
entropy

Article

A PUT-Based Approach to Automatically Extracting
Quantities and Generating Final Answers for
Numerical Attributes
Yaqing Liu 1,*, Lidong Wang 2, Rong Chen 1, Yingjie Song 3 and Yalin Cai 1

1 School of Information Science & Technology, Dalian Maritime University, Dalian 116026, China;
rchen@dlmu.edu.cn (R.C.); cyllc2015@163.com (Y.C.)

2 Department of Mathematics, Dalian Maritime University, Dalian 116026, China; ldwang@hotmail.com
3 School of Computer Science and Technology, Shandong Institute of Business and Technology, Yantai 264005,

China; tiantianyingjie@gmail.com
* Correspondence: liuyaqing@dlmu.edu.cn; Tel.: +86-411-8472-3669

Academic Editor: Andreas Holzinger
Received: 14 January 2016; Accepted: 12 June 2016; Published: 22 June 2016

Abstract: Automatically extracting quantities and generating final answers for numerical attributes
is very useful in many occasions, including question answering, image processing, human-computer
interaction, etc. A common approach is to learn linguistics templates or wrappers and employ
some algorithm or model to generate a final answer. However, building linguistics templates
or wrappers is a tough task for builders. In addition, linguistics templates or wrappers are
domain-dependent. To make the builder escape from building linguistics templates or wrappers,
we propose a new approach to final answer generation based on Predicates-Units Table (PUT),
a mini domain-independent knowledge base. It is deserved to point out that, in the following cases,
quantities are not represented well. Quantities are absent of units. Quantities are perhaps wrong
for a given question. Even if all of them are represented well, their units are perhaps inconsistent.
These cases have a strong impact on final answer solving. One thousand nine hundred twenty-six
real queries are employed to test the proposed method, and the experimental results show that the
average correctness ratio of our approach is 87.1%.

Keywords: numerical attribute; information extraction; quantity; entity extraction

1. Introduction

Quantity extraction for numerical attribute is very useful in many occasions including
question answering [1], image processing [2], human-computer interaction [3], etc. For example,
quantity extraction is necessary to final answer solving for a numerical question in question
answering. Extracted quantity (e.g., size of a physical object) is helpful to distinguish physical
objects in image processing. In addition, extracted quantity is helpful to find incorrect input in
human-computer interaction. However, it is a hard and intensive work to extract a quantity manually.
Hence, automatically extracting quantities and generating final answers for numerical attributes
is emphasized.

For general entity extraction, a common approach to final answer generation is to extract the
candidate entities from information sources. Consequently, candidate entities are classified by semantic
similarity. At last, the most frequent candidate entity is selected as the final answer. For numerical
attributes, the process of final answer generation is a little different. If there is not the most frequent
quantity, an alternative approach is to calculate the average value of all quantities as the final answer.
However, they are not sometimes represented well. Some are absent of units. Some are perhaps wrong
for a given question. Even if all of them are represented well, their units are perhaps inconsistent.

Entropy 2016, 18, 235; doi:10.3390/e18060235 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy

Entropy 2016, 18, 235 2 of 14

These exceptions have a strong impact on final answer generation. An example is “What is the length
of an automobile?” The quantity set is {4420, 166.25, 114, 106, 114, 5.0165, 4.19608, 3.9116, 4.93014}.
Each quantity is absent of units. One hundred fourteen is selected as the final answer because it
is the most frequent quantity. Obviously, the final answer is unmeaning because the unit is absent.
Another example is “What is the weight of a dog?” The quantity set is {(2.0, kg), (2.5, kg), (10.0, kg),
(50.0, cm), . . . }. Obviously, (50, cm) is a wrong quantity and should be dropped. Since the quality of
the final answer depends on quantities, the keynote of our strategy is to drop all wrong quantities,
keep all correct quantities, and infer units of the quantities which are absent of units. In addition,
compared to a general entity, the quantity of numerical attributes is likely used as an operand for
a complex numerical question. For instance, the answer (105.4, km2) is used as an operand to solve the
question “How many times the area of Beijing is larger than Paris?” Obviously, accuracy of the answer
of the question depends on accuracies of the operands. The more accurate are the operands, the
more accurate is the answer of question. This shows that answer solving for numerical questions is
worth exploring.

This paper is organized as follows: Section 2 focuses on some preliminaries; Section 3 focuses on
the proposed strategy; Section 4 focuses on the experiments and evaluation; and Section 5 focuses on
related work. The paper finishes in Section 6, in which conclusions are drawn.

2. Preliminaries

Definition 1. A query q is 2-tuple q = (subj, pred), where subj is the subject of q and pred is the predicate of q.

For example, q = (earth, radius) is a query that means “What is the radius of the Earth?”, and earth is
the subject of q. radius is the predicate of q.

Definition 2. For a query q, quantity set CASq is defined as CASq = {cai = (valuei, uniti)|1 <= I <= |CASq|}.
CASq is returned when q is submitted to Sindice [4], a semantic searing engine. For any cai P CASq, cai is said
to be a quantity, valuei is said to be a value of cai, and uniti is said to be a unit of cai.

For example, one of the quantities is (6371 km) when query q = (earth, radius) is submitted
to Sindice. This means that the radius of the earth is 6371 kilometres. Note that quantities are
sometimes absent of units for some queries. For example, one of the quantities is 1,321,851,888 when
a query q = (China, population) is submitted to Sindice. To apply the same format to represent these
quantities which are absent of units, we use “count” as the unit of the quantity which is absent of unit.
For example, the quantity 1,321,851,888 is represented as (1,321,851,888, count).

