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Abstract: A three dimensional computational solution has been obtained to investigate the natural
convection and entropy generation of nanofluid-filled open cavities with an adiabatic diamond
shaped obstacle. In the model, the finite volume technique was used to solve the governing equations.
Based on the configuration, the cavity is heated from the left vertical wall and the diamond shape
was chosen as adiabatic. Effects of nanoparticle volume fraction, Rayleigh number (103 ď Ra ď 106)
and width of diamond shape were studied as governing parameters. It was found that the geometry
of the partition is a control parameter for heat and fluid flow inside the open enclosure.
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1. Introduction

The work on open systems is vital in the design of electronic cooling, heating and cooling
of building, ventilation, food industry and solar applications. Bilgen and Öztop [1] solved via
a finite volume method the two-dimensional governing equations of 2D natural convection in
partially open inclined cavities. Prakash et al. [2] studied different heat transfer areas using Fluent.
A buoyancy-induced flow loss is observed to increase with increasing opening ratio. This increment
in buoyancy-induced flow loss for different inclination angles is found to range between 30%–80%
when the opening ratio is increased from 1/4 to 1/2 for all closed space shapes. Zamora and Kaiser [3]
solved the convective flows in cubical open cavities. They investigated the influence of an internal
wall (adiabatic or isothermal) as well as the slope of an external heated wall on flow structure and
heat transfer.

The number of studies on buoyancy-induced flow in nanofluid-filled open cavities, has increased
recently. In this context, buoyancy-induced flow of a SWCNT-nanofluid (single-walled carbon
nanotube nanofluids) in an open enclosure was studied by Jafari et al. using a lattice Boltzmann
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simulation [4]. It is mainly a square closed space heated with an isothermal vertical wall. They
observed that the aspect ratio of the closed space plays an important role in buoyancy-induced flow and
an increase of this parameter leads to heat transfer reduction in the target problem. Sheremet et al. [5]
applied the curvilinear boundary conditions on a nanofluid-filled wavy walled closed space and they
found that both waviness and nanoparticle volume rate are effective parameters in buoyancy-induced
flow and heat transfer.

Using the lattice Boltzmann approach, Kefayati [6] studied the entropy generation due to laminar
buoyancy induced flow in a square closed space filled with non-Newtonian nanofluid. He observed
that total entropy production rises with the Ra number and the increase in volume fraction enhances
entropy generation due to heat and fluid flow in different power-law indexes. Later, Kefayati [7]
employed the lattice Boltzmann method to investigate the free convection in an open cavity in the
presence of MHD flow using alumina/water nanofluid. Mejri and Mahmoudi [8] applied a magnetic
field on buoyancy-induced flow heat transfer in a nanofluid-filled open enclosure.

Öztop and Salem [9] performed a review to present on entropy-related work with energy systems
including buoyancy-induced flow. There are few works on three-dimensional analysis of entropy
generation. Öztop et al. [10] numerically studied the three-dimensional heat transfer and entropy
generation due to combined buoyancy and thermocapillary convection in a cubic cavity. Their results
elucidated that at low Rayleigh numbers, the Marangoni number influence on the total entropy
generation rises. Entropy generation for buoyancy-induced flow in a partitioned closed space, with
adiabatic horizontal and isothermally cooled vertical walls, is studied numerically by Famouri and
Hooman [11]. They presented the effects of fluid friction on entropy production is weak and the heat
transfer irreversibility increases almost linearly with the Nu number and the temperature difference.

Mehrez et al. [12] exploited the finite-volume method to study the MHD flow effect on the entropy
generation due to the use of Cu–water nanofluids in an open cavity where the bottom side was heated.
They concluded that the average Nusselt number and entropy generation were enhanced with particle
loading. Furthermore, it was found that the amount of increase in the Nusselt number and entropy
generation depends on the intensity of the magnetic field (Hartmann number), and the angle at which
the magnetic field is applied.

Heat transport can be controlled by installing differently shaped passive elements in open or
closed cavities. In this context, conjugate heat transfer in a partially open square closed space with a
vertical heat source has been simulated by Koca [13]. In this case, the closed space had an opening on
the top side where the position and size of opening was changed. It was found that ventilation location
has a significant influence on the heat transfer rate. Nasrin [14] concluded that obstacles could be used
as effective tools to control the heat transfer in cavities where MHD flow is considered in the problem.

