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Abstract:



We study continuous countably-piecewise monotone interval maps and formulate conditions under which these are conjugate to maps of constant slope, particularly when this slope is given by the topological entropy of the map. We confine our investigation to the Markov case and phrase our conditions in the terminology of the Vere-Jones classification of infinite matrices.
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1. Introduction


For [image: there is no content], [image: there is no content], a continuous map [image: there is no content] is said to be piecewise monotone if there are [image: there is no content] and points [image: there is no content], such that T is monotone on each [image: there is no content], [image: there is no content]. A piecewise monotone map T has constant slopes if [image: there is no content] for all [image: there is no content].



The following results are well known for piecewise monotone interval maps:



Theorem 1 

([1,2]). If [image: there is no content] is piecewise monotone and [image: there is no content], then T is semi-conjugate via a continuous non-decrease onto map φ:[0,1]→[0,1] to a map S of constant slope [image: there is no content]. The map ϕ is a conjugacy (ϕ is strictly increasing) if T is transitive.





Theorem 2 

([3]). If T has a constant slope s, then [image: there is no content].





For continuous interval maps with a countably-infinite number of pieces of monotonicity, neither theorem is true; for examples, see [4] and [5]. One of the few facts that remains true in the countably-piecewise monotone setting is:



Proposition 1 

([6]). If T is s-Lipschitz, then [image: there is no content].





A continuous interval map T has constant slope s if [image: there is no content] for all but countably many points.



The question we want to address is when a continuous countably-piecewise monotone interval map T is conjugate to a map of constant slope λ. Particular attention will be given to the case when a slope is given by the topological entropy of T, which we call linearizability:



Definition 1. 

A continuous map [image: there is no content] is said to be linearizable if it is conjugate to an interval map of constant slope [image: there is no content].





We will confine ourselves to the Markov case and explore what can be said if only the transition matrix of a countably-piecewise monotone map is known in terms of the Vere-Jones classification [7], refined by [8].



The structure of our paper is as follows.



In Section 2 ([image: there is no content]: the class of countably-piecewise monotone Markov maps), we make precise the conditions on continuous interval maps under which we conduct our investigation; the set of all such maps will be denoted by [image: there is no content] (for countably-piecewise monotone Markov). In particular, we introduce a slack countable Markov partition of a map and distinguish between the operator and non-operator type respectively.



In Section 3 (conjugacy of a map from [image: there is no content] to a map of constant slope), we rephrase the key equivalence from [9] (Theorem 2.5): for the sake of completeness, we formulate Theorem 3, which relates the existence of a conjugacy to an “eigenvalue equation” (5), using both classical and slack countable Markov partitions; see Definition 2.



Section 4 (the Vere-Jones classification) is devoted to the Vere-Jones classification [7] that we use as a crucial tool in most of our proofs in later sections.



In Section 5 (entropy and the Vere-Jones classification in [image: there is no content]), we show in Proposition 8 that the topological entropy of a map in question and (the logarithm of) the Perron value of its transition matrix coincide. Using this fact, we are able to verify in Proposition 9 that all of the transition matrices of a map corresponding to all of the possible Markov partitions of that map belong to the same class in the Vere-Jones classification; so we can speak about the Vere-Jones classification of a map from [image: there is no content].



In Section 6 (linearizability), we present the main results of this text. We start with Proposition 10 showing two basic properties of a λ-solution of Equation (5) and Theorem 7 on locally eventually onto (leo) maps; see Definition 4. Afterwards, we describe conditions under which a local window perturbation—Theorems 8 and 9, resp. a global window perturbation—Theorems 10 and 11 results in a linearizable map.



In Section 7 (examples), various examples illustrating linearizability/conjugacy to a map of constant slope in the Vere-Jones classes are presented.




2. [image: there is no content]: The Class of Countably Piecewise Monotone Markov Maps


Definition 2. 

A countable Markov partition [image: there is no content] for a continuous map T:[0,1]→[0,1] consists of closed intervals with the following properties:

	
Two elements of [image: there is no content] have pairwise disjoint interiors, and [image: there is no content] is at most countable.



	
The partition [image: there is no content] is finite or countably-infinite;



	
[image: there is no content] is monotone for each [image: there is no content] (classical Markov partition) or piecewise monotone for each [image: there is no content]; in the latter case, we will speak of a slack Markov partition.



	
For every [image: there is no content] and every maximal interval [image: there is no content] of monotonicity of T, if [image: there is no content], then [image: there is no content].










Remark 1. 

The notion of a slack Markov partition will be useful in later sections of this paper, where we will work with window perturbations. If [image: there is no content], then the ordinal type of [image: there is no content] need not be [image: there is no content] or [image: there is no content].





Definition 3. 

The class [image: there is no content] is the set of continuous interval maps [image: there is no content] satisfying:

	
T is topologically mixing, i.e., for every open sets [image: there is no content], there is an n, such that [image: there is no content] for all [image: there is no content].



	
T admits a countably-infinite Markov partition.



	
[image: there is no content].










Remark 2. 

Since [image: there is no content] is topologically mixing by definition, it cannot be constant on any subinterval of [image: there is no content].





Definition 4. 

A map [image: there is no content] is called leo (locally eventually onto) if for every nonempty open set U, there is an [image: there is no content], such that [image: there is no content].





Remark 3. 

Let T:[0,1]→[0,1] be a piecewise monotone Markov map, i.e., such that orbits of turning points and endpoints [image: there is no content] are finite. Those orbits naturally determine a finite Markov partition for T. This partition can be easily be refined, in infinite ways, to countably-infinite Markov partitions. If T is topologically mixing and continuous, then we will consider T as an element of [image: there is no content].





Proposition 2. 

Let [image: there is no content] with a Markov partition [image: there is no content]. For every pair [image: there is no content] satisfying [image: there is no content], there exist a maximal [image: there is no content] and intervals [image: there is no content] with pairwise disjoint interiors, such that [image: there is no content] is monotone and [image: there is no content] for each [image: there is no content].





Proof. 

Since [image: there is no content] is topologically mixing, it is not constant on any subinterval of [image: there is no content]. Fix a pair [image: there is no content] with [image: there is no content]. Since T is continuous, there has to be at least one, but at most a finite number of pairwise disjoint subintervals of i satisfying the conclusion. ☐





For a given [image: there is no content] with a Markov partition [image: there is no content], applying Proposition 2, we associate with [image: there is no content] the transition matrix [image: there is no content] defined by:


mij=κ(i,j)ifT(i)⊃j0otherwise



(1)







If [image: there is no content] is a classical Markov partition of some [image: there is no content], then [image: there is no content] each [image: there is no content].



Remark 4. 

For the sake of clarity, we will write [image: there is no content] when a map [image: there is no content], a concrete Markov partition [image: there is no content] for T and its transition matrix [image: there is no content] with respect to [image: there is no content] are assumed.





For an infinite matrix M indexed by a countable index set [image: there is no content], we can consider the powers [image: there is no content] of M:


M0=E=(δij)i,j∈P,Mn=∑k∈Pmikmkj(n−1)i,j∈P,n∈N



(2)







Proposition 3. 

Let [image: there is no content].

	(i) 

	
For each [image: there is no content] and [image: there is no content], the entry [image: there is no content] of [image: there is no content] is finite.




	(ii) 

	
The entry [image: there is no content] if and only if there are exactly m subintervals [image: there is no content], …, [image: there is no content] of i with pairwise disjoint interiors, such that [image: there is no content], [image: there is no content].











Proof. 


	(i)

	
From the continuity of T and the definition of M, it follows that the sum [image: there is no content] is finite for each [image: there is no content], which directly implies (i).




	(ii)

	
For [image: there is no content], this is given by the relation (1) defining the matrix M. The induction step follows from (2) of the product of the nonnegative matrices M and [image: there is no content].






☐





A matrix M indexed by the elements of [image: there is no content] represents a bounded linear operator [image: there is no content] on the Banach space [image: there is no content] of summable sequences indexed by [image: there is no content], provided that the supremum of the columnar sums is finite. Then, [image: there is no content] is realized through left multiplication:


M(v):=∑j∈Pmijvji∈P,v∈ℓ1(P)∥M∥=supj∑imij



(3)







The matrix [image: there is no content] represents the n-th power [image: there is no content] of [image: there is no content] and by Gelfand’s formula, the spectral radius [image: there is no content].



Remark 5. 

If [image: there is no content], the supremum in (3) is finite if and only if:


∃K>0∀y∈[0,1]:#T−1(y)≤K



(4)









Since this condition does not depend on a concrete choice of [image: there is no content], we will say the map T is of an operator type when the condition (4) is fulfilled and of a non-operator type otherwise.