Definition 3. Predicates-Units Table PUT is defined as {PUi = (ti, Pi, Ui, si, URi, Eqi)|1 < = I <= |PUT|}.
For any PUi = (ti, Pi, Ui, si, URi, Eqi) P PUT, PUi is called a predicates-units. ti is a semantic type of PUi
and is also the identification of PUi. The first letter of ti is capitalised. Pi is a set of predicates that have the
common semantic type ti. For any p P Pi, ti is a semantic type of p. Ui is a set of units that have common
semantic type ti. For any u P Ui, ti is a semantic type of u. si P Ui is an SI unit of PUi. URi is defined as {(unitj,
ratioj)|unitj P Ui, 1 <= j <= |Ui| and ratioj is a digital}. Mathematics equations between units are given in
tuple Eq. Let T be {t1, t2, . . . , t|PUT|}.

A segment of PUT is shown in Table 1. For example, (Distance, {length, height, width, radius,
diameter}, {metre, millimetre, inch, foot, yard, centimetre, kilometre}, metre, {(metre, 1), (millimetre, 1000),
(inch, 39.37), (foot, 3.28), (yard, 1.09), (centimetre, 100), (kilometre, 0.001)}) is a predicates-units.

Definition 4. For a quantity ca = (value, unit), t is a semantic type of ca if (t, P, U, s, UR, Eq) P PUT ^ unit
P U holds. Otherwise, count is said to be a semantic type of ca.

Definition 5. For a set of quantities CA = {ca1, ca2, . . . , can}, t is semantic type of CA if for any two ai, aj P

CA, the semantic types of both ai and aj are t.

Entropy 2016, 18, 235 3 of 14

Table 1. A segment of the Predicates-Units Table.

No. t P U s UR Eq

1 Distance

length
height
width
radius

diameter

metre

metre

metre 1

(1 m) = (1000 mm) = (39.37 inch) = (3.28 foot) =
(1.09 yard) = (100 cm) = (0.001 km)

millimetre millimetre 1000
inch inch 39.37
foot foot 3.28
yard yard 1.09

centimetre centimetre 100
kilometre kilometre 0.001

2 Mass
mass

weight

kilogram
kilogram

kilogram 1 -
gram gram 1000 (1 kg) = (1000 g) = (2.2 pound)

pound pound 2.2 -

3. Our Approach

The framework for final answer solving is displayed in Figure 1.

‚ Step 1: According to the predicate pred of a query q(subj, pred) and PUT, compute the semantic
type tq of CASq. Proceed to step 2.

‚ Step 2: If tq is included in T, proceed to step 3. Otherwise, delete quantities with units from CASq

and proceed to step 4.
‚ Step 3: Delete quantities for which the semantic types are different than both tq and count. Try to

infer the units of quantities which are absent of units. Unify units of quantities to the SI unit.
‚ Step 4: Solve the final answer. If the most common quantities occurs at least twice as often as

the second most common quantity, the most common quantity is chosen as the final answer.
Otherwise, if there is no obvious single quantity for a correct answer, the average value is chosen.

Entropy 2016, 18, 235 3 of 13

Table 1. A segment of the Predicates-Units Table.

No. t P U s UR Eq

1 Distance

length
height
width
radius

diameter

metre

metre

metre 1

(1 m) = (1000 mm) = (39.37 inch) = (3.28 foot) =
(1.09 yard) = (100 cm) = (0.001 km)

millimetre millimetre 1000
inch inch 39.37
foot foot 3.28
yard yard 1.09

centimetre centimetre 100
kilometre kilometre 0.001

2 Mass
mass

weight

kilogram
kilogram

kilogram 1 -
gram gram 1000 (1 kg) = (1000 g) = (2.2 pound)

pound pound 2.2 -

3. Our Approach

The framework for final answer solving is displayed in Figure 1.

 Step 1: According to the predicate pred of a query q(subj, pred) and PUT, compute the semantic
type tq of CASq. Proceed to step 2.

 Step 2: If tq is included in T, proceed to step 3. Otherwise, delete quantities with units from CASq
and proceed to step 4.

 Step 3: Delete quantities for which the semantic types are different than both tq and count. Try to
infer the units of quantities which are absent of units. Unify units of quantities to the SI unit.

 Step 4: Solve the final answer. If the most common quantities occurs at least twice as often as the
second most common quantity, the most common quantity is chosen as the final answer.
Otherwise, if there is no obvious single quantity for a correct answer, the average value is chosen.

Figure 1. The framework for final answer solving.

To make the proposed approach more comprehensible, three typical queries are introduced.
The set of quantities is stated as follow.

 query 1: q1 = (boeing747, capacity).
 query 2: q2 = (automobile, length).
 query 3: q3 = (wind turbine, capacity).

(1) Algorithm 1 is employed to obtain the semantic type of a quantity set. If predicate pred of a
query q is found in tuple P of some predicates-units, the corresponding tuple t is returned. If

Figure 1. The framework for final answer solving.

To make the proposed approach more comprehensible, three typical queries are introduced.
The set of quantities is stated as follow.

‚ query 1: q1 = (boeing747, capacity).
‚ query 2: q2 = (automobile, length).
‚ query 3: q3 = (wind turbine, capacity).

Entropy 2016, 18, 235 4 of 14

(1) Algorithm 1 is employed to obtain the semantic type of a quantity set. If predicate pred of a query q
is found in tuple P of some predicates-units, the corresponding tuple t is returned. If predicate pred of
q is not found in tuple P of any predicates-units, we aggregate answers in the quantity set according to
their semantic type. Then, we count the quantities for every division. If the semantic type of these
quantities that are in the division with the most quantities is count, count is returned. If the semantic
type of these quantities that are in the division with the most quantities is not count, the semantic type
of these quantities that are in the division with the most quantities is returned.

Semantic type Distance is returned because the predicate length of q2 is found in PUT. For queries
q1 and q3, we divide the quantity set and count the quantities for every division because the predicate
capacity for queries q1 and q3 is not found in PUT. For query q1, the number of quantities which are
absent of units can be taken as 7 7. For query q3, the number of quantities with semantic type Force
is 6. The number of quantities without units is 1. Thus, for query q1, count is returned. For query q3,
semantic type Force is returned.

Algorithm 1. computeSemanticTypeOfCAS(q, PUT)

Input: A query q = (subj, pred) and PUT.
Output: tq, semantic type of q.

