mechanisms such as the bus paradox [19] or other temporal mechanisms [20],
only affecting the time to relaxation, and not the number of steps. Our observations also allow us to
gain insight into unexpected properties of a standard null model for temporal network analysis.

2. Random Walk on Temporal Network

2.1. Bias on the Probability of Backtracking

The edge-centric passive RW is defined as follows. Edges are activated for an infinitesimal
duration. The time between two consecutive activations of an edge is governed by a renewal
process, with i.i.d. inter-activation times distributed according to a probability density function.
The activation processes on different edges are independent. For the sake of notation, we consider
the same inter-activation distributions f (t) for every edge; nonetheless, the forthcoming analytical
derivations hold for distinct edge activities as well. The random walker waiting on a node jumps
through the first edge incident to the node that is activated. As we consider continuous inter-activation
distributions, the probability that two edges activate simultaneously is almost surely zero, and the
walker never has to choose between multiple available edges. In order to describe the process, it is
crucial to estimate the waiting time distribution g(t), i.e., the time that the random walker arriving on
a node has to wait before a given edge activates. Under the assumption that the arrival of the walker
on the node is independent of the edge activation, the relation between the inter-activation distribution
f (t) on the given edge and the waiting-time distribution g(t) is given by:

g(t) =
1
〈τ〉

∫ +∞

t
f (τ)dτ (1)

where 〈τ〉 ≡
∫ +∞

0
τ f (τ)dτ is the mean inter-activation time. The observation that g(t) may have

very different moments from f (t), for instance a much larger mean is known under the name of bus
paradox, or inspection paradox [19]. In a popular example, one may think of someone arriving at a bus
stop and having to wait (mean of g) for a bus much longer than the mean inter-arrival time between
two buses (mean of f ).

It is important to note that this independence assumption is, in general, not respected if the walker
passes several times by the same edge, as information about the previous passage time may help
to predict the next activation time. This effect is most apparent for undirected networks, which we
consider from now on. Consider a walker taking an edge from i to j. While activation times to nodes
different from i may be affected by the bus paradox, this is not the case for the edge going back from j
to i, i.e., the backtracking transition, see Figure 1. The waiting-time distribution for j to i is thus the
inter-activation distribution f (t), while we assume it is reasonably approximated by g(t) for other
edges (we neglect, in particular, memory effects due to the random walker exploring other short cycles
such as triangles, leading to a similar if attenuated effect, see Discussion). The resulting statistical
difference between backtracking and non-backtracking transitions may thus lead to biases in the
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dynamics of the walk, as the backtracking edge will be either favoured or penalized compared to the
other edges depending on the underlying dynamics.

t

=

t 9 f(t)
= 9 g(=)

ij

jk

Figure 1. Illustration of the backtracking bias on an edge ij. When the walker arrives on j via ij, the next
activation time t of the edge ij is given by the distribution f (t) of the renewal process, whereas the
next activation time τ of another independent edge jk is given by the distribution associated to the bus
paradox g(t).

Let us now determine the probability Pd that the walker performs a backtracking jump as a
function of the degree d of a node. Denoting X1, . . . , Xd−1 ∼ g(t) as the independent identically
distributed waiting-times for the activation of the d− 1 other competing edges, we have

Pd =
∫ +∞

0
P(r ≤ min

k=1,...,d−1
Xk) f (r)dr . (2)

The independence of the edges implies

P(r ≤ min
k=1,...,d−1

Xk) =
d−1

∏
k=1

∫ +∞

r
gk(t)dt (3)

=

[∫ +∞

r
g(t)dt

]d−1
, (4)

where we have assumed that each edge has the same inter-activation distribution g(t) for the sake of
simplicity. When this assumption is not verified, the forthcoming development holds using Equation (3)
instead of (4).

Injecting (1) and (4) in (2) and permuting the integrals yields

Pd =
∫ +∞

0

[∫ +∞

r

1
〈τ〉 (τ − r) f (τ)dτ

]d−1
f (r)dr. (5)

The expression of Pd can also be rewritten so that the cumulative density function of f (t)
appears explicitly:

Pd =
∫ +∞

0

[
1− F (r)

〈τ〉 +
r
〈τ〉 (F(r)− 1)

]d−1

f (r)dr, (6)

where F(r) =
∫ r

0
f (τ)dτ is the cumulative density function of f (t), and F (r) =

∫ r

0
τ f (τ)dτ.