3. Conjugacy of a Map from [image: there is no content] to a Map of Constant Slope


This section is devoted to the fundamental observation regarding a possible conjugacy of an element of [image: there is no content] to a map of constant slope. It is presented in Theorem 3.



Let [image: there is no content]. We are interested in positive real numbers λ and nonzero nonnegative sequences [image: there is no content] satisfying [image: there is no content], or equivalently:


∀i∈P:∑j∈Pmijvj=λvi



(5)







Definition 5. 

A nonzero nonnegative sequence [image: there is no content] satisfying (5) will be called a λ-solution (for M). If in addition [image: there is no content], it will be called a summable λ-solution (for M).





Remark 6. 

Since every [image: there is no content] is topologically mixing, any nonzero nonnegative λ-solution is in fact positive: if [image: there is no content] solves Equation (5), [image: there is no content] and [image: there is no content], then by Proposition 3(ii) for some sufficiently large n, [image: there is no content].





Let [image: there is no content] denote the class of all maps from [image: there is no content] of constant slope λ, i.e., [image: there is no content] if [image: there is no content] for all, but countably many points.



The core of the following theorem has been proven in [9] (Theorem 2.5). Since we will work with maps from [image: there is no content] that are topologically mixing, we use topological conjugacies only; see [10] (Proposition 4.6.9). The theorem will enable us to change freely between classical/slack Markov partitions of the map in question.



Theorem 3. 

Let [image: there is no content]. The following conditions are equivalent.

	(i) 

	
For some [image: there is no content], the map T is conjugate via a continuous increasing onto map ψ:[0,1]→[0,1] to some map [image: there is no content].




	(ii) 

	
For some classical Markov partition [image: there is no content] for T, there is a positive summable λ-solution [image: there is no content] of Equation (5).




	(iii) 

	
For every classical Markov partition [image: there is no content] for T, there is a positive summable λ-solution [image: there is no content] of Equation (5).




	(iv) 

	
For every slack Markov partition [image: there is no content] for T, there is a positive summable λ-solution [image: there is no content] of Equation (5).




	(v) 

	
For some slack Markov partition [image: there is no content] for T, there is a positive summable λ-solution [image: there is no content] of Equation (5).











Remark 7. 

Recently, Misiurewicz and Roth [11] have pointed out that if v is a λ-solution of Equation (5) that is not summable, then the map T is conjugate to a map of constant slope defined on the real line or half-line.





Remark 8. 

Let [image: there is no content] be piecewise monotone with a finite Markov partition. It is well known (see, [10] (Theorem 4.4.5) and [12] (Theorem 0.16)) that the corresponding Equation (5) has a positive [image: there is no content]-solution, which is trivially summable. By Theorem 3, it is also true for any countably infinite Markov partition for T.





Proof of Theorem 3. 

The equivalence of (i), (ii) and (iii) has been proven in [9]. Since (iv) implies (iii) and (v), it suffices to show that (iii) implies (iv) and (v) implies (ii).





(iii)[image: there is no content](iv). Let us assume that [image: there is no content] is a slack Markov partition for T. Obviously, there is a classical partition [image: there is no content] for T which is finer than [image: there is no content], i.e., every element of [image: there is no content] is contained in some element of [image: there is no content]. Using (iii), we can consider a positive summable λ-solution [image: there is no content] of Equation (5). Let [image: there is no content] be defined as:


[image: there is no content]








Clearly, the positive sequence [image: there is no content] is from [image: there is no content]. Denoting [image: there is no content] and [image: there is no content] the transition matrices corresponding to the partitions [image: there is no content], [image: there is no content], we can write:


λvi=λ∑i′⊂iui′=∑i′⊂iλui′=∑i′⊂i∑k∈Q∑k′⊂kmi′k′Puk′=∑k∈Q∑k′⊂kuk′∑i′⊂imi′k′P=∑k∈QmikQvk,



(6)




where the equality [image: there is no content] follows from the Markov property of T on [image: there is no content] and [image: there is no content]:


ifT(i′)⊃k′forsomek′⊂kthenalsoT(i′)⊃k



(7)







Therefore, by Equation (6), for a given slack Markov partition [image: there is no content] (for T), we find a positive summable λ-solution [image: there is no content] of Equation (5).



(v)[image: there is no content](ii). Assume that for some slack Markov partition [image: there is no content] for T, there is a positive summable λ-solution [image: there is no content] of Equation (5). As in the previous part, we can consider a classical Markov partition [image: there is no content] finer than [image: there is no content]. Using again the property (7), let us put:


ui′=∑T(i′)⊃jvj,i′∈P



(8)







Then, [image: there is no content] is positive, and we will show that it is a summable λ-solution of Equation (5). Fix an [image: there is no content], and use the property (7) for [image: there is no content] for which [image: there is no content]. Then:


[image: there is no content]



(9)




Hence, summing Equation (9) through all j’s from [image: there is no content] that are T-covered by [image: there is no content], we obtain with the help of Equation (8),


[image: there is no content]











Since by our assumption on [image: there is no content] and Equation (8):


[image: there is no content]








so [image: there is no content] is a summable λ-solution of Equation (5). ☐



Maps [image: there is no content] are continuous, topologically mixing with positive topological entropy. Thus, all possible semi-conjugacies described in [9] (Theorem 2.5) will be in fact conjugacies; see [10] (Proposition 4.6.9). Many properties hold under the assumption of positive entropy or for countably-piecewise continuous maps. One interesting example of a countably-piecewise continuous and countably-piecewise monotone (still topologically mixing) map will be presented in Section 7. However, since the technical details are much more involved and would obscure the ideas, we confine the proofs to [image: there is no content].




4. The Vere-Jones Classification


Let us consider a matrix [image: there is no content], where the index set [image: there is no content] is finite or countably infinite. The matrix M will be called:

	
irreducible, if for each pair of indices [image: there is no content], there exists a positive integer n, such that [image: there is no content], and



	
aperiodic, if for each index [image: there is no content], the value gcd{ℓ:mii(ℓ)>0}=1.








Remark 9. 

Since [image: there is no content] is topologically mixing, its transition matrix M is irreducible and aperiodic.





In the sequel, we follow the approach suggested by Vere-Jones [7].



Proposition 4. 


	(i) 

	
Let [image: there is no content] be a nonnegative irreducible aperiodic matrix indexed by a countable index set [image: there is no content]. There exists a common value [image: there is no content], such that for each [image: there is no content]:


[image: there is no content]



(10)








	(ii) 

	
For any value [image: there is no content] and all [image: there is no content]:







	
the series [image: there is no content] are either all convergent or all divergent;



	
as [image: there is no content], either all or none of the sequences [image: there is no content] tend to zero.










Remark 10. 

The number [image: there is no content] defined by Equation (10) is often called the Perron value of M. In the whole text, we will assume that for a given nonnegative irreducible aperiodic matrix [image: there is no content], its Perron value [image: there is no content] is finite.





4.1. Entropy, Generating Functions and the Vere-Jones Classes


To a given irreducible aperiodic matrix [image: there is no content] with entries from [image: there is no content] corresponds a strongly-connected directed graph [image: there is no content] containing [image: there is no content] edges from i to j.



The Gurevich entropy of M (or of [image: there is no content]) is defined as:


h(G)=h(M)=sup{logr(M′):M′isafinitesubmatrixofM}








where [image: there is no content] is the large eigenvalue of the finite transition matrix [image: there is no content]. Gurevich proved that:



Proposition 5 

([13]). [image: there is no content].





Since by Proposition 4, the value [image: there is no content] is a common radius of convergence of the power series [image: there is no content], we immediately obtain for each pair [image: there is no content],


[image: there is no content]











It is well known that in [image: there is no content]:

	
[image: there is no content] equals the number of paths of length n connecting i to j.








Following [7], for each [image: there is no content], we will consider the following coefficients:

	
The first entrance to j: [image: there is no content] equals the number of paths of length n connecting i to j, without the appearance of j in between.



	
The last exit of i: [image: there is no content] equals the number of paths of length n connecting i to j, without the appearance of i in between.








Clearly, [image: there is no content] for each [image: there is no content]. Furthermore, it will be useful to introduce:

	
The first entrance to [image: there is no content]: for a nonempty [image: there is no content] and [image: there is no content], [image: there is no content] equals the number of paths of length n connecting i to j, without the appearance of any element of [image: there is no content] in between.








The first entrance to [image: there is no content] will provide us a new type of a generating function used in (37) and its applications.



Remark 11. 

Let us denote by [image: there is no content], [image: there is no content] the radius of convergence of the power series [image: there is no content], [image: there is no content]. Since [image: there is no content], [image: there is no content] for each [image: there is no content] and each [image: there is no content], we always have [image: there is no content], [image: there is no content].





