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Abstract: Automated analysis of the electroencephalographic (EEG) data for the brain monitoring of
preterm infants has gained attention in the last decades. In this study, we analyze the complexity of
neonatal EEG, quantified using multiscale entropy. The aim of the current work is to investigate how
EEG complexity evolves during electrocortical maturation and whether complexity features can be
used to classify sleep stages. First , we developed a regression model that estimates the postmenstrual
age (PMA) using a combination of complexity features. Then, these features are used to build a
sleep stage classifier. The analysis is performed on a database consisting of 97 EEG recordings from
26 prematurely born infants, recorded between 27 and 42 weeks PMA. The results of the regression
analysis revealed a significant positive correlation between the EEG complexity and the infant’s age.
Moreover, the PMA of the neonate could be estimated with a root mean squared error of 1.88 weeks.
The sleep stage classifier was able to discriminate quiet sleep from nonquiet sleep with an area under
the curve (AUC) of 90%. These results suggest that the complexity of the brain dynamics is a highly
useful index for brain maturation quantification and neonatal sleep stage classification.
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1. Introduction

According to the World Health Organization (WHO), approximately 15 million babies are born
prematurely every year, and the number of births before 37 completed weeks of gestation is still
rising [1]. Due to the advancements in the Neonatal Intensive Care Unit (NICU), the survival rates of these
infants have increased over the course of severaldecades. However, these babies are more susceptible to
brain damage and are prone to neurological impairment. As a result, focus has shifted towards close
monitoring of the brain development during the first critical weeks of life [2]. Electroencephalography
(EEG) is a valuable noninvasive method for the continuous bedside monitoring of the cerebral function
of these vulnerable babies in the NICU. Assessment of the brain maturation by automatic analysis
of the neonatal EEG can assist clinicians in starting timely treatment, monitoring the evolution of
the baby, and predicting the neurodevelopmental outcome. As a result, a great deal of literature
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has focused on the extraction of features from the EEG that reflect electrocortical maturation of
the neonate (e.g., continuity features [3,4], spectral features [5,6], and connectivity features [7,8]).
Besides, the sleep state organization undergoes fast development during their stay in the NICU and
provides information about their functional brain maturation. Hence, several algorithms have been
developed for automatic sleep stage classification in neonates [9,10]. More recently, attention has
focused on nonlinear dynamical analysis of neonatal EEG as well. Few studies have carried out a
dimensional analysis of the neonatal EEG during sleep at increasing age [11,12]. They investigated
the correlation dimension of a single EEG channel and revealed a positive correlation between the
dimensional complexity and the neonate’s age. Furthermore, they observed a significant difference
in EEG complexity between the preterm and fullterm population. According to Janjarasjitt et al. [13],
the dimensional complexity tends to be higher during active sleep than during quiet sleep. In addition,
the sample entropy of the neonatal EEG has been explored by Zhang et al. [14]. They reported an
increase of sample entropy up to term age, and found that the sample entropy is higher during active
sleep compared to quiet sleep.

In this paper, multiscale entropy will be employed to quantify the complexity of the EEG time
series. This method calculates the sample entropy over multiple time scales, exploiting the fact that
complex systems are characterized by dynamics at multiple scales. Multiscale entropy has been
successfully applied to a wide range of biological signals, such as heart rate variability [15], EEG [16],
and electromyography (EMG) [17]. During aging or disease, a reduction of the complexity of the
physiologic system is generally observed due the reduced capacity of the system to adapt to stress [18].
The underlying idea for this study is that—in contrast with the loss of the complexity during aging—the
rapid changes in the developing brain will result in more complex brain dynamics. We expect that this
increase of complexity of the brain dynamics will be reflected in the EEG.

The purpose of this paper is to investigate the EEG complexity measured by multiscale entropy for
brain maturation quantification as well as for sleep stage discrimination. To examine the relationship
between the complexity measured by multiscale entropy and the postmenstrual age, a correlation
and regression analysis have been performed. Besides, in order to identify how the nonlinear brain
dynamics relate to the sleep state, a sleep stage classifier based on complexity features has been
developed. The performance of these two methods has been tested on a large database of preterm
patients to prove that the extracted complexity features can serve as a brain maturation index.