The probability Pd depends on the number of competing edges d − 1 but also on the shape
of the distribution. In particular, the presence of powers of r in the integral indicates that the
shape of the distribution impacts the backtracking probability Pd at least through its d − 1 first
moments and thus through its variance. In the Poisson case, where f (t) is an exponential distribution

λe−λt, the backtracking probability simplifies into the memoryless case Pd =
1
d

as expected.
Another interesting case is the power-law
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f (t) =
α− 1
tmin

(
t

tmin

)−α,

for t ≥ tmin and f (t) = 0 for t < tmin with α > 2 (since the expression of g(t) assumes finite
mean), where

Pd =
(α− 1)2−d

(α− 2)d + 1
.

Numerical simulations illustrate these results in Figure 2 where f (t) follows various distributions
including the exponential, gamma and power-law distributions. Note that the numerical convergence
of the simulation is not guaranteed when the variance of the waiting-time distribution becomes
infinite, which happens, for instance, for power-law distributions of exponent α < 3. For each of
these families of distributions, the higher the variance, the higher the probability of backtracking.
However, as mentioned before, the backtracking probability depends, in general, on the full shape of
the distribution.

degree
0 5 10 15 20 25

p
ro

b
ab

ili
ty

 o
f 

b
ac

kt
ra

ck
in

g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exponential (Markovian Case) < = 1
Gamma with higher standard deviation < = 2:24
Gamma with lower standard deviation < = 0:45
powerlaw , = 2:5
powerlaw , = 3
powerlaw , = 4

Figure 2. Probability of backtracking on an edge for various distributions: Power-law, Gamma
(standard deviation σ and Exponential). Monte-Carlo simulations (circle) and theoretical curves
obtained with (5) (solid line) coincide. For a given family, the higher the variance σ2, the higher
the probability of backtracking. For power-law distributions with small exponent, the backtracking
probability remains large and decreases slowly as the degree increases.

As a next step, we test the importance of this effect in real-world systems by considering four
datasets of face-to-face contacts described in [21–25]. From the recorded contacts, we obtain the
largest component with a typical size of a few hundred nodes. We extract the inter-activation times
between each pair of individuals, and aggregate them in the empirical inter-activation distribution f (t).
We simulate a RW on the corresponding homogeneous network where every edge activity is a renewal
process governed by f (t). The probability of backtracking as a function of the nodes degree, computed
up to the largest node degree of the network , is displayed in Figure 3. We observe in the real-world
data that backtracking is, overall, higher than in the memoryless case. This result shows that the
backtracking bias is inherent to random walk processes, even when edge activities are uncorrelated.
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The paradox lies in the fact that the random walker has a tendency to take one particular edge over the
others, even if each edge is statistically equivalent.

degree of node
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Figure 3. Probability of backtracking on an edge for real-data. Each edge is governed by an i.i.d. renewal
processes. All inter-activation times on all edges have been aggregated to a unique global distribution

f (t). The probability of backtracking is much larger than
1
d

(corresponding to the Markovian case),
even under destruction of the correlations between edges activities. Standard deviation σ of the
empirical inter-activation distributions f (t) are given in parentheses. For each dataset, the probabilities
have been computed up to the largest nodes degree in the corresponding network.

2.2. Impact of Backtracking on the Mixing Rate of the Random Walk

In the previous section, we have shown that the shape of the inter-activation distribution may
induce a backtracking bias for random walkers on a temporal network. We now estimate how this bias
impacts the speed of diffusion, by estimating the mixing rate of the process. From now on, we take
a discrete-time perspective and no longer consider the timings at which events take place. Time is
measured by the number of steps k performed by the walker, thus focusing on the question: on average,
how many steps does a walker have to perform for the process to reach equilibrium. This approach
is in contrast with previous works focusing on the impact of the inter-activation distribution on the
mixing time [20] and neglecting backtracking biases.

We first consider a standard memoryless RW process, i.e., where no backtracking bias is present.
In that case, the mixing rate is obtained from the second dominant eigenvalue of the transition matrix
of the process, equivalent to the spectral gap of the corresponding normalized Laplacian of the graph.
As we show in Appendix A, the spectral properties of the transition matrix are equivalent to those of a
transition matrix defined on the so-called line graph, where edges of the original graph define nodes
in the line graph. This equivalence is relatively intuitive, as both processes are essentially equivalent
(only their representation changes), but it is crucial as a line graph formulation is natural to represent
second-order Markov processes. In the following, we thus consider the spectral gap of the transition
matrix of the line graph, defined as 1− |λ2|, where λ2 is the eigenvalue with the second largest module.
The corresponding eigenmode describes the asymptotic dynamics of the process and is associated to
the presence of bottlenecks/modules in the network [5]. The spectral gap provides information on
the speed of convergence to stationarity since the distance between the transient state of the initial
condition and the stationary state decays to 0 as |λ2|k for large k. Therefore, the characteristic number
of jumps for relaxation to stationarity is of the order − log(|λ2|).