Hussein et al. [15] solved the three-dimensional buoyancy-induced flow and entropy generation
in a trapezoidal closed space with different slopes filled with air for Rayleigh numbers in the range of
103 and 105. The closed space was heated from the bottom wall while the left and right sides were kept
at a lower temperature compared to the bottom. They found that at low Rayleigh numbers, the slope
of the closed space has no effect on the total entropy generation.

This literature review indicates that most studies on buoyancy-induced flow in open cavities have
been considered as 2D dimensional problems. The main aim of this paper was to perform a 3D analysis
of heat transport of nanofluids in an open cavity with a diamond shaped obstacle in the middle of a
closed space.

2. Definition of the Physical Model

Figure 1 displays a schematic of the present problem. As shown, the left side of the closed space
has a higher temperature than the right side that is considered as the opening. Other walls are assumed
to be adiabatic. A diamond shaped obstacle with a side size of Ld and insulated walls is inserted in
the middle of the closed space. The space between the closed space and the obstacle is filled with
Al2O3/water nanofluid.
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Figure 1. Physical model with boundary conditions.

The nanofluid is assumed to be incompressible and the flow is considered laminar. The base fluid
and nanoparticles are assumed to be at thermal equilibrium. Table 1 presents the thermo-physical
properties of the base fluid (water) and the nanoparticles.

Table 1. Thermo-physical properties of nanoparticles and base fluid.

Properties Al2O3 Water

Cp (J¨ kg´1¨ ˝C´1) 765 4179
ρ (kg¨ m´3) 3970 997.1

k (W¨ m´1¨ ˝C´1) 40 0.613
α ˆ 107 (m2¨ s´1) 131.7 1.47
β ˆ 10´5 (K´1) 0.85 21

2.1. Governing Equations

Equations governing the studied configuration were written using the 3D vorticity-vector

potential formalism p
Ñ
ψ ´

Ñ
ωq. This formalism allows the elimination of the pressure which is delicate

to treat. Vorticity and vector potential are defined respectively by the following two relations:

Ñ

ω1 “
Ñ

∇ˆ
Ñ

V1 (1a)

and
Ñ

V1 “
Ñ

∇ˆ
Ñ

ψ1 (1b)

Using the dimensionless variables the governing equations are written in the following form:

´
Ñ
ω “ ∇2Ñψ (2)

B
Ñ
ω

Bt
` p

Ñ

V ¨∇qÑω “ p
Ñ
ω ¨∇q

Ñ

V `
νn f

ν f
Pr ¨∇2Ñω ´

βn f

β f
RaPr∇ˆ T

Ñ
g (3)

BT
Bt
`
Ñ

V ¨∇T “
αn f

α f
∇2T (4)
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The velocity (
Ñ

V1), time (t1), vector potential (
Ñ

ψ1) and vorticity (
Ñ

ω1), are put respectively in the
dimensionless forms by α{l, l2{α, α and l2{α and the dimensionless temperature is written as:

T “ pT1 ´ Tc1q{pTh1 ´ Tc1q (5)

In these equations, the dimensionless Pr and Ra numbers are respectively defined as:

Pr “
ν

α
and Ra “

g ¨ β ¨ ∆T ¨ l3

ν ¨ α
(6)

The effective density, the specific heat, the effective thermal conductivity (Maxwell–Garnetts
model) and the effective dynamic viscosity (Brinkman model) of the nanofluid are given respectively
as [16,17]:

ρn f “ p1´ ϕq ρ f ` ϕρs (7)
`

ρCp
˘

n f “ p1´ ϕq
`

ρCp
˘

f ` ϕ
`

ρCp
˘

s (8)

kn f

k f
“

ks ` 2k f ´ 2ϕ
´

k f ´ ks

¯

ks ` 2k f ` ϕ
´

k f ´ ks

¯ (9)

µn f “
µ f

p1´ ϕq2.5 (10)

2.2. Boundary Conditions

For the considered configuration, the boundary conditions are:
Temperature:

T “ 1 for x “ 0 (11)

BT
Bn
“ 0 on adiabatic walls (12)

Tin “ Tc if n . V ă 0 (13a)

and
BT
Bn

ˇ

ˇ

ˇ

ˇ

out
“ 0 if n. V ě 0 At open boundary (13b)