1. search semantic type p which matches pred by PUT.
2. TSÐΦ

3. TVÐΦ

4. for each (value, unit) P CASq do
5. tuÐgetT((value, unit), PUT) //getT returns semantic type tu of (value, unit).
6. if tu R TS then
7. TVÐTVY{(tu,{value})}
8. TSÐTSY{tu}
9. else

10. VÐgetV(TV, tu) //getV returns the set V which meets {tu,V} P TV.
11. VÐVY{v}
12. end if
13. end for
14. return maxT(TV) //maxT returns tm which meets (tm,V) P TV and @(t’,V’) P TV, |V’|<=|V|.

(2) Algorithm 2 is employed to refine the quantity set. Noisy answers are deleted from the quantity
set. If the semantic type returned by Algorithm 1 is count, delete the quantities for which the semantic
types are not count. Otherwise, delete the quantities for which the semantic type is not count or the
semantic type returned by Algorithm 1. For queries q1, q2, and q3, the refined quantity set is displayed
in Table 2.

Algorithm 2. optimizeQuantities(CASq, PUT)

Input: CASq and PUT
Output: CASq, refined quantity set.

1. if computeSemanticTypeOfQuery(q, PUT)==count then
2. CASqÐoptimize1(CASq) // optimize1 is employed to delete quantities whose semantic

//types are not count from CASq.
3. else
4. CASqÐoptimize2(CASq) // optimize2 is employed to delete answers quantities whose

//semantic type is not count or the semantic type returned by Algorithm 1 from CASq.
5. end if
6. return CASq

Entropy 2016, 18, 235 5 of 14

Although all of CASq1, CASq2, CASq3 remain unchanged, the reasons for this are different.
For query q1, the returned semantic type is count. Since there are no quantities for which the semantic
types are not count, CASq1 remains unchanged. For query q2, the returned semantic type is Distance.
Since the semantic types of all quantities are count, CASq2 remains unchanged. For query q3, the
returned semantic type is Force. Since the semantic types of all quantities are count or Force, CASq3
remains unchanged.

Table 2. The optimized quantities CASq1, CASq2, CASq3.

CASq1 CASq2 CASq3

Value Unit Value Unit Value Unit

416 count 4420 count 3.6 megawatt
388 count 166.25 count 3.6 megawatt
388 count 114 count 3.6 megawatt
430 count 106 count 3.6 megawatt
416 count 114 count 5.5 count
416 count 5.0165 count 3,060,000 count
416 count 4.19608 count 2.3 megawatt

- - 4.93014 count - -
- - 3.9116 count - -

(3) Algorithms 3 and 4 are employed to infer the units of quantities which are absent of units. If the
semantic types of all quantities are count, Algorithm 3 is employed to infer the units of quantities which
are absent of units. First, we obtain tuple UR, which meets (qt, P, U, s, UR, Eq) P PUT. Second, we
use the k-means algorithm to obtain cluster set Cs. Initially, the parameter “k” is set between 2 to
sqrt(n), where n is the count of quantities. Consequently, we chose the optimal “k” according to DB
(Davies–Bouldin) index which was proposed by Davies et al. [5]. Euclidean distance is exploited to
calculate similarity. Third, we obtain all subsets of UR, each of which has |Cs| elements. According to
Equation (1), compute the fit degree between every subset of UR and Cs. The subset of UR that has
a maximum fit degree is used to assign the units of quantities.

Algorithm 3. inferUnits1(CASq, PUT)

Input: CASq and PUT
Output: CASq, optimized quantity set.

1. URÐgetUR(tq, PUT) // getUR returns tuple UR which meets (tq, P, U, s, UR) P PUT
2. CsÐkMeans(CASq) // kMeans is employed to cluster CASq.
3. nÐ|Cs|
4. Assign UR to Ms.
5. for each M PMs do
6. (scoreCs, M)ÐgetScore(Cs, M) // According to formula (1), getScore(Cs, M) returns M and fit

// degree between Cs and M.
7. end for
8. MMÐgetMaxModel(Ms) //getMaxModel returns MM which has the maximum scoreCs.
9. 1Ði

10. while i++<=n do
11. for each (value, unit) P csi do // csi P Cs
12. unitÐui // (ui, ri) PMM
13. end for
14. end while
15. return CASq

Entropy 2016, 18, 235 6 of 14

Score “
C

V ˆM

V
ÿ

i“1

ˆ

log
vi

Cwi

˙

2

ˆ

M
ÿ

j“1

˜

log
mj

cj

¸2

(1)

‚ V is the number of values in the selected clusters. For instance of CASq2, V can be taken as 9.
‚ C is the total number of clusters. For instance of CASq2, C can be taken as 3.
‚ M is the number of values in the selected model. For instance of CASq2, M can be taken as 8 if the

selected model is Distance.
‚ vi is the value of the ith element.
‚ wi is the identifier of the cluster to which the ith element belongs.
‚ cj is the value of jth cluster.
‚ mj is the value of the jth model’s variable.

If there exists some quantities whose semantic types are count, Algorithm 4 is employed to infer
the units of quantities which are absent of units. First, we obtain tuples UR, s and rs, which meet
(qt, P, U, s, UR) P PUT and (s, rs) P UR. Second, we unify the unit of every quantity with a unit to s.
Calculate the average value of the quantities with the unit s. Third, according to Equation (2), we
can compute the fit degree between every quantity which is absent of a unit and the average value of
quantities with unit s and then decide the unit of the quantities without units. Finally, unify the unit of
every quantity with a unit to s again.

f d “

#

1
a , a ą 1

a, a ă“ 1
, a “ p

v
m
q{p

rs
r
q (2)

‚ (v, count) P CASq

‚ m is the average value of quantities with unit st

‚ (u, r), (s, rs) P URt

Algorithm 4. inferUnits2(CASq, PUT)

Input: CASq and PUT
Output: CASq, optimized quantity set.