Table 1 compares the spectral gaps of the Markovian walker and the backtracking walker (with a
backtracking probability computed by (5)) for four datasets, showing a significant slowdown of mixing
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due to backtracking alone. As a next step, we quantify this intuitive effect by performing a first-order
approximation around the Markovian case, and focusing on regular networks for the sake of simplicity.
Take an undirected network of ν nodes and µ edges, with an ν × ν adjacency matrix A. From A,
we get the stochastic transition matrices Ts of the network, and Gs of its line graph G associated to
the standard memoryless RW. Importantly, it can be shown that both transition matrices Ts and Gs

share the same non-zero eigenvalues (See Appendix A for details) and correspond to the same linear
dynamics described from the point of view of nodes and edges respectively.

Table 1. Shift of the spectral gap of the transition matrix due to the backtracking bias induced by the
network temporality. The spectral gap is largely reduced, showing the strong impact of the inter-activity
distribution on the number of steps required to explore the network.

Spectral Gap of Markovian RW Spectral Gap of Backtracking RW

Primary 0.4151 0.2738
Work 0.3057 0.0569

Highschool 0.1349 0.0396
Hospital 0.5695 0.2105

We now consider a system where the trajectories of the walker are non-Markovian, such that the
transition matrix Ms on the line graph differs from the transition matrix of the line graph associated to
the Markovian case Gs. We consider a small deviation due to the probability of backtracking, by adding
a perturbation matrix P :

Ms = Gs + P.

Each row of P captures the bias εji of backtracking from edge i → j to edge j → i compared
to a Markovian RW on Ts. The line of matrix P corresponding to the jump transition from an edge

i → j is made of the entry εji on the column corresponding to edge j → i, and
−εji

d(j)− 1
for the

d(j)− 1 other edges leaving the node j, where d(j) is the degree of node j. For the sake of simplicity,
we calculate the impact of εji on the spectrum of Ms for regular networks, where the degree is constant
and the backtracking bias is thus εji = ε for every edge j→ i. In this case, each eigenvalue λ of Ms is
associated to an eigenvalue λ0 of Gs through the equality λ = λ0 + ελ∗, where the perturbation λ∗ is
to be determined.

Standard derivations lead to the first order approximation (see Appendix B for details) λ∗:

λ∗ ≈
wT

L PwR

wT
L wR

(7)

=
vT

RKoutPKT
invR

λ0vT
RDAvR

, (8)

where wL, wR, vL and vR correspond to left and right eigenvectors of Gs and Ts respectively, associated
to λ. The sign of the corresponding shift can be determined as follows. On the one hand, DA is positive
definite, on the other hand, KoutPKT

in is symmetric diagonally dominant with real non-negative
diagonal entries by construction, hence positive semidefinite. Therefore, the sign of λ∗ takes the sign
of λ0, and consequently the spectral gap of Ms decreases when the dynamics favours backtracking,
and increases otherwise.
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Finally, we validate our linear approximation of the real shift of the spectral gap (1− |λ2|) with
respect to the backtracking perturbation ε by computing the relative error on the spectral shift∣∣∣∣ |λ0 + ελ∗| − |λ2|

1− |λ2|

∣∣∣∣ (9)

on several regular graphs. As an illustration, Figure 4 shows the results for a regular network made of
two communities of 50 nodes each, which is in the typical range of size of the four studied real-world
networks (from 75 to 327 nodes). In each case, the approximation provides small relative error on the
estimation of the spectral gap. Moreover, numerical simulations show that the linear approximation
gives a lower bound to the true value of the spectral gap, and confirm the trend of slowing-down of
the process under positive backtracking bias.
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Figure 4. Relative error of the linear approximation (9) in a network composed of 2 communities
(2 cliques of 50 nodes of degree 50).

3. Discussion

The main purpose of this paper was to highlight the existence of a neglected, yet important,
correlation taking place in a null model actually designed to destroy temporal correlations in temporal
networks. In models where edges are undirected and their activations are independent stochastic
processes, dependencies between successive jumps of a random walker are introduced, making the RW
non-Markovian. Although we focused on backtracking in this paper, it is clear that further memory
is created in the RW by triangles, or short cycles in general. Thus, while backtracking is absent in
directed networks (as a return, edge does not necessarily exist or is ruled by an independent activation
process), the effects from short cycles remain, and as such, are an interesting topic for further research.