Vorticity:

ωx “ 0, ωy “ ´
BVz

Bx
and ωz “

BVy

Bx
at x “ 0 (14)

ωx “
BVz

By
, ωy “ 0 and ωz “ ´

BVx

By
at y “ 0 and 1 (15)

ωx “ ´
BVy

Bz
, ωy “

BVx

Bz
and ωz “ 0 at z “ 0 and 1 (16)

Vector potential:
Bψx

Bx
“ ψy “ ψz “ 0 at x “ 0 (17)

ψx “
Bψy

By
“ ψz “ 0 at y “ 0 and 1 (18)

ψx “ ψy “
Bψz

Bz
“ 0 at z “ 0 and 1 (19)

Velocity:
Vx “ Vy “ Vz “ 0 on all walls (20)
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BVx

Bx
“
BVy

Bx
“
BVz

Bx
“ 0 at open boundary (21)

The expression of the dimensional generated entropy (S1gen) is presented by Equation (22):

S1gen “

"

kn f

T2
0

„

´

BT1

Bx1

¯2
`

´

BT1

By1

¯2
`

´

BT1

Bz1

¯2
*

`

µn f
T0

#

2

«

´

BV1
x

Bx1

¯2
`

ˆ

BV1
y

By1

˙2
`

´

BV1
z

Bz1

¯2
ff

`

ˆ

BV1
y

Bx1 `
BV1

x
By1

˙2
`

ˆ

BV1
z

By1 `
BV1

y
Bz1

˙2
`

´

BV1
x

Bz1 `
BV1

z
Bx1

¯2
+ (22)

Put in its dimensionless form, the local generated entropy (Ns) is written as:

Ns “
kn f
k f

„

´

BT
Bx

¯2
`

´

BT
By

¯2
`

´

BT
Bz

¯2


`ϕS
µn f
µ f

"

2
„

´

BVx
Bx

¯2
`

´

BVy
By

¯2
`

´

BVz
Bz

¯2


`

„

´

BVy
Bx `

BVx
By

¯2
`

´

BVz
By `

BVy
Bz

¯2
`

´

BVx
Bz `

BVz
Bx

¯2
* (23)

In this equation another dimensionless parameter appears, this number is the irreversibility
coefficient defined by:

ϕS “
´ α

l∆T

¯2
T0 (24)

The local generated entropy is the sum of two types of entropies; the first one is due to temperature
gradients (Ns–th) and the second is due to viscous effects (Ns-fr).

The total generated entropy (Stot) is given by:

Stot “

ż

v

Nsdv “
ż

v

´

Ns´th ` Ns´ f r

¯

dv “ Sth ` S f r (25)

The Bejan number (Be) is the ratio of heat transfer irreversibility to the total irreversibility due to
the heat transfer and the fluid friction as:

Be “
Sth

Sth ` S f r
(26)

The local Nusselt number (Nu) is defined as follows:

Nu “

˜

kn f

k f

¸

BT
Bx

ˇ

ˇ

ˇ

ˇ

ˇ

x“0,1

(27)

The average Nusselt number on the hot wall (Nuav), is expressed by:

Nuav “

1
ż

0

1
ż

0

Nu ¨ dy ¨ dz (28)

The FORTRAN language was used to write the numerical program allowing to solve the
mathematical model described above. Governing Equations (2)–(4) and (23) were discretized using
the control volume method based on the central-difference scheme and solved using the successive
relaxation iteration scheme. Although grids are uniform in all directions, additional nodes are added
on boundaries. For all numerical tests, the time step and spatial mesh are fixed respectively at (10´4)
and (813) and the convergence criterion for each step of time is chosen as:

1,2,3
ÿ

i

max
ˇ

ˇ

ˇ
ψn

i ´ ψn´1
i

ˇ

ˇ

ˇ

max
ˇ

ˇψn
i

ˇ

ˇ

`max
ˇ

ˇ

ˇ
Tn

i ´ Tn´1
i

ˇ

ˇ

ˇ
ď 10´5 (29)
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3. Validation of the Code and Grid Dimension

For 3D analysis, the findings of Wakashima and Saitoh [18] and Fusegi et al. [19] on buoyancy-
induced flow are validated with Pr = 0.71 and shown in Table 2. The present results are in excellent
agreement with the previously reported results. After a grid sensivity test, the 81 ˆ 81 ˆ 81 grid
distribution with additional nodes in boundaries was retained. For nanofluids buoyancy-induced flow,
the code was validated by comparing with the studies of Öztop and Abu-Nada [20] (Figure 2) and of
Jahanshahi et al. [21] (Figure 3). It can be said from this comparison that there is good agreement.