Proposition 6 has been stated in [8]. Since the argument showing Part (i) presented in [8] is not correct, we offer our own version of its proof.



Proposition 6 

([8] (Proposition 2.6)). Let [image: there is no content]; consider the graph [image: there is no content], [image: there is no content].

	(i) 

	
If there is a vertex j, such that [image: there is no content] then, there exists a strongly-connected subgraph [image: there is no content], such that [image: there is no content].




	(ii) 

	
If there is a vertex j, such that [image: there is no content], then for all proper strongly-connected subgraphs [image: there is no content], one has [image: there is no content].




	(iii) 

	
If there is a vertex j, such that [image: there is no content], then [image: there is no content] for all i.











Proof. 

For the proof of Part (ii), see [8].





Let us prove (i). Fix a vertex [image: there is no content] for which [image: there is no content] and choose arbitrary [image: there is no content]. We can write:


fjj(n)=ifjj(n)+ifjj(n)



(11)




where ifjj(n), resp. ifjj(n), denotes the number of [image: there is no content]-paths of length n that do not contain i, resp. contain i.



	I.

	
If [image: there is no content],




	II.

	
Assume that [image: there is no content]. Then, by our assumption and Equation (11):


[image: there is no content]



(12)











Let us denote [image: there is no content] the number of paths of length n connecting i to j, without the appearance of [image: there is no content] after the initial i and before the final j. If we denote 1,jfii(n) the number of [image: there is no content]-paths of length n connecting i to i with exactly one appearance of j after the initial i and before the final i, we can write for [image: there is no content] (the coefficients jmii(n) are defined analogously as jfii(n); compare the proof of Theorem 6):


ifjj(n)=∑m=2n∑k=1m−1gji(k)jmii(n−m)gij(m−k)=∑m=2njmii(n−m)∑k=1m−1gji(k)gij(m−k)=∑m=2njmii(n−m)1,ifjj(m)=∑m=2njmii(n−m)1,jfii(m)



(13)







By the formula of [10] (Lemma 4.3.6) and our assumption (12), for arbitrary [image: there is no content], we obtain from (13) either:


lim supn[jmii(n)]1/n=λM



(14)




or:


lim supn→∞[1,jfii(n)]1/n=λM



(15)







If Equation (14) is fulfilled for some i, the existence of a strongly-connected subgraph [image: there is no content], such that [image: there is no content], immediately follows. Otherwise, since:


lim supn→∞[1,jfii(n)]1/n≤lim supn→∞[fii(n)]1/n








we get [image: there is no content] for each [image: there is no content], and the conclusion follows from [14] (Theorem 2.2). Assertion (iii) immediately follows from (i) and (ii). ☐



The behavior of the series [image: there is no content], [image: there is no content] for [image: there is no content] was used in the Vere-Jones classification of irreducible aperiodic matrices [7]. Vere-Jones originally distinguished R-transient, null R-recurrent and positive R-recurrent cases. Later on, the classification was refined by Ruette in [8], who added the strongly-positive R-recurrent case. All is summarized in Table 1, which applies independently of the sites [image: there is no content] for M irreducible; compare the last row of Table 1 and Proposition 6. We call corresponding classes of matrices transient, null recurrent, weakly recurrent and strongly recurrent. The last three, resp. two, possibilities will occasionally be summarized by “M is recurrent”, resp. “M is positive recurrent”.



Table 1. The Vere-Jones classification for matrices.







	

	
Transient

	
Null Recurrent

	
Weakly Recurrent

	
Strongly Recurrent






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
∞

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
for all i

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]










4.1.1. Salama’s Criteria


There are geometrical criteria (see [14] and also [8]) for cases of the Vere-Jones classification to apply depending on whether the underlying strongly-connected directed graph can be enlarged/reduced (in the class of strongly-connected directed graphs) without changing the entropy. We will use some of them in Section 7.



Theorem 4 

([8,14]). The following are true:

	(i) 

	
A graph G is transient if and only if there is a graph [image: there is no content], such that [image: there is no content] and [image: there is no content].




	(ii) 

	
G is strongly recurrent if and only if [image: there is no content] for any [image: there is no content].




	(iii) 

	
G is recurrent, but not strongly recurrent, if and only if there exists [image: there is no content] with [image: there is no content], but [image: there is no content] for every [image: there is no content].












4.1.2. Further Useful Facts


In the whole paper, we are interested in nonzero nonnegative solutions of Equation (5). Analogously, in the next proposition, we consider nonzero nonnegative subinvariant λ-solutions [image: there is no content] for a matrix M, i.e., satisfying the inequality [image: there is no content].



Theorem 5 

([7] (Theorem 4.1)). Let [image: there is no content] be irreducible. There is no subinvariant λ-solution for [image: there is no content]. If M is transient, there are infinitely many linearly-independent subinvariant [image: there is no content]-solutions. If M is recurrent, there is a unique subinvariant [image: there is no content]-solution, which is in fact the [image: there is no content]-solution of Equation (5) proportional to the vector [image: there is no content] ([image: there is no content] fixed), [image: there is no content].





A general statement (a slight adaption of [15] (Theorem 2)) on the solvability of Equation (5) is as follows:



Theorem 6. 

Let [image: there is no content] be irreducible. The system [image: there is no content] has a nonzero nonnegative solution v if and only if:

	(a) 

	
[image: there is no content] and M is recurrent or




	(b) 

	
when either [image: there is no content] or [image: there is no content] and M is transient, there is an infinite sequence of indices [image: there is no content], such that ([image: there is no content]):


limj→∞limk→∞,k∈K∑α=j∞miαMαk(z)∑α=1∞miαMαk(z)=0



(16)










for each [image: there is no content].





Proof. 

Following Chung [16], we will use the analogues of the taboo probabilities: for [image: there is no content], define kmij(1)=mij, and for [image: there is no content],


kmij(n+1)=∑α≠kmiαkmαj(n)








Clearly, kmij(n) equals the number of paths of length n connecting i to j with no appearance of k between. Denote also kmij(n)=mij(n)−kmij(n) the number of paths of length n connecting i to j with at least one appearance of k between. The usual convention that kmij(0)=δij(1−δik) will be used. The following identities directly follow from the definitions of the corresponding generating functions (see before Table 1) or are easy to verify: for all [image: there is no content] and [image: there is no content],

	(i)

	
[image: there is no content],




	(ii)

	
iMik(z)=Lik(z),




	(iii)

	
jMik(z)=Mij(z)Ljk(z),




	(iv)

	
[image: there is no content],




	(v)

	
[7] for [image: there is no content],


[image: there is no content]












	(vi)

	
[7] [image: there is no content] is finite.









By [15] (Theorem 2), the double limit (16) can be replaced by:


limj→∞limk→∞,k∈K∑α=j∞miαiMαk(1/λ)iMik(1/λ)=0



(17)







Using Identities (i)–(vi), we can write Equation (17) as:


A(j,k):=∑α=j∞miαiMαk(z)iMik(z)=∑α=j∞miαMαk(z)Lik(z)−∑α=j∞miαiMαk(z)Lik(z)=Mii(z)∑α=j∞miαMαk(z)Mii(z)Lik(z)−∑α=j∞miαMαi(z)Lik(z)Lik(z)=Mii(z)∑α=j∞miαMαk(z)Mik(z)−∑α=j∞miαMαi(z)=:B(j,k)











Since by (vi), limj→∞∑α=j∞miαMαi(z)=0, using (v), we obtain that:


limj→∞limk→∞,k∈KA(j,k)=0








if and only if:


limj→∞limk→∞,k∈KB(j,k)=limj→∞limk→∞,k∈K∑α=j∞miαMαk(z)∑α=1∞miαMαk(z)=0











The conclusion follows from [15] (Theorem 2). ☐





Corollary 1. 

If for each i, [image: there is no content] except for a finite set of j values, then [image: there is no content] has a nonzero nonnegative solution if and only if [image: there is no content].






4.1.3. Useful Matrix Operations in the Vere-Jones Classes


In order to be able to modify the nonnegative matrices in question, we will need the following observation. In some cases, it will enable us to produce transition matrices of maps from [image: there is no content]. Let E be the identity matrix; see Equation (2).



Proposition 7. 

Let [image: there is no content] be irreducible. For an arbitrary pair of positive integer k and nonnegative integer ℓ, consider the matrix [image: there is no content]. Then:

	(i) 

	
[image: there is no content],




	(ii) 

	
if for each i, [image: there is no content] except for a finite set of j values, the matrix N belongs to the same class of the Vere-Jones classification as the matrix M.