1. URtÐgetUR(tq, PUT) // getUR returns tuple UR which meets (tq, P, U, s, UR) P PUT
2. stÐgetS(tq, PUT) // getS returns tuple s which meets (tq, P, U, s, UR) P PUT
3. rsÐgetRatioOfs(URt) // getRatioOfs return tuple rs which (s, rs) P UR.
4. unifyUnits(CASq, URt) //According to URt, unify unit of every quantity with unit to st

5. mÐgetAverageValue(CASq, s) // getAverageValue is employed to compute the average value of

// quantities with unit st.
6. for each (value, unit) P CASq do
7. if unit==count then
8. for each (u, r) P UR do
9. UIÐ (v/ave)/(r/rs)>1? (u,1/((v/ave)/(r/rs))):(u,(v/ave)/(r/rs))

10. unitÐmaxU(UI) // maxU returns u* which meets (u*,i*) P UI and @(u,i) P UI, i<i*.
11. UIÐΦ

12. end do
13. unifyUnits(CASq, URt)
14. return CASq

For quantity set CASq2, the clusters are cluster1 = {4420}, cluster2 = {166.25, 114, 106, 114}, and
cluster3 = {5.0165, 4.19608, 3.9116, 4.93014}. The subset of UR, which has a maximum fit degree with
the cluster set, is {(millimetre, 1000), (inch, 39.37), (metre, 1)}. Hence, the units of the quantities of every

Entropy 2016, 18, 235 7 of 14

cluster are “millimetre”, “inch” and “metre”, respectively. Unify the units of quantities to “metre”.
For details, please refer to Table 3.

For quantity set CASq3, the average value of the quantities with units is (3,600,000 ˆ 4 +
2,300,000)/5 = 3,340,000 watt. The fit degree between the quantities without units and the average
value is displayed in Table 5. The UR with a maximum degree with the quantity (306,000, count) is
(watt, 1). Hence, the unit of quantity 3,060,000 is inferred as “watt”. Similarly, the unit of quantity 5.5
is inferred as “megawatt”. The units of the quantities of CASq3 are unified to “watt”. For details, one
can refer to Tables 4 and 5.

Table 3. Quantities of CASq2 after unit inference and standardization.

Old Value Inferred Units Revised Value Unified Units

4420 mm 4.42 m
166.25 inch 4.22 m

114 inch 2.9 m
106 inch 2.69 m
114 inch 4.22 m

5.0165 m 5.0165 m
4.19608 m 4.19608 m
4.93014 m 4.93014 m
3.9116 m 3.9116 m

Table 4. Fit degrees of quantities of CASq3 without units.

Quantities (Megawatt, 0.000001) (Kilowatt, 0.001) (Horsepower, 0.00136) (Watt, 1)

3,060,000 1.09 ˆ 10´6 0.001092 0.001484 0.916167665
5.5 0.607272727 0.001646707 0.001210814 1.64671 ˆ 10´6

Table 5. Quantities of CASq3 after unit inference and standardization.

Old Value Inferred Units Revised Value Unified Units

3.6 megwatt 3,600,000 watt
3.6 megwatt 3,600,000 watt
3.6 megwatt 3,600,000 watt
3.6 megwatt 3,600,000 watt
5.5 megwatt 5,500,000 watt

3060000 watt 3,600,000 watt
2.3 megwatt 2,300,000 watt

(4) Algorithm 5 illustrates how to solve the final answer. For quantities, if the most common value
of quantities occurs at least twice as often as the second most common value of quantities, the most
common value is selected as the final answer. Otherwise, if there is no obvious single quantity for
a correct answer, the average value is chosen.

Entropy 2016, 18, 235 8 of 14

Algorithm 5. getFinalAnswer (CASq)

Input: CASq

Output: answerq, final answer of q
1. VsÐdivideCandidteAnswersByValue(CASq) // partCandidteAnswersByValue is employed to divide

//quantities by their values
2. unitÐgetS(tq, PUT) // getS returns tuple s which meets (tq, P, U, s, UR) P PUT
3. if D V1 P Vs, @V2 P Vs, |V1|>=2|V2| then
4. valueÐgetElement(V1) // getElement is employed to get an element from V1

5. return (value, unit)
6. else
7. valuesÐgetValues(CASq) // getValues returns set values={value|(value, unit) P CASq}
8. return (averageValue(values), unit) //averageValue returns the average value of values
9. end if

4. Experiments and Evaluation

4.1. Dataset Collection

We employ the Sindice search engine to collect quantities. Sindice is a lookup index over
resources crawled on the Semantic Web. It allows applications to automatically locate documents
containing information about a given resource. In addition, it allows resource retrieval through
uniquely identifying inverse-functional properties, and offers a full-text search and index SPARQL
end-points. The resources that support this particular semantic search engine include DBLP, Wikipedia
article links, infoboxes, UniProt, and Geonames, etc. Around 26.6 million RDF documents have
been indexed.

4.2. Dataset Statistics

We report on experiments with eight semantic types, which are “Length”, “Weight”, “Speed”,
“Time”, “Volume”, “Area”, “Power”, “Count”, respectively. Based on the eight semantic types, we exploit
Sindice, a semantic searching engine, to get quantities. For each query, the top 20 records returned by
Sindice are retained. We extract quantities from each record to build a quantity set.

Finally, we collect 1926 real queries. The distribution is shown in Table 6. UinP is the set of queries
whose predicates are found in the unit tuple of PUT. !UinP is the set of queries whose predicates are
not found in the unit tuple of PUT. NU is the set of queries each of whose quantities is absent of units.
!NU is the set of queries whose quantities are not absent of units.

Table 6. Distribution of queries.

Distance Weight Speed Time Volume Area Power Count

UinPXNU 12 12 6 0 18 30 0 0
!UinPXNU 0 0 0 0 0 0 0 218
UinPX!NU 252 256 184 212 234 288 162 0
!UinPX!NU 6 4 0 4 4 12 8 4
In total 270 272 190 216 256 330 170 222

4.3. Dataset Validation

For any of semantic types, the number in set UinPX!NU is far more than UinPXNU, !UinPXNU,
or !UinPX!NU. Hence, the whole effect of experiments heavily depends on the effect of experiments on
UinPX!NU. According to Table 6, the proportion of UinPX!NU is far higher than UinPXNU, !UinPXNU
and !UinPX!NU for any of Distance, Weight, Speed, Time, Volume, Area, and Power. The proportion of
!UinPXNU is far higher than UinPXNU, UinPX!NU and !UinPX!NU for Count.