The paper has been organised as follows. First, an overview of the database and the preprocessing
of the EEG is given. Secondly, the procedure to compute multiscale entropy is presented. In the
following section, the linear regression and classification model will be thoroughly explained. Finally,
the findings of this research will be presented and discussed.

2. Materials and Methods

2.1. Database

The dataset used in this study consists of 97 multichannel EEG recordings from 26 preterm
neonates with a postmenstrual age (PMA) ranging from 27 weeks to 42 weeks (33.96 ± 3.33 weeks).
The neonates included in this study were born prematurely before 32 weeks of gestation
(28.74 ± 2.33 weeks). On average, the first EEG recording of each patient was measured 2 weeks
after birth (2 days–5 weeks plus 3 days), and serial recordings were performed with at least two
recordings per subject. All babies recruited for this study had a normal neurodevelopmental outcome
score at 9 and 24 months corrected age.

The EEG signals were recorded between 2012 and 2014 at the Neonatal Intensive Care Unit
of the University Hospitals Leuven, Belgium. Informed parental consent was obtained for each
recruited patient and the study was approved by the Ethics Committee of the University Hospitals of
Leuven. Nine channels of monopolar EEG recording (namely Fp1, Fp2, C3, C4, T3, T4, O1, O2, and
reference electrode Cz, recorded using the modified 10–20 EEG recording system) were used. However,
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the reference channel Cz was disregarded during the analysis. The duration of the EEG recordings
ranged from 2 h to 25 h 57 min, with an average recording length of 6 h 57 min. Two independent expert
clinicians carried out annotation of quiet sleep segments based on visual analysis of video EEG. Other
vigilance states, such as active sleep and awake, are considered nonquiet sleep. In some recordings
(mainly in the long EEG measurements from 36 weeks PMA on), the quiet sleep (QS) labelling was
stopped before the end of the recording. As a result, the average length of the labelled EEG recordings
is 5 h 4 min (1 h 33 min–10 h 9 min). The total quiet sleep duration in the labelled dataset used for the
regression analysis is 121 h 41 min. All EEG time series were recorded at a sampling rate of 250 Hz.
Neither preselection of data segments, nor artefact rejection has been applied.

The first preprocessing step consisted of resampling all time series to 125 Hz. Next, the EEG
signals were bandpass filtered between 1 and 20 Hz, in order to avoid distortion by artefacts while
retaining most of the neural activity. The filter was applied twice, once forwards and once reversed,
resulting in a zero phase filtering.

2.2. Multiscale Entropy

A well-known method for assessing the complexity of physiological signals is multiscale entropy.
Multiscale entropy, developed by Costa et al. [19], quantifies the degree of irregularity of the time
series across multiple scales. In contrast with the traditional single-scale entropy measures, multiscale
entropy can account for structures with long-range correlations on multiple time scales present in
complex systems, and will not assign a high complexity to completely random signals which are not
truly complex [19,20].

The procedure to compute the multiscale entropy of a signal consists of two steps. The signal is
first coarse-grained according to the scale factor τ. The time series {x1,x2,. . . ,xi,. . . xN} is segmented
into nonoverlapping windows of length τ and the mean of the data points in each of these windows is
computed. Thus, each element of the coarse-grained time series is computed as:

yτ
j =

1
τ

jτ

∑
i=(j−1)τ+1

xi, 1 6 j 6
N
τ

resulting in a new time series yτ = {yτ
j , j = 1, ..., N

τ }. This coarse graining procedure corresponds to

applying a moving average filter
(

yτ
j = 1

τ

τ−1
∑

k=0
x(j− k), 1 6 j 6 N

)
followed by downsampling with

a factor τ [21,22]. The length of the coarse-grained time series is equal to the length of the original
signal divided by the scale factor τ. At scale 1, the original time series will be obtained. The next step
is to calculate the sample entropy for each coarse-grained time series. Sample entropy is a measure of
irregularity or unpredictability of the signal. It is calculated as the negative natural logarithm of the
conditional probability that two sequences of m consecutive points similar within a tolerance r will
also be matching if an extra point is added to the sequence [23].