Proof. 

Both conclusions clearly hold if N is a multiple of M, i.e., when [image: there is no content]. Therefore, to show our statement, it is sufficient to verify the case when [image: there is no content].

	(i)

	
Since [image: there is no content] if and only if [image: there is no content], Property (i) follows from Corollary 1.




	(ii)

	
By our assumption, for each i, [image: there is no content], except for a finite set of j values, so Theorem 6 and Corollary 1 can be applied. Notice that for any nonnegative v,


Mv≤λvifandonlyifNv≤(λ+1)v



(18)




so by Theorem 5, the matrix M is transient, resp. recurrent, if and only if [image: there is no content] is transient, resp. recurrent. In order to distinguish different recurrent cases, we will use Table 1. Since by (i) [image: there is no content], we can write:


[image: there is no content]



(19)













By Equation (10) [image: there is no content] for each k, and we can put [image: there is no content]. For each [image: there is no content], there exists [image: there is no content], such that [image: there is no content] whenever [image: there is no content]. Then, using the fact that:


limn→∞U(n,n1)=0,limn→∞∑k=n1nnkλMk∑k=0nnkλMk=1








we can write for any [image: there is no content] and sufficiently large [image: there is no content]:


[image: there is no content]








hence [image: there is no content]. By Table 1, M is null, resp. positive recurrent, if and only if N is null, resp. positive recurrent.



Finally, let [image: there is no content] be positive recurrent, and assume its irreducible submatrix [image: there is no content] for some [image: there is no content]; denote [image: there is no content]. Then, similarly as above, we obtain that [image: there is no content], resp. [image: there is no content]. If M is weakly, resp. strongly recurrent, then for some K, resp. for each K, we obtain [image: there is no content], resp. [image: there is no content], and Theorem 4 can be applied.



This finishes the proof for [image: there is no content]. Now, the case when [image: there is no content], [image: there is no content], can be verified inductively. ☐








5. Entropy and the Vere-Jones Classification in [image: there is no content]


The following statement identifies the topological entropy of a map and the Perron value [image: there is no content] of its transition matrix.



Proposition 8. 

Let [image: there is no content]. Then, [image: there is no content], and if there is a summable λ-solution of Equation (5), then [image: there is no content].





Proof. 

For the first equality, we start by proving [image: there is no content]. We use Proposition 4(i) and Proposition 3(ii). By those statements, [image: there is no content] for any [image: there is no content] and for each sufficiently large n, the interval j contains [image: there is no content] intervals [image: there is no content] with pairwise disjoint interiors, such that [image: there is no content] for all [image: there is no content]. Clearly, the map [image: there is no content] has a [image: there is no content]-horseshoe [17], hence [image: there is no content] and [image: there is no content]. Since n can be arbitrarily large, the inequality [image: there is no content] follows.





Now, we look at the reverse inequality [image: there is no content]. A pair [image: there is no content] is a subsystem of T if [image: there is no content] is closed and [image: there is no content]. It has been shown in [18] (Theorem 3.1) that the entropy of T can be expressed as the supremum of entropies of minimal subsystems. Let us fix a minimal subsystem [image: there is no content] of T for which [image: there is no content].



Claim 1. 

There are finitely many elements [image: there is no content], such that [image: there is no content].





Proof. 

Let us denote [image: there is no content]. Then, P is closed, at most countable and [image: there is no content]. Assume that [image: there is no content]. Then, [image: there is no content], which is impossible for [image: there is no content] minimal of positive topological entropy. If [image: there is no content] intersected infinitely many elements of [image: there is no content], then, since [image: there is no content] is closed, it would intersect also P, a contradiction. Thus, there are finitely many [image: there is no content] of the required property. ☐





Our claim together with Proposition 2 say that the connect-the-dots map of [image: there is no content] is piecewise monotone, and the finite submatrix [image: there is no content] of M corresponding to the elements [image: there is no content] satisfies [image: there is no content]. Now, the conclusion follows from Proposition 5.



The second statement follows from Theorem 3, Proposition 1 and the fact that topological entropy is a conjugacy invariant: [image: there is no content]. ☐



We would like to transfer the Vere-Jones classification to [image: there is no content]. That is why it is necessary to be sure that a change of Markov partition for the map in question does not change the Vere-Jones type of its transition matrix. This is guaranteed by the following proposition.



Given [image: there is no content], consider the family [image: there is no content] of all Markov partitions for T. Write [image: there is no content]. The minimal Markov partition [image: there is no content] for T consists of the closures of connected components of [image: there is no content].



Proposition 9. 

Let [image: there is no content] with two Markov partitions [image: there is no content], resp. [image: there is no content], and corresponding matrices [image: there is no content], resp. [image: there is no content]. The matrices [image: there is no content] and [image: there is no content] belong to the same class of the Vere-Jones classification.





Proof. 

Since the map T is topologically mixing, each of the matrices [image: there is no content], [image: there is no content] is irreducible and aperiodic. Moreover, by Proposition 8, the value guaranteed in Proposition 4(i) equals [image: there is no content] and, so, is the same for both the matrices [image: there is no content], [image: there is no content]; denote it λ. Let [image: there is no content] and [image: there is no content].





First, let us assume that [image: there is no content]. Fix two elements [image: there is no content], resp. [image: there is no content], such that [image: there is no content]. Let us consider a path of the length n:


[image: there is no content]



(20)




with respect to [image: there is no content]; by Proposition 2, each interval [image: there is no content] contains [image: there is no content] intervals of monotonicity of T (denote them [image: there is no content]), such that [image: there is no content] whenever [image: there is no content]. This implies that:


[image: there is no content]



(21)




is the number of paths with respect to [image: there is no content] through the same vertices in order given by Equation (20), and at the same time, it is an upper bound of a number of paths:


[image: there is no content]








with respect to finer [image: there is no content], such that [image: there is no content] for each i. Considering all possible paths in Equation (20) and summing their numbers given by Equation (21), we obtain:


[image: there is no content]



(22)




for each n. On the other hand, since T is topologically mixing and Markov, there is a positive integer [image: there is no content], such that [image: there is no content]. It implies for each n,


[image: there is no content]



(23)







Using Equations (22) and (23), we can write,


[image: there is no content]











Hence, by the third row of Table 1, [image: there is no content] is recurrent if and only if [image: there is no content] is recurrent. Again, from Equations (22) and (23), we can see that [image: there is no content] is positive if and only if [image: there is no content] is positive, and the fourth row of Table 1 for [image: there is no content] can be applied.



In order to distinguish weak, resp. strong, recurrence, for a [image: there is no content], let [image: there is no content] be such that:


Q′={j′∈Q:j′⊂jforsomej∈P′}



(24)







Using Equations (22) and (23), again, we can see that the Perron values of the irreducible aperiodic matrices [image: there is no content] and [image: there is no content] coincide; hence, the Gurevich entropies [image: there is no content], [image: there is no content] are equal if and only if it is the case for [image: there is no content], [image: there is no content]; now, Theorem 4(ii) and (iii) applies.



Second, if [image: there is no content] and [image: there is no content], let us consider the partition [image: there is no content], where any element of [image: there is no content] equals the closure of a connected component of the set [image: there is no content]. The reader can easily verify that [image: there is no content] is a Markov partition for T. By the previous, the pairs of matrices [image: there is no content], [image: there is no content], resp. [image: there is no content], [image: there is no content] belong to the same class of the Vere-Jones classification. Therefore, it is true also for the pair [image: there is no content], [image: there is no content]. ☐



Remark 12. 

Let [image: there is no content]. Applying Proposition 9 in what follows, we will call T transient, null recurrent, weakly recurrent or strongly recurrent, respectively, if it is the case for its transition matrix M. The last three, resp. two, possibilities will occasionally be summarized by “T is recurrent”, resp. “T is positive recurrent”. It is well known that if T is piecewise monotone, then it is strongly recurrent [12] (Theorem 0.16).






6. Linearizability


In this section, we investigate in more detail the set of maps from [image: there is no content] that are conjugate to maps of constant slope (linearizable, in particular). Relying on Theorems 3 and 5 and Proposition 9, our main tools will be local and global perturbations of maps from [image: there is no content] resulting in maps from [image: there is no content]. Some examples illustrating the results achieved in this section will be presented in Section 7.



We start with an easy, but rather useful observation. Its second part will play the key role in our evaluation using centralized perturbation: Formula (37) and its applications.



Proposition 10. 

Let [image: there is no content].

	(i) 

	
If T is leo, then any λ-solution of Equation (5) is summable.