Entropy 2016, 18, 235 9 of 14

The correctness ratio of queries is used to evaluate our approach. The correctness ratio of queries
is calculated according to Equation (3). Correct answers are defined according to our knowledge.
A correct answer is a 3-tuples (lb, ub, SU), where, lb and ub are values, SU is a SI unit. A final answer
(v, u) is said to be correct if v is between lb and ub and u is same to SU. Otherwise, it is said to be
incorrect. For instance, the correct answer of query (dog, weight) is (1.36, 81.81, kg). If a quantity is
(30.0, kg), the quantity is said to be correct. The correctness ratio of queries is shown in Table 7.

cr “ Nc{N (3)

‚ N is the number of queries.
‚ Nc is the number of the queries for which correct final answers are returned.

Table 7. Correctness ratio of queries.

Distance Weight Speed Time Volume Area Power Count Average

UinPXNU 66.7% 50.0% 33.3% - 77.8% 73.3% - - 60.22%
!UinPXNU - - - - - - - 95.47% 95.47%
UinPX!NU 95.3% 92.1% 96.2% 92.2% 97.4% 92.6% 98.1% - 94.84%
!UinPX!NU 100% 100% 100% 100% 100% 83.3% 100% 100% 98%
Average 87.33% 80.7% 76.5% 96.1% 91.73% 83.07% 99.05% 100% 87.1%

Figure 2 illustrates the direct-viewing chart of correctness ratio of queries. For Count, the
correctness ratios of !UinPXNU and !UinPX!NU are high. Some queries fail because incorrect quantities
are not dropped.

For any of Distance, Weight, Speed, Time, Volume, Area, and Power, the correctness ratio of UinPX!NU
and !UinPX!NU are far higher than UinPXNU. It shows that it gets better results than all of the
candidate answers that are not absent of units. The correctness ratio of UinPX!NU is higher than
the correctness ratio of !UinPX!NU because the number of UinPX!NU is far more than !UinPX!NU.
For UinPX!NU and !UinPX!NU, some queries fail because incorrect quantities are not dropped.
For UinPXNU, there are two exceptions that do harm to the correctness ratio. The first exception is
that the ratio records with a maximum fit degree are possibly more than one.

Entropy 2016, 18, 235 9 of 13

Figure 2 illustrates the direct-viewing chart of correctness ratio of queries. For Count, the
correctness ratios of !UinP∩NU and !UinP∩!NU are high. Some queries fail because incorrect
quantities are not dropped.

For any of Distance, Weight, Speed, Time, Volume, Area, and Power, the correctness ratio of
UinP∩!NU and !UinP∩!NU are far higher than UinP∩NU. It shows that it gets better results than all of
the candidate answers that are not absent of units. The correctness ratio of UinP∩!NU is higher than
the correctness ratio of !UinP∩!NU because the number of UinP∩!NU is far more than !UinP∩!NU.
For UinP∩!NU and !UinP∩!NU, some queries fail because incorrect quantities are not dropped. For
UinP∩NU, there are two exceptions that do harm to the correctness ratio. The first exception is that
the ratio records with a maximum fit degree are possibly more than one.

Figure 2. The direct-viewing chart of correctness ratio of queries.

For example, quantity is {521,000, 521}. By calculating the fit degree, two ratio records with a
maximum fit degree are obtained from the ratio model. The first ratio record is “millimetre:metre =
1000:1”. The second ratio record is “litre:cubic metre = 1000:1”. Obviously, only one of the two ratio
records is correct. However, the proposed approach could not distinguish between them. Another
exception is that the relationship between quantities is not discerned. For query (Russia, Area), seven
quantities 79,400, 16,995,800, 17,075,200, 79400, 16,995,800, 17,075,200, 560 are returned. According to
our approach, the final answer is (12.049779, m2). The correct answer is (17.035500 × 1012, m2). After
looking up the sources of the quantities, we know that the quantity 17,075,200 is the total area of
Russia. Quantity 16,995,800 is the land area of Russia. Quantity 79,400 is the water area of Russia.
These data are clustered to three clusters, Cluster1 = {16,995,800, 17,075,200, 16,995,800, 17,075,200},
Cluster2 = {79,400, 79,400}, and Cluster3 = {506}. According to our approach, the units of the quantities
of Cluster1 are inferred as “square millimetre”. The units of the quantities of Cluster2 are inferred as
“square centimetre”. The units of the quantities of Cluster3 are inferred as “square inch”. The final
answer based on the proposed approach is incorrect because the semantic relationship of quantities
such as “total area”, “land area”, and “water area” is not considered in our approach. The equation
model “landarea + waterarea = totalarea” should be introduced. Quantities 1,699,580, 79,400, and
17,075,200 are fitting for the equation model “landarea + waterarea = totalarea” rather than the ratio
model. It is shown that besides the ratio model, more models should be considered in our approach.

5. Related Work

There are many previous studies concerned with automatically extracting values for numerical
attributes. Davidov and Rappoport presented a strategy to extract and approximate numerical
attributes from the web [6]. Attribute values (range) of the given object are inferred based on
attribute values of similar objects. Likewise, our approach is based on a set of quantities. However,
the set of quantities in our approach has less noise because quantities are obtained only based on
the given object. For similar objects, the attribute values probably have a great difference. For
example, the area of Russia is far larger than that of the Netherlands. Russia is not appropriate as a

Figure 2. The direct-viewing chart of correctness ratio of queries.