Table 2. Comparison of present results with the 3D results of (Wakashima and Saitho [18]) and
(Fusegi et al. [19]) for differentially heated cubic closed space and Pr = 0.71.

Ra Authors ψz (Center) ωz (Center) Vxmax (y) Vymax (x) Nuav

104 Present work 0.05528 1.1063 0.199 (0.826) 0.221 (0.112) 2.062
Wakashima and Saitho [18] 0.05492 1.1018 0.198 (0.825) 0.222 (0.117) 2.062

Fusegi et al. [19] - - 0.201 (0.817) 0.225 (0.117) 2.1

105 Present work 0.034 0.262 0.143 (0.847) 0.245 (0.064) 4.378
Wakashima and Saitoh [18] 0.03403 0.2573 0.147 (0.85) 0.246 (0.068) 4.366

Fusegi et al. [19] - - 0.147 (0.855) 0.247 (0.065) 4.361

106 Present work 0.01972 0.1284 0.0832 (0.847) 0.254 (0.032) 8.618
Wakashima and Saitho [18] 0.01976 0.1366 0.0811 (0.86) 0.2583 (0.032) 8.6097

Fusegi et al. [19] - - 0.0841 (0.856) 0.259 (0.033) 8.77
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Figure 3. Comparison of the temperature on axial midline between the present results (cubic closed
space; z = 0.5 plan) and results of Jahanshahi et al. [21] (Pr = 6.2, ϕ = 0.1 and Ra = 6.2 ˆ 104).
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4. Results and Discussion

A computational work has been done to solve the equations of buoyancy-induced flow in a 3D
open cavity with a diamond shaped obstacle. The working fluid is chosen as a nanofluid and entropy
generation is also analyzed for different governing parameters such as nanoparticle volume fraction,
Ra number and length of the diamond obstacle.

Streamlines and velocity vector projection at z = 0.5 plan for different Ra numbers and nanoparticle
fractions are presented in Figures 4 and 5, respectively, at Ld = 0.3. The flow enters the closed space
from the bottom side and goes to the top side by surrounding the partition. Also, a small part of
the fluid comes into the closed space and impinges on the inserted body and goes back. It shows
small differences between nanofluid and pure fluid. Vena contracta shaped flow is formed around the
inserted body. With increasing flow velocity and Ra number, a circulation cell is formed on the corner
of the inserted body. This circulation cell becomes bigger with nanoparticle addition. Its dimension
also increases with increasing Ra number.Entropy 2016, 18, 232 8 of 18 
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Figure 5. Velocity vector projection at z = 0.5 plan for Ld = 0.3 and different Ra; (Left) ϕ = 0; and (Right)
ϕ = 0.15.

Figure 6, presents the iso-surfaces of temperature for Ld = 0.3 at different Ra numbers for both
nanofluid and water. For higher values of Ra number, the thermal boundary layer becomes thinner.
Thus, insertion of the body becomes more effective for the lower values of Ra number. It is noticed
that the inserted body has adiabatic boundary conditions. Thus, heat is captured under the left bottom
side of the partition.
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Figure 7 illustrates the isotherms for different Ra numbers and nanoparticle volume fraction at
z = 0.5. As seen from the figure, distances among isotherms are almost same due to the domination of
the conduction mode of heat transfer at low Ra numbers. Thus, isotherms are distributed diagonally
due to the inserted insulated material. The effects of the inserted body become less due to thinner
thermal boundary layer at higher Ra number. Local thermal entropy generation is displayed for
different Ra number. In Figure 8, gray lines show values for pure fluid and black ones are given for
nanofluids. Sth value becomes effective at the corners of the inserted body due to increases in kinetic
energy. It is also cumulated mostly at the bottom side of the left vertical wall due to heat transport
way. The inserted body behaves as an insulated wall. When values of Ra number increase the thermal
boundary layer becomes thinner and the inserted body becomes insignificant on Sth value. Figure 9
illustrates the entropy generation due to fluid friction. Again, the edge of the inserted body becomes
significant in entropy generation. Also, boundaries are effective for entropy generation. Especially,
the top outlet edge becomes effective in entropy generation due to fluid friction, because friction is
increased at that part of the flow.