	(ii) 

	
Any λ-solution of Equation (5) satisfies:


∀ε∈(0,1/2):∑j∈P,j⊂(ε,1−ε)vj<∞



















Proof. 


	(i)

	
Since T is leo, for a fixed element i of [image: there is no content], there is an [image: there is no content], such that [image: there is no content]. Then, by Proposition 3 (ii), [image: there is no content] for each [image: there is no content]. This implies that any λ-solution [image: there is no content] of Equation (5) satisfies:


[image: there is no content]








so [image: there is no content].




	(ii)

	
We assume that T is topologically mixing; see Definition 3. For any fixed element [image: there is no content], there is an [image: there is no content], such that [image: there is no content]: since T is topologically mixing, there exist positive integers [image: there is no content] and [image: there is no content], such that [image: there is no content] for every [image: there is no content], resp. [image: there is no content] for every [image: there is no content]. This implies that the interval [image: there is no content] contains [image: there is no content] whenever [image: there is no content]; fix one such n. Then, [image: there is no content] for any element j of [image: there is no content], such that [image: there is no content]; hence:


[image: there is no content]








for any λ-solution [image: there is no content] of Equation (5).






☐





The fundamental conclusion regarding the linearizability of a map from [image: there is no content] provided by the Vere-Jones theory follows.



Theorem 7. 

If [image: there is no content] is leo and recurrent, then T is linearizable.





Proof. 

By assumption, there exists a Markov partition [image: there is no content] for T, such that the transition matrix [image: there is no content] is recurrent. In such a case, Equation (5) has a [image: there is no content]-solution described in Theorem 5. Since T is leo, the [image: there is no content]-solution is summable by Proposition 10(i), and the conclusion follows from Theorem 3. ☐





Remark 13. 

In Section 7, we present various examples illustrating Theorem 7. In particular, we show a strongly recurrent non-leo map of an operator type that is not conjugate to any map of constant slope.





6.1. Window Perturbation


In this section, we introduce and study two types of perturbations of a map T from [image: there is no content]: local and global window perturbation.



6.1.1. Local Window Perturbation


Definition 6. 

For [image: there is no content] with Markov partition [image: there is no content], let [image: there is no content], such that [image: there is no content] is monotone. We say that [image: there is no content] is a window perturbation of S on j (of order k, [image: there is no content]), if:

	
T equals S on [image: there is no content]



	
there is a nontrivial partition [image: there is no content] of j, such that [image: there is no content] and [image: there is no content] is monotone for each i.










Notice that due to Definition 6, a window perturbation does not change partition [image: there is no content] (but renders it slack). Using a sufficiently fine Markov partition for S, its window perturbation T can be arbitrarily close to S with respect to the supremum norm.



In the above definition, an element of monotonicity of a partition is used. Therefore, for example, we can take [image: there is no content] classical (i.e., non-slack), or to a given partition [image: there is no content] and a given maximal interval of monotonicity i of a map, we can consider a partition [image: there is no content] finer than [image: there is no content], such that [image: there is no content].



Proposition 11. 

Let [image: there is no content] be a window perturbation of a map [image: there is no content]. The following is true.

	(i) 

	
If S is recurrent, then T is strongly recurrent and [image: there is no content].




	(ii) 

	
If S is transient, then T is strongly recurrent for each sufficiently large k.











Proof. 

Fix a partition [image: there is no content] for S, let T be a window perturbation of S on [image: there is no content]. Applying Proposition 9, it is sufficient to specify the Vere-Jones class of T with respect to [image: there is no content]. Consider generating functions FS(z)=FjjS(z)=∑n≥1fS(n)zn,resp.FT(z)=FjjT(z)=∑n≥1fT(n)zn, corresponding to S, resp. T, and with radius of the convergence [image: there is no content], resp. [image: there is no content]. Notice that:


∀n∈N:fT(n)=(2k+1)fS(n)



(25)




hence [image: there is no content].

	(i)

	
If S is recurrent, then by Table 1 and Equation (25),


∑n≥1fS(n)RSn=1,∑n≥1fT(n)RSn=2k+1








Then, since [image: there is no content],


[image: there is no content]








Hence, [image: there is no content], and T is strongly recurrent.




	(ii)

	
If S is transient, then by Table 1 and Equation (25),


s=∑n≥1fS(n)RSn<1,∑n≥1fT(n)RSn=(2k+1)s








If for a sufficiently large k, [image: there is no content], necessarily [image: there is no content], and T is strongly recurrent by Table 1.






☐





Let M be a matrix indexed by the elements of some [image: there is no content] and representing a bounded linear operator [image: there is no content] on the Banach space [image: there is no content]; see Section 2. It is well known [19] (p. 264, Theorem 3.3) that for [image: there is no content], the formula:


[image: there is no content]



(26)




defines the resolvent operator Rλ(M):ℓ1(P)→ℓ1(P) to the operator


[image: there is no content]











We will repeatedly use this fact when proving our main results. The following theorem implies that in the space of maps from [image: there is no content] of the operator type, an arbitrarily small (with respect to the supremum norm) local change of a map will result in a linearizable map.



Theorem 8. 

Let [image: there is no content] be a window perturbation of order k of a map [image: there is no content] of operator type. Then, T is linearizable for every sufficiently large k.





Proof. 

We will use the same notation as in the proof of Proposition 11.





Let us denote [image: there is no content] the transition matrix of a considered window perturbation [image: there is no content] of S; let [image: there is no content] be the value ensured for [image: there is no content] by Proposition 4; put [image: there is no content]. Since S is of operator type, it is also the case for each [image: there is no content]. Using Proposition 11 and Theorem 5, we obtain that for some [image: there is no content], the perturbation [image: there is no content] is recurrent, and Equation (5) is [image: there is no content]-solvable:


∀i∈P:∑ℓ∈PmiℓT(k0)FℓjT(k0)(RT(k0))=λT(k0)FijT(k0)(RT(k0))








where [image: there is no content], [image: there is no content]. Since by Equation (25) for each k,


[image: there is no content]








we can deduce that [image: there is no content] is decreasing and:


[image: there is no content]



(27)







By our definition of a window perturbation, for each [image: there is no content],


∀orderk∀n∈N:fijT(k)(n)=fijS(n)



(28)







Denote [image: there is no content] the spectral radius of the operator M:ℓ1→ℓ1 represented by the matrix [image: there is no content]. Using Equation (27), we can consider a [image: there is no content] for which [image: there is no content]. Then, since the resolvent operator [image: there is no content] represented by the matrix (26) is defined well for each real [image: there is no content] as a bounded operator on [image: there is no content] [19] (p. 264), we obtain from Equation (28), Remark 11 and Equation (3):


∑i∈PFijT(k)(RT(k))=1+∑i∈P,i≠jFijT(k0)(RT(k))≤∑i∈PMij(RT(k))<∞








Now, since [image: there is no content] is recurrent, Theorems 3 and 5 can be applied. ☐



Let [image: there is no content]. For any pair [image: there is no content], we define the number:


n(i,j)=min{n∈N:mij(n)≠0}











In the corresponding strongly-connected directed graph [image: there is no content], [image: there is no content] is the length of the shortest path from i to j. In particular, such a path contains neither i nor j inside, so at the same time:


ℓij(n(i,j))≠0,fij(n(i,j))≠0








and [image: there is no content] for every [image: there is no content]. Since:


[image: there is no content]








for every pair [image: there is no content], the suprema:


S(j,P):=supi∈Pn(j,i)n(i,j),j∈P



(29)




are either all finite or all infinite. Moreover, we have the following.



Proposition 12. 

Let [image: there is no content] with two Markov partitions [image: there is no content], resp. [image: there is no content]. Then, [image: there is no content] is finite for some [image: there is no content] if and only if [image: there is no content] is finite for some [image: there is no content].





Proof. 

Let [image: there is no content] and [image: there is no content]. First, let us assume that [image: there is no content]. Fix two elements [image: there is no content], [image: there is no content], such that [image: there is no content]. Since the map T is topologically mixing, there exists a positive integer m for which [image: there is no content]. For an [image: there is no content] and an [image: there is no content] satisfying [image: there is no content], we obtain [image: there is no content] and [image: there is no content]; hence:


(∀i∈P)(∀i′∈Q,i′⊂i):n(j′,i′)n(i′,j′)≤n(j,i)+mn(i,j)



(30)









Inequality (30) together with the property (29) show that if [image: there is no content] is finite for some [image: there is no content], then [image: there is no content] is finite for some [image: there is no content].