For example, quantity is {521,000, 521}. By calculating the fit degree, two ratio records
with a maximum fit degree are obtained from the ratio model. The first ratio record is
“millimetre:metre = 1000:1”. The second ratio record is “litre:cubic metre = 1000:1”. Obviously, only
one of the two ratio records is correct. However, the proposed approach could not distinguish between
them. Another exception is that the relationship between quantities is not discerned. For query
(Russia, Area), seven quantities 79,400, 16,995,800, 17,075,200, 79400, 16,995,800, 17,075,200, 560 are

Entropy 2016, 18, 235 10 of 14

returned. According to our approach, the final answer is (12.049779, m2). The correct answer is
(17.035500 ˆ 1012, m2). After looking up the sources of the quantities, we know that the quantity
17,075,200 is the total area of Russia. Quantity 16,995,800 is the land area of Russia. Quantity 79,400
is the water area of Russia. These data are clustered to three clusters, Cluster1 = {16,995,800,
17,075,200, 16,995,800, 17,075,200}, Cluster2 = {79,400, 79,400}, and Cluster3 = {506}. According to
our approach, the units of the quantities of Cluster1 are inferred as “square millimetre”. The units
of the quantities of Cluster2 are inferred as “square centimetre”. The units of the quantities of
Cluster3 are inferred as “square inch”. The final answer based on the proposed approach is incorrect
because the semantic relationship of quantities such as “total area”, “land area”, and “water area” is
not considered in our approach. The equation model “landarea + waterarea = totalarea” should
be introduced. Quantities 1,699,580, 79,400, and 17,075,200 are fitting for the equation model
“landarea + waterarea = totalarea” rather than the ratio model. It is shown that besides the ratio
model, more models should be considered in our approach.

5. Related Work

There are many previous studies concerned with automatically extracting values for numerical
attributes. Davidov and Rappoport presented a strategy to extract and approximate numerical
attributes from the web [6]. Attribute values (range) of the given object are inferred based on attribute
values of similar objects. Likewise, our approach is based on a set of quantities. However, the set of
quantities in our approach has less noise because quantities are obtained only based on the given object.
For similar objects, the attribute values probably have a great difference. For example, the area of Russia
is far larger than that of the Netherlands. Russia is not appropriate as a similar object of Netherlands.
Moriceau presented an approach to numerical answers generation which serves a Q and A system [7].
The results are that candidate answers are only displayed to users. Some comments, which are
generated by a set of logical rules, are attached to candidate answers. Compared to Moriceau’s work,
we devote ourselves to processing candidate answers and generating a final answer. Maiya et al.
employed a rule-based approach to extract measured information from a text document, e.g., scientific
and technical documents [8]. The converted error, e.g., from PDF format to Word format, is also
distinguished by their approach. Chakrabarti et al. aggregated snippet quantity and snippet text
information from multiple information sources and proposed a statistical approach to learn to score
and rank quantity intervals [9]. In addition, Chakrabarti et al. applied the approach to web tables [10].
Some extraction templates based on linguistics or wrappers need to be learned. Compared to extraction
templates and wrappers, it takes minimal effort to build a PUT. Additionally, extraction templates
and wrappers are domain-dependent and PUT is domain-independent. It is a critical task to recognize
various formats of quantities in Chakrabarti’ approach. Accordingly, it is the key to standardize
quantities, e.g., inferring the units of quantities in our approach. Takamura and Tsujii employed
a combined regression and ranking model with two types of fragmentary clues, including absolute
clues and relative clues, to extract numerical attributes of physical objects [3]. The numerical attributes
are extracted from absolute clues directly. Relative clues are used to infer and verify numerical
attributes of physical objects. Absolute clues and relative clues are obtained from thesaurus WordNet
based on linguistic patterns. Compared to Takamura and Tsujii’s approach, quantities are obtained
from a semantic web resource and a final answer is generated by analysing the returned quantity
set. Numerical attributes are usually richer than absolute clues. Hence, our approach is suitable for
a rich dataset.

A number of efforts have been made to solve the final answer in question-answering [11].
To the best of our knowledge, the process of answer solving is often divided into three phases [12].
The first phase is to retrieve quantities from information sources, such as databases and the web.
Quantity retrieval is supported by some general tools such as ODBC and search engines. The second
phase is to recognize the relations between two quantities. These relations are equivalence, inclusion,
aggregation, and alternative [13,14]. The third phase is to decide the final answer. The common

Entropy 2016, 18, 235 11 of 14

approach is to select the most frequent answers as the final answer. The result of the second phase has
a significant impact on the final answer. Hence, we compare our strategy with the previous work on
relation recognition.

‚ Equivalence. Generally, quantities are divided into a LOCATION category, DATE category,
NUMBERIC category and text category. For the LOCATION category, DATE category, and
NUMBER category, a normal format is defined [13,15]. For example, the format of DATE is
defined as mm/dd/yyyy. The format of LOCATION is defined as the short form specified in the
CIA World Factbook. The format of NUMBERIC is defined as a value-unit pair. Two quantities
are equivalent if their values are the same after they are normalized. For the text category,
the techniques for equivalence recognition include measuring the string similarity [16–18] or
semantic similarity [19] between quantities. In our work, the categories of answers are limited to
NUMBERIC. The format of answers is the value-unit pair. Two quantities are also the same after
their values are the same.

‚ Inclusion. Quantities in the text category are perhaps connected through a hypernym or
hyponymy relation in WordNet [20,21]. For example, “western Pacific” is included in “Pacific”.
Dalmas and Webber recognized the inclusion relation between quantities [22]. Quantities with
an inclusion relation are viewed as the same answer. In our work, the inclusion relation is not
recognized because the quantities are limited to the NUMBERIC category.

‚ Contradiction. For quantities in the text category, contradictory quantities are antonymous,
negative or in contrast. Harabagiu et al. applied a maximum entropy model to detect contradictory
quantities [23]. Based on linguistic features, such as factual or modal words, structural and lexical
contrasts, and world knowledge, De Marneffe et al. used logistic regression to detect contradictory
quantities [24]. In our work, contradictory quantities are not detected. However, we introduce the
definition of semantic type. If the semantic type of a quantity is different from the semantic type
of a query, the quantity is dropped from the quantity set.

