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Abstract: There exist problems of small samples and heteroscedastic noise in design time forecasts.
To solve them, a kernel-based regression with Gaussian distribution weights (GDW-KR) is proposed
here. GDW-KR maintains a Gaussian distribution over weight vectors for the regression. It is
applied to seek the least informative distribution from those that keep the target value within the
confidence interval of the forecast value. GDW-KR inherits the benefits of Gaussian margin machines.
By assuming a Gaussian distribution over weight vectors, it could simultaneously offer a point
forecast and its confidence interval, thus providing more information about product design time. Our
experiments with real examples verify the effectiveness and flexibility of GDW-KR.
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1. Introduction

Product design is a complex and dynamic process, and its duration is affected by a number
of factors, most of which are of fuzzy, random and uncertain characteristics. As product design
tasks occur in different companies, uncertain characteristics may vary from product to product. The
heteroscedasticity thus constitutes another important feature of product design. The mapping from
the factors to design time is highly nonlinear, and it is impossible to describe this mapping relationship
by definite mathematical models. The degree of reasonability of the supposed distribution of product
design time is a key factor in product development control and decisions [1–3].

The triangular probability distribution was chosen by Cho and Eppinger [1] to represent design
task durations, and a process modeling and analysis technique for managing complex design projects
was proposed by using advanced simulation. However, if the assumed distribution of design activity
durations does not reflect the true state, the proposed algorithm may fail to obtain ideal results.
Yan and Wang [2] proposed a time-computing model with its corresponding design activities in
concurrent product development process. Yang and Zhang [3] presented an evolution and sensitivity
design-structure matrix to reflect overlapping and their impact on the degree of activity sensitivity and
evolution in the process model, and the model can be used for better project planning and control by
identifying overlapping and risk for process improvements, but with the two algorithms mentioned
above, normal duration of each design activity should be determined before the algorithm is executed,
and if activity durations are incompatible with the actual ones, the proposed algorithm may fail to
function well. Apparently, the accuracy of predetermined design time is crucial to the planning and
controlling of product development processes.

Traditionally, approximate design time is analyzed by means of qualitative approaches. With
the rapid development of computer and regression techniques, new forecast methods keep emerging.
Bashir and Thomson [4] came up with a modified Norden model to estimate project duration in
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conjunction with the effort-estimation model. Griffin [5] related the length of the product development
cycle to project, process and team structure factors by a statistical method, and quantified the impact of
project newness and complexity on the increasing length of development cycle, but with no proposal
for design time forecasts. Jacome and Lapinskii [6] developed a model to forecast electronic product
design efforts based on a structure and process decomposition approach. Only a small portion of the
time factors, however, are taken into account by the model. Xu and Yan [7] proposed a design-time
forecast model based on a fuzzy neural network, which exhibits good performance when the sample
data are sufficient. However, only a small number of design cases are available to a company, which
weakens the validity of the fuzzy neural network. Therefore, a novel approach should be adopted.

Recently, kernel methods have been identified as one of the leading means for pattern classification
and function approximation, and successfully applied in various fields [8–14]. Support vector machine
(SVM), initially developed by Vapnik for pattern classification, is one of the most used models.
With the introduction of the ε-insensitive loss function, SVM has been extended in use to solve
nonlinear regression problems, and thus is also called support vector regression (SVR). ε-insensitive
loss functions contribute to the sparseness property of SVR, but the value of ε, chosen a priori,
is hard to determine. A new parameter v was then introduced and v-SVR proposed, whereby v
controls the number of support vectors and training errors [11]. v-SVR has overcome the difficulty
of ε determination. In recent years, much research has been done on kernel methods. Kivinen et al.
considered online learning in a reproducing kernel Hilbert space in [15]. Liu et al. [16] proved that
the kernel least-mean-square algorithm can be well posed in reproducing kernel Hilbert spaces
without adding an extra regularization term to penalize solution norms as was suggested by [15].
Chen et al. developed a quantized kernel least mean square algorithm based on a simple online
vector quantization method in [17], and proposed the quantized kernel least squares regression
in [18]. Wu et al. [19] derived the kernel recursive maximum correntropy in kernel space and under
the maximum correntropy. Furthermore, by combining fuzzy theory with v-SVR, Yan and Xu [20]
proposed Fv-SVM to forecast the design time, which could be used to solve regression problems
with uncertain input variables. However, both Fv-SVM and v-SVR assume that the noise level is
uniform throughout the domain, or at least, its functional dependency is known beforehand [21]. It
is thus clear that the time forecast of product design based on Fv-SVM is deficient simply due to the
heteroscedasticity of product design. For better planning and controlling of product development
process, any good forecast method is expected to yield not only highly precise forecast values, but also
valid forecast intervals.