On the other hand, there has to exist an [image: there is no content], [image: there is no content], such that [image: there is no content], i.e., [image: there is no content]. Since also [image: there is no content], we can write for [image: there is no content]:


(∀i∈P)(∃i″∈Q,i″⊂i):n(j,i)+mn(i,j)≤n(j′,i″)+mn(i″,j′)



(31)







Inequality (31) together with the property (29) show that if [image: there is no content] is finite for some [image: there is no content], then [image: there is no content] is finite for some [image: there is no content].



If [image: there is no content] and [image: there is no content], we can consider the partition for T:


R=P∨Q={i∩i′:i∈P,i′∈Q}.











Clearly, [image: there is no content], and we can use the above arguments for the pairs [image: there is no content] and [image: there is no content]; hence, the conclusion for the pair [image: there is no content] follows. ☐



Therefore, in (29), for fixed [image: there is no content] and [image: there is no content], we compare the shortest path from j to i (numerator) to the shortest path from i to j (denominator) and take the supremum with respect to i. For example, for our map from Section 7.3, the values (29) are equal to one, when T is leo, and (29) is finite for every [image: there is no content]. Theorem 8 explains the role of a window perturbation in the case of maps of the operator type. In Theorem 9, we obtain an analogous statement for maps of the non-operator type under the assumption that the quantities in (29) are finite.



Theorem 9. 

Let [image: there is no content] with a Markov partition [image: there is no content] and such that the supremum in (29) is finite for some [image: there is no content]. Let [image: there is no content] be a window perturbation of order k of S. Then, T is linearizable for every sufficiently large k.





Proof. 

Fix a partition [image: there is no content] for S and [image: there is no content]. A perturbation of S on j of order [image: there is no content] will be denoted by [image: there is no content]. By our assumption, Proposition 12 and (29), the supremum [image: there is no content] is finite. The numbers [image: there is no content], [image: there is no content], do not depend on any window perturbation on an element of [image: there is no content], because such a perturbation does not change [image: there is no content]; we define V(n)={i∈P:n(i,j)=n}, c(n)=max{n(j,i):i∈V(n)}, V(n,p)={i∈V(n):n(j,i)=p}, [image: there is no content]. Obviously, for every n,


[image: there is no content]



(32)









To simplify our notation, using Proposition 11, we will assume that S is strongly recurrent, so this is also true for [image: there is no content]. Similarly as in the proof of Proposition 11, we obtain for each k


[image: there is no content]



(33)




,



Moreover, as in (27), the sequence [image: there is no content] is decreasing, and [image: there is no content], i.e., [image: there is no content].



Let us show that for each sufficiently large k, there is a summable [image: there is no content]-solution [image: there is no content] of Equation (5). Using (28), we can write for any [image: there is no content], sufficiently large [image: there is no content] and some positive constants [image: there is no content],


B:=∑n≥n0∑i∈P\{j}fijT(k)(n)RT(k)n=∑n≥n0∑i∈P\{j}fijS(n)RT(k)n≤∑n≥n0∑m≥n∑p=1c(n)∑i∈V(n,p)\{j}ℓjiS(p)fijS(m)RT(k)m≤∑n≥n0∑m≥n∑p=1c(n)fjjS(p+m)RT(k)m≤∑n≥n0∑m≥n∑p=1c(n)(λ+ε)p+mRT(k)m≤K·∑n≥n0(λ+ε)c(n)∑m≥nλ+ελT(k)m



(34)






≤K′·∑n≥n0(λ+ε)1+c(n)nλT(k)n



(35)







Since, by (33), the value λ does not depend on k and [image: there is no content], from (32), it follows that:


(λ+ε)1+c(n)nλT(k)≤(λ+ε)1+S(j,P)λT(k)<9/10



(36)




for any [image: there is no content]. Clearly, the value:


[image: there is no content]








given by a finite number of summands is finite, so taking (34)–(36) together, using ∑n≥n0fjjT(k)(n)RT(k)n<FjjT(k)(RT(k))=1, we obtain:


[image: there is no content]








whenever [image: there is no content]. This finishes the proof. ☐




6.1.2. Global Window Perturbation


Let S be from [image: there is no content]. In this part, we will consider a perturbation of S with a Markov partition [image: there is no content] consisting of infinitely many window perturbations on elements of [image: there is no content] (and with independent orders) done due to Definition 6.



Definition 7. 

A perturbation T of S on [image: there is no content] will be called centralized if there is an interval [image: there is no content], [image: there is no content], such that [image: there is no content].





For technical reasons, we consider also an empty perturbation ([image: there is no content]) as centralized.



Let T be a global (centralized) perturbation of S on [image: there is no content]; denote [image: there is no content]. We can write for [image: there is no content]:


∑i∈QFijT(RT)=∑i∈Q∑n≥1∑k∈P′\{j}gikP′(n)RTnFkjT(RT)+∑i∈Q∑n≥1gijP′(n)RTn=∑k∈P′\{j}FkjT(RT)∑i∈Q∑n≥1gikP′(n)RTn+∑i∈Q∑n≥1gijP′(n)RTn



(37)




where the coefficients [image: there is no content] were defined before Remark 11. We use Formula (37) to argue in our proofs.



In the next theorem, the perturbation T need not be of an operator type.



Theorem 10. 

Let [image: there is no content] be recurrent and linearizable. Assume that T is a recurrent centralized perturbation of S on [image: there is no content]. If there are finitely many elements of [image: there is no content] that are S-covered by elements of [image: there is no content], then T is linearizable.





Proof. 

Let [image: there is no content] be all elements of [image: there is no content] that are S-covered by elements of [image: there is no content]. Then:


∀k∈P′:∑i∈Q∑n≥1gikP′(n)RTn≤∑i∈Q∑n≥1gikP′(n)RSn≤max1≤ℓ≤m∑i∈Q∑n≥1gikℓP′(n)RSn≤K:=max1≤ℓ≤m∑i∈PFikℓS(RS)<∞



(38)









Here, the last inequality follows from our assumption that the map S is recurrent and linearizable together with Theorems 3 and 5. Using (37), (38) and Proposition 10(ii), we obtain:


∑i∈PFijT(RT)=∑i∈P′FijT(RT)+∑i∈QFijT(RT)≤∑i∈P′FijT(RT)+K·1+∑k∈P′\{j}FkjT(RT)<∞











Therefore, by Theorems 3 and 5, the map T is linearizable. ☐



In the next theorem, the perturbation T need not be of the operator type.



Theorem 11. 

Let [image: there is no content] be of the operator type. If the transition matrix [image: there is no content] represents an operator [image: there is no content] of the spectral radius [image: there is no content], then any centralized recurrent perturbation T of S, such that [image: there is no content], is linearizable. The entropy assumption is always satisfied when S is recurrent.





Proof. 

Let T be a centralized perturbation of S on [image: there is no content]; denote [image: there is no content]. From Proposition 8 and our assumption on the topological entropy of S and T, we obtain [image: there is no content]. We can write for [image: there is no content]:


∑i∈QFijT(RT)=∑i∈Q∑n≥1∑k∈P′\{j}gikP′(n)RTnFkjT(RT)+∑i∈Q∑n≥1gijP′(n)RTn=∑k∈P′\{j}FkjT(RT)∑i∈Q∑n≥1gikP′(n)RTn+∑i∈Q∑n≥1gijP′(n)RTn



(39)






≤∑k∈P′\{j}∑i∈QFikS(RT)FkjT(RT)+∑i∈QFijS(RT)=V



(40)




where the last inequality follows from the fact that [image: there is no content] for each [image: there is no content] and [image: there is no content]; for the definition of [image: there is no content], see before Remark 11. By our assumption, Formula (26) represents the resolvent operator [image: there is no content] for every [image: there is no content]. In particular, [image: there is no content] is a bounded operator on [image: there is no content] [19] (p. 264); hence, with the help of Remark 11 we obtain:


∀k∈P:∑i∈QFikS(RT)<∑i∈PFikS(RT)<∑i∈PMikS(RT)≤λT∥RλT(M)∥








and (39), (40) can be rewritten as:


[image: there is no content]



(41)






≤∑i∈P′FijT(RT)+λT∥RλT(M)∥1+∑k∈P′\{j}FkjT(RT)<∞



(42)




because [image: there is no content] for topologically mixing T by Proposition 10(ii) and Theorem 5. The conclusion follows from Theorem 5 and (41), (42). It was shown in Proposition 11(i) that for a recurrent S, we always have [image: there is no content]. ☐





In order to apply Theorem 11, let us consider any map [image: there is no content] of the operator type; fix [image: there is no content]. By Theorem 8, there is a strongly recurrent linearizable map S of the operator type for which [image: there is no content]. Similarly, as in (27), we can conclude that the transition matrix of S satisfies the assumption of Theorem 11. By that theorem, any centralized perturbation T (operator/non-operator) of S is linearizable (such a centralized perturbation T can be taken to satisfy [image: there is no content]).