Old approaches to questions classification are based on linguistics. Some patterns are built in
advance according to a semantic dictionary, such as Wordnet, Hownet, etc. Similarity is computed
between object questions and patterns. The most similar pattern is selected as the class of the
object question. After all, natural language is extremely flexible so that patterns are difficult to
meet all kinds of object questions. Recent approaches are based on machine learning. Classes, such
as UIUC (University of Illinois at Urbana-Champaign) data set are usually provided in advance.
Consequently, a classifier is built according to feature words which are extracted from questions.
Feature words of object questions are inputted into a classifier and the classifier outputs the classes
of object questions. Approaches of questions classification are displayed in Table 8. The features are
divided into lexical feature [25–27] (word bags, word format, sentence length), syntax feature [25–29]
(the part of speech, the question word, head word, dependency structure), and semantic features [27]
(hypernym, synonyms). Syntax feature is the primary feature. Bayesian classifer [25,29], SVM (Support
Vector Machine) [25–27,29], KNN (k-NearestNeighbor) [25], and neural net [27–29] are employed to
class questions. SVM is more popular than other classifers. The classification effect based on multiple
features is better than that based on a single feature. The classification effect of integrated classifiers is
superior to a single classifier.

Table 8. Approaches of Questions Classification.

Lexical Feature Syntax Feature Semantic Feature

Bayesian Classifier [25] [25,29] -
SVM [25–27] [25–27,29] [27]
KNN [25] [25] -

Neural Net [27] [27–29] [27]

Entropy 2016, 18, 235 12 of 14

6. Conclusions and Future Work

In this paper we built the Predicates-Units Table as a prior knowledge base. Based on the
Predicates-Units Table, we propose a set of algorithms for the semantic type of quantity set computation,
quantity optimizing, units of quantity inference, and final answer solving. The results of the
experiments show a high correctness ratio, although there are some limitations on semantic knowledge.

Our approach is very useful for information processing area, particularly the combination of
machine learning, domain ontologies, and a human-in-the-loop [30,31]. In future research, we
will apply our approach to biomedical area. Additionally, we will extend the Predicates-Units
Table to an ontology so that more semantic knowledge, such as is-a relation and part-of relation
between units could be included. For instance, we will define is-a relation between units “area”
and “totalarea”, between units “area” and “landarea”, and between units “area” and “waterarea”.
Furthermore, we will define part-of relation between units “totalarea” and “landarea”, and between
units “totalarea” and “waterarea”. According to these relations, we are able to define equation
“landarea + waterland = totalarea”. The equation is very helpful to infer units of quantities.
For query (Russia, area), quantities 1,699,580, 79,400, and 17,075,200 are fitting for the equation
“landarea + waterarea = totalarea” rather than the ratio model. A useful conclusion is that units
of quantities 1,699,580, 79,400, and 17,075,200 are the same. The conclusion can avoid inferring the unit
quantities incorrectly. We anticipate that better experimental results will be obtained.

Acknowledgments: We thank all reviewers for their useful comments to improve the paper. This work was
supported by the Fundamental Research Funds for the Central Universities (3132015043, 3132014036, 3132016348),
National Natural Science Foundation of China (61203283), Liaoning Provincial Natural Science Foundation of
China (2014025004), The Open Project Program of Artificial Intelligence Key Laboratory of Sichuan Province
(2013RZJ02, 2012RYJ02).

Author Contributions: Yaqing Liu conceived the research subject and contributed to the critical suggestions of
the paper, Lidong Wang carried out the experiments, Rong Chen drafted the paper, Yingjie Song and Yalin Cai
contributed to the conception and critical suggestions of the paper. All authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, K.; Zhao, J.; He, S.; Zhang, Y. Question Answering over Knowledge Bases. IEEE Intell. Syst. 2015, 30,
26–35. [CrossRef]

2. Zheng, Y.; Jeon, B.; Xu, D.; Wu, Q.M.J.; Zhang, H. Image segmentation by generalized hierarchical fuzzy
C-means algorithm. J. Intell. Fuzzy Syst. 2015, 28, 961–973.

3. Takamura, H.; Tsujii, J. Estimating Numerical Attributes by Bringing Together Fragmentary Clues.
In Proceedings of the Human Language Technologies: The 2015 Annual Conference of the North American
Chapter of the ACL, Denver, CO, USA, 31 May–5 June 2015; pp. 1305–1310.

4. Oren, E.; Delbru, R.; Catasta, M.; Cyganiak, R.; Stenzhorn, H.; Tummarello, G. Sindice.com:
A document-oriented lookup index for open linked data. Int. J. Metadata Semant. Ontol. 2008, 3, 37–52.
[CrossRef]

5. Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 2,
224–227. [CrossRef]

6. Davidov, D.; Rappoport, A. Extraction and approximation of numerical attributes from the Web.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala,
Sweden, 11–16 July 2010; pp. 1308–1317.

7. Moriceau, V. Generating Intelligent Numerical Answers in a Question-Answering System. In Proceedings
of the Fourth International Natural Language Generation Conference, Sydney, Australia, 15–16 July 2006;
pp. 103–110.

8. Maiya, A.S.; Visser, D.; Wan, A. Mining Measured Information from Text. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago,
Chile, 9–13 August 2015; pp. 899–902.

http://dx.doi.org/10.1109/MIS.2015.70
http://dx.doi.org/10.1504/IJMSO.2008.021204
http://dx.doi.org/10.1109/TPAMI.1979.4766909

Entropy 2016, 18, 235 13 of 14

9. Banerjee, S.; Chakrabarti, S.; Ramakrishnan, G. Learning to rank for quantity consensus queries.
In Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, Boston, MA, USA, 19–23 July 2009; pp. 243–250.

10. Sarawagi, S.; Chakrabarti, S. Open-domain quantity queries on web tables: Annotation, response, and
consensus models. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 711–720.