In terms of Gaussian margin machines [22], the weight vector of binary classifier maintains
a Gaussian distribution, and what should be struck for is the least information distribution that
classifieds training samples with a high probability. Gaussian margin machines provide the probability
that a sample belongs to a certain class. The idea given by Gaussian margin machines is extend
to the regression for the forecast of product design time. Shang and Yan [23] proposed Gaussian
margin regression (GMR) on the basis of combining Gaussian margin machines and kernel-based
regression. However, GMR assumes that the forecast variances are same, which is inconsistent with
the heteroscedasticity that exits in design time forecast. Like Fv-SVM, GMR also fails to provide valid
forecast intervals. By combining Gaussian margin machine and extreme learning machine [24,25],
a confidence-weighted extreme learning machine was proposed for regression problems of large
samples [26].

The present study adopts the kernel-based regression with Gaussian distribution weights
(GDW-KR) by combining Gaussian margin machines with the kernel-based regression, aiming to
solve problems of small samples and heteroscedastic noise in design time forecasting, providing
both forecast values and intervals. Inheriting the merits of Gaussian margin machines, GDW-KR
maintains a Gaussian distribution over weight vectors, seeking the least information distribution that
will make each target be included in its corresponding confidence interval. The optimization problem
of GDW-KR is simplified, and an approximate solution of the simplified problem is obtained by using



Entropy 2016, 18, 231 3 of 17

the results of regularized kernel-based regression. On the basis of this model, a forecast method for
product design time and its relevant parameter-determining algorithm are then put forward.

The rest of this paper is organized as follows: Gaussian margin machines are introduced in
Section 2. GDW-KR and the method for solving the optimization problem are described in Section 3.
In Section 4, the application in injection mold design is presented, and GDW-KR is then compared with
other models. An extended application of GDW-KR is also given. Section 5 draws the final conclusions.

2. Gaussian Margin Machines

Suppose the samples tpxi, yiqu
l
i“1, where xi P Rm is a column vector and yi P t´1, 1u is a scalar

output. The weight vector w of a linear classifier is supposed to follow a multivariable normal
distribution Nmpµ1, Σ1qwith mean µ1 P Rm and covariance matrix Σ1 P Rmˆm. For the sample xi, we
get the normal distribution:

xi
Tw „ NpxT

i µ1, xT
i Σ1xiq. (1)

The linear classifier is designed to properly classify each sample with a high probability, that is:

Prpyixi
Tw ě 0q ě ρ, (2)

where ρ P p0.5, 1s is the confidence value.
By combining Equations (1) and (2), we get:

Prp
yixi

Tw´ yixi
Tµ1

b

xT
i Σ1xi

ď
´yixi

Tµ1
b

xT
i Σ1xi

q ď 1´ ρ. (3)

GMM aims to seek the least informative distribution that classifies the training set
with high probability, which is achieved by seeking a multivariable normal distribution
Nmpµ1, Σ1q with minimum Kullback-Leibler divergence with respect to an isotropic distribution
Nmp0, aImq. The Kullback-Leibler divergence between Nmpµ1, Σ1q and Nmp0, aImq is denoted by
DKL

`

Nmpµ1, Σ1q||Nmp0, aImq
˘

(the subscript KL is the abbreviation of Kullback-Leibler and D is
the abbreviation of divergence), and is obtained by calculating:

1
2

lndetpaImΣ´1
1 q `

1
2

tr
´

paImq
´1
pµ1µT

1 `Σ1 ´ aImq
¯

. (4)

The optimization problem of GMM is described as:

min
µ1,Σ1

DKL
`

Nmpµ1, Σ1q||Nmp0, aImq
˘

s.t. Prp yixi
Tw´yixi

Tµ1
b

xT
i Σ1xi

ď
´yixi

Tµ1
b

xT
i Σ1xi

q ď 1´ ρ

Σ1 ą 0, i “ 1, ¨ ¨ ¨ , l.

(5)

After omitting the constant terms in the objective function and transforming the constraints of
Equation (5), we get:

min
µ1,Σ1

1
2

´

´lndetΣ1 `
1
a trpΣ1q `

1
a µ1µT

1

¯

s.t. yixT
i µ1 ě Φ´1pρq

b

xT
i Σ1xi

Σ1 ą 0, i “ 1, ¨ ¨ ¨ , l,

(6)

where Φ´1pρq is the inverse cumulative distribution function of a standard normal distribution. Φ´1pρq

is further equal to
?