The tolerance is typically set as a percentage of the standard deviation of the original time
series. This normalization prevents the result from beingaffected by the variance of the signal [19,23].
In the present paper, the embedding dimension m was chosen equal to 2 and tolerance was set as
0.2× standard deviation [14,24]. Eventually, the output of the multiscale entropy analysis is a curve of
sample entropy in function of scale [19].

Prior to computing the multiscale entropy of the neonatal EEG time series, the signals were
segmented into epochs of length N. There are multiple factors to take into account when optimizing
the window length. To acquire a reliable entropy estimate, the number of data points should be
large enough [19]. If the window length is too short, it is possible that no template matches will
be found, hence the entropy will be undefined. An important consideration in the choice of the
window length N is that the length of the coarse-grained sequence is reduced progressively with
increasing scale. In this study, the largest analyzed scale τ is equal to 20, thus the shortest sequence
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will have length N
20 . Figure 1 illustrates the multiscale entropy of channel C3 of a neonatal EEG

recording during quiet sleep evaluated at three different window lengths: 10 s (1250 samples), 100 s
(12,500 samples), and 200 s (18,750 samples). The graph shows that from a certain window length
on, the mean is no longer affected, while the standard deviation slightly reduces with longer epochs.
However, the computational time is inversely proportional to the window length. As a result, the
choice of window length is a trade-off between accuracy, robustness, and computational time. Since
the reduction in standard deviation in 200 s versus 100 s is negligible and the computational time is
reasonable, the window length is chosen to be equal to 100 s.
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Figure 1. The multiscale entropy computed using three different window lengths: 10 s, 100 s, and 200 s.
The symbols represent the mean, and the error bars the standard deviation. The consistency of the
entropy estimation is lost if the window length is too short. The sample entropy is even undefined at
scale 20 for a window length of 10 s.

2.3. Feature Extraction

After quantifying the multiscale entropy of each EEG channel, four features were extracted from
the multiscale entropy curve: (1) the area under the multiscale curve (this will be referred to as the
complexity index); (2) the average slope of the multiscale entropy curve in the small scales (scale 1–5);
(3) the average slope of the curve in the large scales (scale 6–20); and (4) the maximum value of the
multiscale entropy curve. Thus, in total, a set of 32 (8 channels× 4) features are extracted. A correlation
analysis and linear regression will be performed in order to investigate the relationship between the
complexity features and the patient’s age during quiet sleep. Moreover, a classifier to discriminate
quiet sleep from nonquiet sleep using these features will be developed. A more elaborate description
of the regression and classification model are given in the next sections.

2.4. Correlation and Linear Regression Analysis

To prepare the feature matrix for the correlation and linear regression analysis, all data points
during quiet sleep within a recording were averaged, resulting in one data point for each recording
(97 in total). The Pearson correlation coefficient ρ between each of the complexity features and the
response variable was then computed using the complete dataset. Moreover, the number of times that
this correlation was significant (p < 0.05) was calculated.

To increase the robustness and reliability of the results, the regression analysis was repeated
100 times, and in each iteration the dataset was randomly split into a training and test set with a
70–30 ratio. The training set was used to build the model, while the prediction error of the model was
assessed on the independent test set. The median and interquartile range of the performance measures
are reported. For each complexity feature, a linear regression model explaining the relationship
between the feature and the PMA was estimated on the training set. The coefficient of determination,
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R2, was computed for the test set as: R2
test = 1 − Σ(ytest−ŷtest)

2

Σ(ytest−ytest)
2 , where ytest denotes the observed

response variable, ytest is its mean, and ŷtest is the corresponding predicted value [25]. Finally, the
PMA estimation is evaluated on the test set using the square root of the mean squared error (

√
MSE).