Entropy 2016, 18, 232 10 of 18 

 

 
Ra = 103 Ra = 104 

 
Ra = 105 Ra = 106 

Figure 6. Iso-surfaces of temperature for Ld = 0.3 and different Ra; Dark (ϕ = 0.15) clear (ϕ = 0). 

Ra = 103 Ra = 104 

Ra = 105 Ra = 106 

Figure 7. Isotherms at z = 0.5 plan for Ld = 0.3 and different Ra; (gray) ϕ = 0; (black) ϕ = 0.15. 

  

Figure 7. Isotherms at z = 0.5 plan for Ld = 0.3 and different Ra; (gray) ϕ = 0; (black) ϕ = 0.15.



Entropy 2016, 18, 232 10 of 17
Entropy 2016, 18, 232 11 of 18 

 

 
Ra = 103 Ra = 104 

 
Ra = 105 Ra = 106 

Figure 8. Local thermal entropy generation (Sth) at z = 0.5 plan for Ld = 0.3 and different Ra; (gray) ϕ = 
0; (black) ϕ = 0.15. 

  

Ra = 103 Ra = 104 

 
Ra = 105 Ra = 106 

Figure 9. Local entropy generation due to friction (Sfr) at z = 0.5 plan for Ld = 0.3 and different Ra; 
(gray) ϕ = 0; (black) ϕ = 0.15. 

  

Figure 8. Local thermal entropy generation (Sth) at z = 0.5 plan for Ld = 0.3 and different Ra; (gray)
ϕ = 0; (black) ϕ = 0.15.

Entropy 2016, 18, 232 11 of 18 

 

 
Ra = 103 Ra = 104 

 
Ra = 105 Ra = 106 

Figure 8. Local thermal entropy generation (Sth) at z = 0.5 plan for Ld = 0.3 and different Ra; (gray) ϕ = 
0; (black) ϕ = 0.15. 

  

Ra = 103 Ra = 104 

 
Ra = 105 Ra = 106 

Figure 9. Local entropy generation due to friction (Sfr) at z = 0.5 plan for Ld = 0.3 and different Ra; 
(gray) ϕ = 0; (black) ϕ = 0.15. 

  

Figure 9. Local entropy generation due to friction (Sfr) at z = 0.5 plan for Ld = 0.3 and different Ra;
(gray) ϕ = 0; (black) ϕ = 0.15.

Total entropy generation is presented in Figure 10 for the same parameters as Figures 8 and 9.
Figure 11 shows the variation of average Nusselt number along the hot wall as a function of
nanoparticle volume fraction at different Ra numbers. For Ra = 103 and 104, heat transport becomes
constant with volume fraction, due to the domination of conduction mode. For higher Ra, heat transfer
increases by increasing the nanoparticle volume fraction.
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Geometric effects of the inserted body are presented in Figure 12 for the highest value of
Ra number. As seen from the figure, the dimension of the partition is the main effective parameter in
the flow structure inside the closed space. In any case, a circulation cell occurs due to flow separation
of the corner of the partition. Also, another mini-circulation cell is formed under this circulation cell.
For the biggest partition, the flow is obstructed from the outside. Nanoparticle addition has less effect
on flow structure.

In the same manner, isotherms are given in Figure 13 for different nanoparticle volume fraction
at z = 0.5 for Ra = 106. The small partition size becomes insignificant in the temperature distribution.
However, temperature distribution is affected by the partition and the high temperature penetrates
into the cavity.