7. Examples


7.1. Non-Leo Maps in the Vere-Jones Classes


For some [image: there is no content], consider the matrix [image: there is no content], given as:


M(a,b)=⋱⋱⋱⋱a0b00a0b00a0b00a0b00a0b⋱⋱⋱⋱



(43)







Clearly, M is irreducible, but not aperiodic. It has period two, so we consider only [image: there is no content]. Obviously,


[image: there is no content]











Using Stirling’s formula, we can write:


[image: there is no content]



(44)







Therefore, [image: there is no content]. At the same time, we can see from (44) that:


limn→∞mii(n)Rn=0and∑n≥0mii(n)Rn=∞








so by Table 1, [image: there is no content] is null recurrent for each pair [image: there is no content].



In the following statement, we describe a class of maps that are not conjugate to any map of constant slope. In particular, they are not linearizable. A rich space of such maps (not only Markov) has been studied by different methods in [20].



Proposition 13. 

Let [image: there is no content], k even and ℓ odd, consider the matrix [image: there is no content] defined in (43). Then, [image: there is no content] is a transition matrix of a non-leo map T from [image: there is no content]. The map T is null recurrent, and it is not conjugate to any map of constant slope. The matrix N represents an operator [image: there is no content] on [image: there is no content] and:


[image: there is no content]



(45)









Proof. 

Notice that the entries of N away from, resp. on, the diagonal are even, resp. odd. Draw a (countably piecewise affine, for example) graph of a map T from [image: there is no content] for which N is its transition matrix. Since [image: there is no content] is null recurrent, the matrix N is also null recurrent by Proposition 7. Solving the difference equation:


axn−1+bxn+1=λxn,n∈Z



(46)




one can verify that Equation (5) with [image: there is no content] has a λ-solution if and only if [image: there is no content] (this follows also from Corollary 1), and none of these solutions is summable. Therefore, by Proposition 7 and Theorem 3, the map T is not conjugate to any map of constant slope. ☐





For some [image: there is no content], let [image: there is no content] be given by:


M(a,b,c)=0c000…a0b00…0a0b000a0b000a0⋮⋱⋱⋱



(47)







Again, the matrix M is irreducible, but not aperiodic. It has period two, so we consider only the coefficients [image: there is no content]; see Section 4.1. In order to find a λ-solution for M, we can use the difference Equation (46) for [image: there is no content] with the additional conditions [image: there is no content] and [image: there is no content]. Using Corollary 1 and the direct computation, one can show:



Proposition 14. 


	(a) 

	
For any choice of [image: there is no content],


f00(2n)=cbn−1an1n2n−2n−1∼cbn−1an4n−1π1/2n(n−1)1/2,








so that [image: there is no content].




	(b) 

	
If [image: there is no content], then [image: there is no content] and M is transient. There is a summable [image: there is no content]-solution for M if and only if [image: there is no content].




	(c) 

	
If [image: there is no content], then [image: there is no content] and M is null recurrent. There is a summable [image: there is no content]-solution for M if and only if [image: there is no content].




	(d) 

	
If [image: there is no content], then [image: there is no content], and M is strongly recurrent. There is a summable [image: there is no content]-solution for M if and only if [image: there is no content].











Using the above observation and Proposition 7, we can conclude.



Proposition 15. 

Let [image: there is no content]. The following hold:

	(i) 

	
The matrix [image: there is no content] is a transition matrix of a strongly recurrent non-leo map [image: there is no content] if and only if [image: there is no content]. The map T is not linearizable for [image: there is no content].




	(ii) 

	
The matrix [image: there is no content] is a transition matrix of a transient non-leo map [image: there is no content]. The map T is linearizable if [image: there is no content].











Proof. 

Clearly, K and L are transition matrices of non-leo maps from [image: there is no content]. Property (i), resp. (ii) follows from the properties (a),(b),(d), resp. (a),(b),(c) of Proposition 14. ☐






7.2. Leo Maps in the Vere-Jones Classes


We have shown in Section 5 that the subset of maps from [image: there is no content] that are linearizable is sufficiently rich in the case of non-leo maps of the operator/non-operator type. In order to refine the whole picture, in this paragraph, we show how to detect interesting leo maps of the operator/non-operator type. In the next two collections of examples, we will use a simple countably-infinite Markov partition for the full tent map and test various possibilities of its global window perturbations.



7.2.1. Perturbations of the Full Tent Map of the Operator Type


For the full tent map [image: there is no content], [image: there is no content], consider the Markov partition:


P={in=[1/2n+1,1/2n]:n=0,1,…}











We will study several global window perturbations of S of the following general form: let [image: there is no content] be a sequence of odd positive integers, and consider a global window perturbation [image: there is no content] of S, such that:

	
the window perturbation on [image: there is no content] is of order [image: there is no content] (i.e., if [image: there is no content] we do not perturb S on [image: there is no content]).








Then, using the notation of Section 4 and Remark 11, we can consider generating functions [image: there is no content] corresponding to the element [image: there is no content]: [image: there is no content] for each n. One can easily verify that:


f(1)=1,f(n)=a1⋯an−1,n≥2



(48)







With the help of Proposition 8, we denote [image: there is no content], resp. [image: there is no content], the topological entropy of [image: there is no content], resp. the radius of convergence of [image: there is no content]; also, we put [image: there is no content].



	
Strongly recurrent: First of all, consider the set [image: there is no content] and the choice:


an(0)=1,n∈A(ℓ)3,n∉A(ℓ)








Then, by (48), [image: there is no content] for [image: there is no content] and [image: there is no content] for each [image: there is no content], hence:


limn→∞[f(n)]1/n=3,Φ=1/3,∑n≥1f(n)Φn=∞



(49)










Therefore, by Table 1, [image: there is no content], i.e., [image: there is no content]; for the upper bound, see [10]. This implies that the map [image: there is no content] is strongly recurrent, hence, by Theorems 5 and 8, also linearizable for any ℓ.



	
Transient: Denoting [image: there is no content], let us define:


an(1)=1,n∈B(1)3,n∉B(1)



(50)










From (48), we obtain [image: there is no content], i.e., [image: there is no content]. Moreover, by direct computation, we can verify that


∑n≥1f(n)Φn<1hencealso∑n≥1f(n)Rn<1



(51)




since always [image: there is no content]. It means that the map [image: there is no content] defined by the choice (50) is transient, and by Table 1 from Section 4, in fact, [image: there is no content], i.e., Proposition 8 implies [image: there is no content]. If we consider in (50) any set [image: there is no content], such that the inequalities (51) are still satisfied, the same is true for a resulting perturbation [image: there is no content].



Remark 14. 

Misiurewicz and Roth [11] observed that the map [image: there is no content] is not conjugate to any map of constant slope. It can be shown that for each choice of a sequence [image: there is no content], such that the corresponding T has finite topological entropy, the following dichotomy is true: either T is recurrent and then Equation (5) has no λ-solution for [image: there is no content], or T is transient and then Equation (5) does not have any λ-solution.





	
Null recurrent: The choice (50) was proposed to satisfy [image: there is no content]. Using this fact and (51), we obtain ([image: there is no content]):


∑n≥1f(n)Rn<1and∑n≥1nf(n)Rn=∞














Let us define inductively a new set [image: there is no content] as follows: put [image: there is no content] and [image: there is no content]; assuming that for some [image: there is no content], we have already defined [image: there is no content] and [image: there is no content], to obtain [image: there is no content], we omit from [image: there is no content] the least number, denoted [image: there is no content], such that the choice:


[image: there is no content]








still gives [image: there is no content] for the corresponding window perturbation of [image: there is no content]. Clearly, [image: there is no content] for each k. Let [image: there is no content], and consider the global perturbation of S corresponding to [image: there is no content] given by Formula (50) with [image: there is no content] replaced by [image: there is no content]. The set [image: there is no content] contains infinitely many units (by (49), any choice [image: there is no content] gives [image: there is no content]). Moreover, our definition of [image: there is no content] implies [image: there is no content],


∑n≥1f(n)Rn=1and∑n≥1nf(n)Rn=∞











Therefore, the corresponding perturbation [image: there is no content] of S is null recurrent; hence, by Theorem 8, it is linearizable. By Proposition 8, [image: there is no content].




7.2.2. One More Collection of Perturbations of the Full Tent Map


Expanding on the example of Ruette [8] (Example 2.9) (see also [15] (p. 1800)), we have the following construction. Let [image: there is no content] be a non-negative integer sequence with [image: there is no content]; let [image: there is no content] a slope determined below in (52); and let [image: there is no content], [image: there is no content], be adjacent intervals converging to zero. Furthermore, let [image: there is no content], [image: there is no content], be adjacent intervals of length [image: there is no content] converging to one and such that [image: there is no content] is the left boundary point of [image: there is no content].