Our findings question the relevance of standard models of diffusion on temporal networks: in the
presence of bursty activation patterns, one cannot avoid correlations between events, either in the
activation process or in the jumping process—making it a non-trivial task to characterize the ‘simplest’
diffusion process with a given degree of burstiness. While we do know that real-world diffusion
in social or mobility network exhibits non-Markovian patterns [12,26], those patterns sometimes
favour, and sometimes reject backtracking regardless of the degree of burstiness of the process, making
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it clear that they cannot be entirely accounted for by the effect at play in this paper. Whether the
burstiness-induced memory is an undesirable artefact of the model or a useful and economical way to
generate non-Markovian walks remains to be seen.

We have computed the effect of backtracking on the mixing rate of the diffusion process, due to
its modification of the trajectories of the RW. This effect should be further amended by the effect of
triangles or longer cycles, likely leading to a further asymptotic slowdown of the diffusion. This is a
new mechanism for the impact of network temporality on diffusive processes, adding to intrinsically
different mechanisms such as the bus paradox, where a walker may sit on a node for a very long
time [11,19], and the further fact that the mixing time of bursty walker may be much larger than the
naive estimate given by the number of jumps required to explore the network multiplied by the average
waiting time of the walker at each step [20]. This is a tribute to the extraordinary richness of phenomena
brought by the sole departure from a Poisson or discrete-time diffusion process. A comprehensive
theory articulating all these effects on a general temporal network while yielding useful insight into
the diffusion in a complex environment is yet to be established.
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Appendix A. Shared Eigenvalues of the Transition Matrix and Its Associated Transition Line Graph

We provide here proof that the transition matrix Ts of a network and of its associated line graph
Gs share the same non-zero eigenvalues.

We consider an undirected network of ν nodes and µ edges, with an ν× ν adjacency matrix A and
its associated incidence ν× 2µ matrix K, listing each edge of the network in two consecutive column
of K with a (+1,−1) entry and a (−1,+1) entry for the two extremities of the edge—the extremity of
which receives a (+1,−1) or a (−1,+1) being arbitrary. We decompose the incidence matrix into the
difference of two binary matrices Kin − Kout.

First, it is direct that the adjacency matrix A and its associated line graph G share the same
non-zero eigenvalues, since they are the commutated product of the same two rectangular matrices of
in and out incidence:

A = KoutKT
in

G = KT
inKout

As a side note, G has at least 2m− n zero eigenvalues, where ν and µ are respectively the number
of nodes and edges of A. The transition matrices are obtained by normalizing the adjacency matrices
by the degree of the nodes:

Ts = D−1
A KoutKT

in
Gs = DG

−1KT
inKout,

where DA and DG are the diagonal matrices of degrees of A and G respectively, and verify

DGKT
in = KT

inDA.

Let λ be a non-zero eigenvalue of Ts, and v an associated eigenvector of λ.
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Then, wR = KT
in v is a right eigenvector of GS associated to λ. Indeed:

Tsv = λv

⇔ DA
−1Av = λv

⇒ KT
in Kout KT

in v = λ KT
in DAv

⇔ G KT
inv = λDG KT

in v

⇔ Gs wR = λwR.

Similarly, the left eigenvector of Gs associated to λ is given by wL = KT
outv.

Appendix B. First Order Approximation of the Spectral Gap for Regular Network

We provide here the development to obtain the first order approximation of the shift of the spectral
gap of a regular network. The eigenvalue of the transition matrix Ms is λ = λ0 + ελ∗, where λ0 is an
eigenvalue of Gs. The goal is to find the perturbation on the eigenvalue λ∗. The right eigenvector xR
of Ms associated to λ may also be expressed as xR = wR + εyR, where wR is a right eigenvector of Gs

associated to λ, and this leads to

MsxR = (Gs + εP)(wR + εyR) (A1)

λxR = (λ0 + ελ∗)(wR + εyR). (A2)

By definition of an eigenvector, (A1) and (A2) are equal. Keeping the terms in ε yields to

wT
L PwR + wT

L GsyR = λ∗ wT
L wR + λ0 wT

L yR. (A3)

Isolating λ∗ in (A3) leads to the Equations (7) and (8):

λ∗ =
wT

L PwR

wT
L wR

=
vT

RKoutPKT
invR

vT
RKoutKT

invR

=
vT

RKoutPKT
invR

λ0vT
RDAvR

As discussed, λ∗ takes the sign of λ0, so under positive backtracking bias ε, the eigenvalues of the
transition matrix are shifted away from 0, resulting in a decrease of the spectral gap.
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