In the second step, several complexity features were combined in a multiple regression.
First, features that did not have a significant correlation with the response variable were removed.
Afterwards, selection of the most relevant features was carried out using the least absolute shrinkage
and selection operator (LASSO) algorithm. This method forces regression coefficients to zero and tends
to avoid collinear predictors [26]. The LASSO algorithm was performed 100 times, and the features
that were selected more than 80 times were withheld to build the multiple regression model. The R2 is
again computed for the test set. At last, the predictive power of the model is quantified by computing
the root mean squared error of the test set.

2.5. Sleep Stage Classification

To investigate how powerful the complexity features are in identifying neonatal sleep stages,
a sleep stage classifier was developed using LS-SVMlab [27,28]. The complete feature matrix X ∈ IRN×d

consists of N = 17,600 datapoints (NQS = 4356, NNQS = 13,244) and d = 32 features. To cope with the
large number of datapoints, a fixed-size least squares support vector machine (LS-SVM) was adopted.
This method selects a (small) fixed number of training datapoints M (M � N) representing the
underlying distribution of the dataset through maximization of the quadratic Renyi entropy [29].
A Radial Basis Function (RBF) kernel was used during this active selection of the support vectors, and
its bandwidth parameter was computed according to the rule of thumb: σ2 = factor× d×mean[var(X)],
where d is equal to the number of features, and var(X) = [var(x1) var(x2) ... var(xd)] with xi ∈ IRN [30].
The factor was tuned experimentally and set equal to 0.1. The number of support vectors M that are
selected in an iterative way was set equal to 1500.

As we expect that the maturational effect will also play a role during sleep stage classification,
the observations were divided into three groups according to their PMA: recordings before 31 weeks
(N<31 = 2395), in the range from 31 to 37 weeks (N31−37 = 10,901), and EEGs recorded beyond
37 weeks PMA (N>37 = 4304) [31]. To assure that not all training datapoints were drawn from
1 sleep state, the number of training datapoints selected from a specific sleep state was proportional
to its representation in the complete dataset. Similarly, the ratio of the number of observations for a
specific age group was preserved.

The hyperparameters of the LS-SVM model with Gaussian RBF kernel were then tuned using
10-fold cross-validation, resulting in a regularization parameter γ = 52.02 and a squared bandwidth
σ2 = 283.88. After training the LS-SVM classifier, the classification performance was tested on all
remaining samples. As the complexity of the EEG is expected to evolve throughout age as well, we are
interested in both the overall classification performance and in the classification power for each of the
age groups separately. The receiver operating characteristic (ROC) curves will be constructed for the
four test sets and the performance will be measured as the area under the curve (AUC).

2.6. Topological Analysis

In addition to the evolution of EEG complexity with age and sleep stage, topological differences
are of great interest as well. Since the complexity features were computed for each of the EEG channels,
it is possible to investigate how the complexity changes are dependent on the brain region. For this
analysis we focused on the complexity index (area under the multiscale entropy curve) and we divided
the recordings into four age groups: below 31 weeks, from 31 to 34 weeks, from 34 to 37 weeks, and
above 37 weeks. The spatial map was then computed by taking the group average of the complexity
index during a specific sleep stage for a specific age range. In addition, we explored whether there is a
dominance of 1 of the 2 brain hemispheres.
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3. Results

In this section, the results of the neonatal EEG complexity analysis will be presented. The first
section focuses on the results of the linear regression analysis and will indicate how well a combination
of complexity features can predict the PMA of a neonate. The second section provides the results of
the sleep stage classification based on these features. At last, the observed topological changes of the
complexity index will be briefly summarised.

3.1. Linear Regression Analysis

After performing a correlation analysis between each feature and the response variable,
the significance of the correlation was checked. The eight features representing the average slope in the
large scales were removed, since for most channels these features did not have a significant correlation
with age. All the remaining features had a significant positive correlation with PMA.