We define the interval map [image: there is no content] with slope [image: there is no content] (see Figure 1) by:


T(x)=λxifx∈[0,λ−1]2−λxifx∈[λ−1,λ−2(2λ−1)]composedof1+2anbranchesofslope∓λalternativelymappingintoinifx∈jn,n≥1










Figure 1. The map [image: there is no content].



[image: Entropy 18 00234 g001 1024]






To make sure that [image: there is no content], we need [image: there is no content] to satisfy:


[image: there is no content]



(52)







Therefore, any sequence [image: there is no content], such that (52) has a positive finite solution λ, leads to the linearizable map [image: there is no content]. One can easily see that [image: there is no content] is a Markov (slack) partition for T as defined in Section 2.



Applying Proposition 2, we associate with [image: there is no content] the transition matrix:


M=M(T)=(mij)i,j∈P=11+2a11+2a21+2a3⋯1000…010⋮0⋱⋱








and also (see Figure 2) the corresponding strongly-connected directed graph [image: there is no content]:


Figure 2. The Markov graph of [image: there is no content]; [image: there is no content] indicates the number of edges in G from [image: there is no content] to [image: there is no content].



[image: Entropy 18 00234 g002 1024]






In particular, the number of loops of length n from [image: there is no content] to itself is [image: there is no content].



We use the Rometechnique from [21] (see also [22] (Section 9.3)) to compute the entropy of this graph: it is the leading root of the equation:


[image: there is no content]



(53)







If we divide this equation by z, then we get:


[image: there is no content]








From Table 1, it follows that the graph G (the matrix M, the map T) is recurrent for any choice of a sequence [image: there is no content] and corresponding finite [image: there is no content]. Proposition 8 and comparing Equations (52) and (53), we find that [image: there is no content].



By Remark 5, the map T is of the operator type if and only if [image: there is no content]. In this case, by Table 1 and Proposition 8, [image: there is no content], so the corresponding map is always strongly recurrent. For the choice [image: there is no content] for some fixed integer [image: there is no content], the map T is of the non-operator type. In this case, [image: there is no content], so [image: there is no content]; hence, by Table 1, the map T is still strongly recurrent.



We can also take [image: there is no content] for some sublinearly-growing integer sequence [image: there is no content] chosen, such that (53) holds for [image: there is no content], i.e., [image: there is no content]. In this case, [image: there is no content] and [image: there is no content], and the system is null-recurrent or weakly recurrent (not strongly recurrent) depending on whether [image: there is no content] is infinite or finite.




7.2.3. Transient Non-Operator Example from [23]


Although up to now, all of our main results have been formulated and proven in the context of continuous maps, many statements remain true also for countably piecewise monotone Markov interval maps that are countably piecewise continuous (this example can be made continuous by replacing each branch with a tent-map of the same height. The λ will be twice as large, and the entropy increases accordingly in that case). We will present a countably-piecewise continuous, countably-piecewise monotone example adapted from [23], where it is studied in detail for its thermodynamic properties.



Let [image: there is no content] be a strictly-decreasing sequence in [image: there is no content] with [image: there is no content] and [image: there is no content]. We will consider the partition [image: there is no content], where the interval map T (see Figure 3) is designed to be linear increasing on each interval [image: there is no content] for [image: there is no content], [image: there is no content], [image: there is no content] for [image: there is no content] and [image: there is no content]. With a slight modification of our definition from Section 2, [image: there is no content] is a Markov partition for T, and T is leo. Let [image: there is no content] be the matrix corresponding to [image: there is no content]; see below. In order to have constant slope λ, we need to solve the recursive relation:


wk+1=wk−wk−1/λfork≥1w0=1,w1=1−1/λ










Figure 3. The transition matrix (left) and graph (right) of the map [image: there is no content]



[image: Entropy 18 00234 g003 1024]






The characteristic equation [image: there is no content] has real solutions [image: there is no content] whenever [image: there is no content]. We obtain the solution:


wk4=2−k(1+k/2)ifλ=4








and:


wkλ=1−2/λ21−4/λα+k+21−4/λ−1+2/λ21−4/λα−kifλ>4











It is known that [image: there is no content]; hence, by Proposition 8, [image: there is no content]. If we remove site [image: there is no content] (i.e., remove the first row and column) from M, the resulting matrix is M again, so strongly-connected directed graph [image: there is no content] contains its copy as a proper subgraph, and due to Theorem 4(i), M and also T are transient.



Writing [image: there is no content], we have found, in accordance with Theorem 5, a positive summable λ-solution of Equation (5) for each [image: there is no content]. Summarizing, the map T is conjugate to a map of constant slope λ whenever [image: there is no content]. T is also linearizable, since [image: there is no content].




7.2.4. Transient Non-Operator Example from [5]


Let [image: there is no content], [image: there is no content][image: there is no content] converge to [image: there is no content] and [image: there is no content]; the interval map [image: there is no content] satisfies (see Figure 4)

	(a)

	
[image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content],




	(b)

	
[image: there is no content], [image: there is no content], T(x2i)=v2i−2,i≥1,




	(c)

	
[image: there is no content] for each interval [image: there is no content],




	(d)

	
[image: there is no content] and [image: there is no content] for each [image: there is no content].








Figure 4. The leo map [image: there is no content].



[image: Entropy 18 00234 g004 1024]






Property (c) holds for our [image: there is no content], since by (a), (b), we have [image: there is no content] for each [image: there is no content].



Let us denote [image: there is no content] the set of all continuous interval maps fulfilling (a)–(d) for a fixed pair [image: there is no content], and put [image: there is no content]. It was shown in [5] that:

	
[image: there is no content] is a conjugacy class of maps in [image: there is no content].



	
Strongly-connected directed graph [image: there is no content] contains its copy as a proper subgraph [5] (Theorem 4.5, Figure 3), so due to Theorem 4(i), T is transient.



	
The common topological entropy equals [image: there is no content].



	
Equation (5) has a positive summable λ-solution for each [image: there is no content].








We can factor out the left-right symmetry of this map by using the semi-conjugacy [image: there is no content], and the factor map [image: there is no content] has transition matrix:


M=44444…14444…014440014400014⋮⋱⋱⋱








with similar properties as the previous example. Therefore, T is conjugate to a map of constant slope λ whenever [image: there is no content] (see Figure 5), and also linearizable, since [image: there is no content].


Figure 5. [image: there is no content] is conjugate to a map with slope 9 (a) and slope 20 (b).



[image: Entropy 18 00234 g005 1024]








7.3. One Application of Our Results


Using Proposition 13 let [image: there is no content]. We have discussed the fact that K is a transition matrix of a non-leo map [image: there is no content] with corresponding Markov partition denoted by [image: there is no content]. Clearly, by Remark 5, K represents a bounded linear operator, denoted it by [image: there is no content], on [image: there is no content], so T is of the operator type. We can conclude that:

	(i)

	
[image: there is no content], Propositions 8 and 13.




	(ii)

	
[image: there is no content], Proposition 13, Section 2, and Equation (3).




	(iii)

	
T is not conjugate to a map of constant slope (is not linearizable), Proposition 13.




	(iv)

	
T is null recurrent, Proposition 13.




	(v)

	
Let [image: there is no content] be a Markov partition for T; denote [image: there is no content] the transition matrix of T with respect to [image: there is no content] representing a bounded linear operator [image: there is no content] on [image: there is no content]. Since:


∀y∈(0,1):#T−1(y)=5








we have [image: there is no content]; see (i), Section 2 and Proposition 8. Then, by Theorem 11, any recurrent centralized (operator/non-operator) perturbation of T is linearizable. In particular, it is true for any local window perturbation of T on some element of [image: there is no content], Proposition 11(i).




	(vi)

	
Let [image: there is no content] be a Markov partition for T, which equals [image: there is no content] outside of some interval [image: there is no content]. Let [image: there is no content] be a local window perturbation of T on some element of [image: there is no content]; from the previous Paragraph (v), it follows that [image: there is no content] is strongly recurrent and linearizable. Consider a centralized (operator/non-operator) perturbation [image: there is no content] of [image: there is no content] on some [image: there is no content]. Then, if [image: there is no content] is recurrent, it is linearizable by Theorem 10. Otherwise, we can use either Theorem 8 (an operator case) or Theorem 9 (non-operator case; [image: there is no content] is finite for [image: there is no content]) to show that a local window perturbation of [image: there is no content] of a sufficiently large order is linearizable.
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