11. Mendes, A.C.; Coheur, L. When the answer comes into questions in question-answering: Survey and open
issues. Nat. Lang. Eng. 2013, 19, 1–32. [CrossRef]

12. Heie, M.H.; Whittaker, E.W.D.; Furui, S. Question answering using statistical language modeling.
Comput. Speech Lang. 2012, 26, 193–209. [CrossRef]

13. Moriceau, V. Numerical data integration for cooperative question-answering. In Proceedings of the Workshop
KRAQ’06 on Knowledge and Reasoning for Language Processing, Trento, Italy, 3 April 2006; pp. 43–50.

14. Webber, B.; Gardent, C.; Bos, J. Position statement: Inference in question answering. In Proceedings of the
LREC Workshop on Question Answering: Strategy and Resources, Las Palmas, Spain, 27 May–2 June 2002;
pp. 19–25.

15. Nyberg, E.; Mitamura, T.; Carbonell, J.G.; Callan, J.P.; Collins-Thompson, K.; Czuba, K.; Duggan, M.;
Hiyakumoto, L.; Hu, L.; Huang, Y.; et al. The JAVELIN question-answering system at TREC 2002.
In Proceedings of the TREC’02, Gaithersburg, MD, USA, 19–22 November 2002.

16. Tellez-Valero, A.; Montes-ntes-Gomez, M.; Villasenor-Pineda, L.; Penas, A. Towards multi-stream question
answering using answer validation. Informatica 2010, 34, 45–54.

17. Kwok, C.; Etzioni, O.; Weld, D.S. Scaling question answering to the web. ACM Trans. Inf. Syst. 2001, 19,
242–262. [CrossRef]

18. Brill, E.; Dumais, S.; Banko, M. An analysis of the AskMSR question-answering system. In Proceedings of
the ACL-02 Conference on Empirical Methods in Natural Language Processing, Philadelphia, PA, USA,
7–12 July 2002; pp. 257–264.

19. Bos, J.; Curran, J.R.; Guzzetti, E. The pronto QA system at TREC-2007: Harvesting hyponyms, using
nominalisation patterns, and computing answer cardinality. In Proceedings of the 16th Text RETrieval
Conference, Gaithersburg, MD, USA, 5–9 November 2007; pp. 726–732.

20. Nii, Y.; Kawata, K.; Yoshida, T.; Sakai, H.; Masuyama, S. Question answering system QUARK. In Proceedings
of the NTCIR-4, Tokyo, Japan, 2–4 June 2004.

21. Pasca, M.; Harabagiu, S. The informative role of WordNet in open-domain question answering.
In Proceedings of the 2nd Meeting of the North American Chapter of the Association for Computational
Linguistics, Pittsburgh, PA, USA, 2–7 June 2001; pp. 905–912.

22. Dalmas, T.; Webber, B. Answer comparison in automated question answering. J. Appl. Log. 2007, 5, 104–120.
[CrossRef]

23. Harabagiu, S.; Hickl, A.; Lacatusu, F. Negation, contrast and contradiction in text processing. In Proceedings
of the 21st National Conference on Artificial Intelligence (AAAI’06), Boston, MA, USA, 16–20 July 2006;
pp. 755–762.

24. Marneffe, M.D.; Rafferty, A.; Manning, C.D. Finding contradictions in text. In Proceedings of the ACL-08:
HLT, Columbus, OH, USA, 15–20 June 2008; pp. 1039–1047.

25. Gu, B.; Sheng, V.S.; Tay, K.Y.; Romano, W.; Li, S. Incremental Support Vector Learning for Ordinal Regression.
IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1403–1416. [PubMed]

26. Gu, B.; Sheng, V.S.; Wang, Z.; Ho, D.; Osman, S.; Li, S. Incremental learning for ν-Support Vector Regression.
Neural Netw. 2015, 67, 140–150. [CrossRef] [PubMed]

27. Li, X.; Huang, X.; Wu, L. Combined Multiple Classifiers Based on TBL Algorithm and Their Application in
Question Classification. J. Comput. Res. Dev. 2008, 45, 535–541.

28. Sagara, T.; Hagiwara, M. Natural language neural network and its application to question-answering system.
Neurocomputing 2014, 142, 201–208. [CrossRef]

29. Hu, B.S.; Wang, D.L.; Yu, G.; Ma, T. An Answer Extraction Algorithm Based on Syntax Structure Feature
Parsing and Classification. Chin. J. Comput. 2008, 31, 662–676. [CrossRef]

http://dx.doi.org/10.1017/S1351324911000350
http://dx.doi.org/10.1016/j.csl.2011.11.001
http://dx.doi.org/10.1145/502115.502117
http://dx.doi.org/10.1016/j.jal.2005.12.002
http://www.ncbi.nlm.nih.gov/pubmed/25134094
http://dx.doi.org/10.1016/j.neunet.2015.03.013
http://www.ncbi.nlm.nih.gov/pubmed/25933108
http://dx.doi.org/10.1016/j.neucom.2014.04.048
http://dx.doi.org/10.3724/SP.J.1016.2008.00662

Entropy 2016, 18, 235 14 of 14

30. Ma, T.; Zhou, J.; Tang, M.; Tian, Y.; Al-Dhelaan, A.; Al-Rodhaan, M.; Lee, S. Social network and tag sources
based augmenting collaborative recommender system. IEICE Trans. Inf. Syst. 2015, E98-D, 902–910.
[CrossRef]

31. Girardi, D.; Küng, J.; Kleiser, R.; Sonnberger, M.; Csillag, D.; Trenkler, J.; Holzinger, A. Interactive knowledge
discovery with the doctor-in-the-loop: A practical example of cerebral aneurysms research. Brain Inform.
2016, 1–11. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1587/transinf.2014EDP7283
http://dx.doi.org/10.1007/s40708-016-0038-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Preliminaries
	Our Approach
	Experiments and Evaluation
	Dataset Collection
	Dataset Statistics
	Dataset Validation

	Related Work
	Conclusions and Future Work