The LASSO algorithm selected a subset of 16 features; all of these were chosen at least 96 out of
100 times (see the last column of Table 1). The top part of Table 1 shows the results of the correlation
and regression analysis for each of the chosen features separately. Each of the single predictors could
estimate the age of the neonate with a

√
MSE in the range of 1.93–2.31 weeks.

Table 1. The top of the table provides the results of the correlation and regression analysis for each
feature that has been selected by the least absolute shrinkage and selection operator (LASSO) algorithm
separately. The bottom of the table presents the performance of the multiple regression combining all
16 features. The correlation coefficient ρ for the complete dataset, and the median and interquartile
range of the R2 and root mean squared error for the test set are set out. The last column indicates how
many times each feature was selected by LASSO.

Feature(s) ρ R2
test

√
MSE (wks) # Selected LASSO

Complexity Index
C3 0.76 0.54 (0.19) 2.17 (0.52) 99
T3 0.81 0.66 (0.14) 1.93 (0.42) 100

Average slope in small scales

Fp1 0.76 0.56 (0.19) 2.17 (0.49) 99
Fp2 0.75 0.53 (0.19) 2.19 (0.39) 99
C3 0.78 0.55 (0.19) 2.16 (0.45) 99
C4 0.80 0.64 (0.14) 1.96 (0.40) 100
T4 0.80 0.61 (0.15) 2.01 (0.56) 100
O1 0.78 0.61 (0.17) 2.03 (0.38) 99
O2 0.77 0.56 (0.16) 2.15 (0.36) 100

Maximum of multiscale entropy curve

Fp1 0.77 0.59 (0.15) 2.12 (0.30) 99
Fp2 0.76 0.52 (0.19) 2.25 (0.52) 99
C4 0.79 0.60 (0.18) 2.03 (0.39) 96
T3 0.80 0.61 (0.15) 1.98 (0.49) 99
T4 0.79 0.61 (0.17) 2.00 (0.44) 100
O1 0.75 0.55 (0.18) 2.19 (0.38) 99
O2 0.74 0.52 (0.11) 2.31 (0.29) 99

Combination of 16 selected features 0.69 (0.13) 1.88 (0.36)

The performance of the multiple regression model, where all 16 features selected by LASSO are
combined, is presented in the bottom of Table 1. Using this model, the age of the neonate could be
estimated with a root mean squared error of 1.88 weeks and a coefficient of determination of 0.69.

The boxplot in Figure 2a shows the trend of the complexity index averaged over all EEG channels
with increasing age, while Figure 2b gives an example of a fitted linear regression model for the
complexity index of electrode T3. Both figures confirm that there is a significant increase of the
complexity of the brain dynamics during maturation.
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(a) (b)

Figure 2. (a) Boxplots of the complexity index averaged over all channels for both quiet sleep (QS) and
nonquiet sleep (NQS). A clear increase of electroencephalogram (EEG) complexity can be observed in
both sleep stages. Moreover, the complexity index is higher during nonquiet sleep compared to quiet
sleep. (b) The relationship between the complexity index of channel T3 and the postmenstrual age
(PMA) fitted by simple linear regression.

3.2. Sleep Stage Classification

This part of the analysis aimed to investigate how the complexity of the EEG changes dependent
on the vigilance state. First of all, the boxplot in Figure 2a indicates that on average the complexity
index tends to be higher during nonquiet sleep compared to quiet sleep.