Average Nusselt number is illustrated for the considered parameters in Figure 14. As seen from
the figure, the general trend with geometrical parameter is a small decrease. However, higher heat
transfer is obtained with the addition of nanoparticles into the base fluid. Variation of Sth value with
geometrical parameter is plotted in Figure 15 at different Ra numbers. As given in the figure, entropy
generation becomes almost constant with geometrical parameters for lower Ra numbers. However,
it is increased with the increase of geometrical parameter at higher values of the Ra number due to
increase in heat transfer. Entropy generation due to friction as a function of geometrical parameter for
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different nanoparticle volume fraction is shown in Figure 16(a) for lower Ra numbers and Figure 16b
for higher Ra numbers. It is an interesting result that heat transfer is decreased for Ld > 0.3 due to the
obstruction effect of the inserted body. Entropy generation due to fluid friction becomes constant for
different geometrical parameters at Ra = 105 for both nanofluid and pure fluid. It is increased with
geometrical parameter for Ra = 106 and higher heat transfer occurs for nanofluids.Entropy 2016, 18, 232 13 of 18 
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Figure 16. Entropy generation due to friction as a function of Ld for ϕ = 0 and ϕ = 0.15 and different
Ra; (a) Ra = 103 and 104; (b) Ra = 105 and 106.

Figure 17 illustrates the total entropy generation for the chosen parameters. Total entropy
generation becomes almost constant for Ra = 105 with Ld values and higher values are formed
for nanofluids. However, entropy generation is increased almost linearly with Ld values for Ra = 106.
On the contrary, entropy generation decreases with Ld values due to obstruction of the inserted body.
Finally, Figure 18 presents the variation of Bejan number with Ld values at different Ra number and
nanoparticle volume fraction. This value becomes almost constant for the highest value of Ra number
for all values of geometrical parameters. On the contrary, Bejan number is decreased with increasing
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the geometrical parameter but in any cases, higher values are formed for the case of nanofluids.
This decreasing trend is also valid for Ra = 104.
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5. Conclusions

A computational study has been done in this work to obtain the heat transfer, fluid flow and
entropy generation for different parameters such as nanofluids, geometrical parameter and Ra numbers.
An inserted body can be used to control heat transfer, fluid flow and energy efficiency inside the
closed space. Thus, Bejan number becomes almost fixed for the highest value of Ra number and it
decreases with increasing geometrical value, but it decreases for lower values of Ra numbers. In any
case both heat transfer and entropy generation augment with addition of nanoparticle. The increase
of geometrical parameter enhances the total entropy generation due to the enhancement of entropy
generation with heat transfer. Circulation cells inside the enclosure are a function of the geometrical
parameters of the inserted body.

Author Contributions: In this paper, Hakan F. Öztop, Lioua Kolsi and Omid Mahian Conceived and designed the
numerical experiments. Lioua Kolsi and Walid Aich performed the experiments. Nidal Abu-Hamdeh, Mohamed
Naceur Borjini and Habib Ben Aissia analyzed the data. Hakan F. Öztop, Omid Mahian and Lioua Kolsi wrote
the paper.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Nomenclature

Be Bejan number
Cp Specific heat at constant pressure (J/kg¨K)
G Gravitational acceleration (m/s2)
k Thermal conductivity (W/m¨K)
l Enclosure width and height (m)
Ld Diamond width
N Unit vector normal to the wall
Ns Dimensionless local generated entropy
Nu Local Nusselt number
Pr Prandtl number
Ra Rayleigh number
S1gen Generated entropy (kJ/kg¨K)
t Dimensionless time (t1 ¨ α{l2)
T Dimensionless temperature [pT1 ´ T1cq{pT1h ´ T1cqs
T1c Cold temperature (K)
T1h Hot temperature (K)
To Bulk temperature [To = (T1c+T1h)/2] (K)
Ñ

V Dimensionless velocity vector (
Ñ

V1 ¨ l{α)
x, y, z Dimensionless Cartesian coordinates (x1{l, y1{l, z1{l)

Greek symbols

α Thermal diffusivity (m2/s)
β Thermal expansion coefficient (1/K)
ρ Density (kg/m3)
µ Dynamic viscosity (kg/m¨ s)
ν Kinematic viscosity (m2/s)
ϕ Nanoparticles volume fraction
ϕS Irreversibility coefficient
Ñ
ψ Dimensionless vector potential (

Ñ

ψ1{α)
Ñ
ω Dimensionless vorticity (

Ñ

ω1 ¨ α{l2)
∆T Dimensionless temperature difference
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Subscripts

Av Average
x, y, z Cartesian coordinates
fr Friction
f Fluid
nf Nanofluid
s Solid
th Thermal
tot Total

Superscript

1 Dimensional variable
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