The performance of the LS-SVM classifier is shown by means of ROC curves in Figure 3. The left
panel shows the ROC curve for the complete test set with an AUC of 90%, whereas the right panel
illustrates how the classifier performs on the different age groups. The oldest group has the best
performance with an AUC of 95%, the middle group has an AUC of 90%, and the classifier performed
worst at the youngest age with an AUC of only 76%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 - Specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
tiv

ity

ROC

All data, AUC = 0.90

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 - Specificity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
tiv

ity

ROC

< 31 wks, AUC = 0.76
31-37 wks, AUC = 0.90
>37 wks, AUC = 0.95

(b)

Figure 3. (a) The receiver operating characteristic (ROC) curve, with an area under the curve (AUC) of
90%, showing the performance of the sleep stage classifier on the complete test set. (b) The ROC curves
when the least squares support vector machine (LS-SVM) classifier was applied on recordings from the
different age groups. The blue curve is the ROC curve of the recordings below 31 weeks PMA and has
an AUC of 76%. The red curve represents the ROC of the recordings between 31 and 37 weeks PMA.
For this age group the AUC is 90%. The green curve shows the ROC for all recordings of the oldest
group. The classifier performed best on this age group with an AUC of 95%.
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3.3. Topological Analysis

The topoplots of the group average of the complexity index during quiet sleep and nonquiet sleep
are presented in Figure 4a,b, respectively. The color indicates the value of the complexity index at the
different brain areas, and the black dots represent the position of the eight EEG electrodes.

To begin with, the colorbars show a rise of the complexity index with postmenstrual age within
each sleep state. On top of that, comparison of the colorbars between the vigilance states for the same
age group reveals that complexity index was generally higher during nonquiet sleep than during quiet
sleep. These findings confirm the results of the correlation analysis described above and is in line with
the trends that can be seen in the boxplots in Figure 2a.

From Figure 4a, it can be seen that the central derivation was dominant below 31 weeks PMA
during quiet sleep. In the second age group, from 31 to 34 weeks PMA, the EEG complexity exhibited
the highest value in the central and occipital regions. From 34 weeks PMA onwards, the temporal
electrodes gained importance as well. Beyond 34 weeks PMA, the spatial maps remained static,
with highest EEG complexity in the central, temporal, and occipital regions.

During nonquiet sleep, the topological changes in brain complexity were less pronounced. As during
quiet sleep, central complexity predominated at the youngest age. Between 31 and 34 weeks PMA,
a spread towards the frontocentral region can be observed. In the oldest age groups, the frontotemporal
areas exhibited the highest complexity index.

However, conclusions drawn from these topoplots should be interpreted with caution, as only
the group average was investigated and the variability among the recordings was disregarded.
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Figure 4. (a) The group average of the complexity index during quiet sleep. (b) The group average of
the complexity index during nonquiet sleep.

4. Discussion

This study was set out with the aim of assessing the neural complexity of multichannel EEG
recordings in preterm infants. The first part of the analysis demonstrated that there was a significant
positive correlation between the EEG complexity and the PMA. Moreover, we have predicted the age
of the patient using a regression model based on EEG complexity features. In the second part of the
analysis, these complexity features were employed to build a neonatal sleep stage classifier. The high
performance of this classifier indicates that the complexity of brain dynamics exhibit fundamental
differences between vigilance states in preterm infants. To conclude, the spatiotemporal plots of the
complexity suggest that the central area is most complex below 31 weeks in both sleep states. During
quiet sleep, the predominance of the central area shifts towards the occipital and temporal regions
with increasing age.
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The maturational trend observed in the complexity features confirms the hypothesis and is in line
with the results of prior studies [11,12]. This increase in EEG complexity can be attributed to changes
in the dynamics of the underlying neural networks during cortical maturation [13]. In this paper a
regression model, relying solely on complexity features, is used to predict the patient’s PMA. The best
estimate of the PMA has a

√
MSE of 1.88 weeks, which is comparable to the results reported in [6,32].

In accordance with literature, we found that the neural complexity is dependent on the sleep
stage [13,14]. By developing a classification model that is able to identify neonatal sleep stages,
the present study contributes additional evidence suggesting that brain dynamics are different in quiet
sleep compared to nonquiet sleep. It is interesting to note that the performance of the proposed sleep
stage classifier depends on the PMA. A possible explanation for this might be the maturational effect.
Even though sleep state organization starts at 27 weeks, sleep–wake cycles can only be differentiated
at around 31 weeks PMA [33]. Therefore, sleep stage discrimination below 31 weeks is challenging
both for clinicians and for the algorithm. Another factor that may explain the worst performance for
recordings before 31 weeks PMA is the imbalance of the age groups. With only 14% of the training
data coming from recordings of the youngest age group, this group is underrepresented in the training
set. As a consequence, the classifier might be biased towards other, more represented, age groups.
In contrast with the approach taken here, it is also possible to train a separate classifier for the different
age groups. These age-specific models will probably outperform the presented classifier. However,
since the model is tailored to a specific PMA range, it will be less useful in clinical practice.

By computing the complexity for all EEG channels, spatiotemporal information can be extracted.
This topological analysis can shed more light on the electrophysiological aspects of the study. One of
the hallmarks of preterm EEG are delta brushes. At first these complexes tend to appear in the central
brain regions; from around 31 weeks onwards they become more predominant in the temporal-occipital
regions [34]. This pattern, with the dominant area moving from the central towards temporal-occipital
regions, corresponds to what is observed in the topoplots of the complexity during quiet sleep.
The patterns in the spatial maps during nonquiet sleep are more difficult to interpret. The dominance
of the central regions at the youngest age corresponds to what has been found during quiet sleep,
but we could not find a clinical explanation for the spread towards the frontal and temporal areas
with increasing age. This might be due to the fact that nonquiet sleep incorporates both active sleep
and being awake. Moreover, artefacts are more likely to occur during nonquiet sleep and might have
affected the spatial maps.

The presented research has multiple clinical implications. To begin with, the results of the analysis
show that the neonatal EEG complexity is a marker of brain maturation and can assist clinicians in
evaluating the neurological function of the infant. Moreover, aberrations in the complexity features can
play a major role in identifying neonates at increased risk for neurodevelopmental delay which need
close cot-side EEG monitoring. In this way, neuroprotective interventions can be started early after
diagnosis and the efficacy of the therapy can be monitored.In addition, we proved that the complexity
features can be used to automatically classify neonatal sleep stages. Since the sleep state organization is
evolving throughout maturation, sleep–wake cycling can provide information about the neurological
well-being of the infant. Besides, sleep stage monitoring is practical in order to promote ideal neonatal
sleep and avoid disruption of the infant’s sleep during care routines in the NICU.

In the present study, promising results were obtained using multiscale entropy to analyse the
complexity of the neonatal EEG. However, extensions of multiscale entropy or other advanced methods
to assess signal complexity can be adopted in future investigations [35,36]. One of the limitations of the
current study is that the EEG was only recorded in neonates with normal neurodevelopmental outcome
up to 42 weeks PMA. According to the existing literature and the well-known “loss of complexity”,
a reduced complexity of the brain dynamics is expected in preterm infants with poor outcome [18,24].
In order to confirm this hypothesis, further research in a cohort with unfavourable prognosis must
be carried out. Moreover, to develop a full picture of the EEG complexity, future investigations must
establish the behaviour of the EEG complexity beyond 42 weeks PMA. On top of that, an important
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issue for future research is to reveal how the observed complexity changes are related to structural
changes in the underlying brain structure. For this purpose, a simultaneous neuroimaging study
would be of great interest. Since the results presented in this paper strengthen the idea that the EEG
complexity is highly useful in tracking brain maturation, and linear and nonlinear features can provide
complementary information, a natural progression of this work is to combine the presented nonlinear
complexity features with previously developed features to quantify neurodevelopment.

5. Conclusions

In this paper, we investigate how the complexity of the EEG can be used to quantify brain
maturation and to classify sleep stages in preterm infants. A multiple regression model based on a
combination of EEG complexity features derived from the multiscale entropy curves could predict the
age of the neonates with a

√
MSE of 1.88 weeks. Moreover, a classifier relying on these features could

identify neonatal sleep stages with an AUC of 90%. These findings indicate that EEG complexity is
able to quantify brain maturation and discriminate neonatal sleep stages. In summary, these results
show that EEG complexity is a valuable feature in the neuromonitoring of preterm infants.
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