2er f´1p2ρ´ 1q, where er f´1 denotes the inverse Gauss error function.
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Theorem 1. The training samples tpxi, yiqu
l
i“1 are given, and a prior distribution over the weight vector

Nmpµ0, Σ0q is set. Then, for any δ P r0, 1s and any posterior distribution Nmpµ1, Σ1q, the following holds with
the probability of at least 1´ δ :

ϕ
`

Nmpµ1, Σ1q, D
˘

ď C1
1
l

l
ÿ

i“1

Φp´
yixT

i µ1
b

xT
i Σ1xi

q ` C2
DKL

`

Nmpµ1, Σ1q||Nmpµ0, Σ0q
˘

` ln 2l
δ

l ´ 1
, (7)

where ϕpNmpµ1, Σ1q, Dq “ Erϕpw, px, yqq
ˇ

ˇ px, yq „ D, w „ Nmpµ1, Σ1q s, ϕpw, px, yqq is 0´ 1 loss function,
C1 “ 1`

?
2{2, C2 “ 2`

?
2{2, and D is the distribution of px, yq [22,27].

Proof of Theorem 1. See Appendix A. ˝

3. Kernel-Based Regression with Gaussian Distribution Weights

3.1. Optimization Problem of GDW-KR

A finite number of independent non-duplicate observations tpxi, tiqu
l
i“1 with xi P Rm and ti P R

are considered. A kernel-based regression model approximates the unknown regression function f pxq
as follows:

f̂ pxq “
l
ÿ

j“1

wjkpx, xjq, (8)

where kpx, xjq is a predefined kernel function, and w “ pw1, . . . , wlq
T.

Definition 1. (kernel function) A kernel is a function k that for all x, z from a space χ (which needs not be a
vector space) satisfies:

kpx, zq “ă φpxq, φpzq ą, (9)

where φ is a mapping from the space χ to a Hilbert space F that is usually called the feature space
φ : x P χ ÞÑ φpxq P F [28].

By assuming w „ Nlpµ, Σqwith µ P Rl and the positive definite covariance matrix Σ P Rlˆl , we
maintain a distribution over alternative weight vectors rather than committing to a single specific
vector. Let yi denote the forecasted value by the model for a given observation xi, and we obtain:

yi „ NlpKiµ, KiΣKT
i q, (10)

where Ki is the ith row of the symmetric kernel matrix K, and Kij “ kpxi, xjq, i “ 1, . . . , l, j “ 1, . . . , l.
Weight vectors are required to make the target value be included in the confidence interval of the
forecast value. Thus, we have the following constraint conditions:

Kiµ´ η
b

KiΣKT
i ď ti,

ti ď Kiµ` η
b

KiΣKT
i , i “ 1, . . . , l.

(11)

The confidence interval needs to be large enough to impose a high confidence level. To make the
level higher than 95%, η should be greater than 1.96 computed by Φ´1p1´ p1´ 0.95q{2q. Considering
the independence of noise between samples, KiΣKT

j‰i is set to be 0. Since the row vector Ki cannot be a

zero vector, we have KiΣKT
i ą 0, where Σ is a positive definite matrix. Hence, the covariance matrix of

KΣKT should be a positive definite diagonal matrix:

KiΣKT
j‰i “ 0,

Σ ą 0, i “ 1, ¨ ¨ ¨ , l, j “ 1, ¨ ¨ ¨ , l,
(12)
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which indicates that kernel matrix K must be invertible because rankpKΣKTq “ l and
rankpKΣKTq ď rankpKq ď l.

Under the constraint conditions (11) and (12), GDW-KR aims at the least informative distribution
that has the smallest Kullback-Leibler divergence with respect to an isotropic Gaussian distribution
Nlp0, aIlq for some constant scalar a ą 0. Thus, the optimization problem of GDW-KR is expressed as:

min
µ,Σ

´ 1
2 lndetΣ` 1

2a trpΣq ` 1
2a µTµ

s.t. Kiµ´ η
b

KiΣKT
i ď ti,

ti ď Kiµ` η
b

KiΣKT
i ,

KiΣKT
j‰i “ 0,

Σ ą 0, i “ 1, ¨ ¨ ¨ , l, j “ 1, ¨ ¨ ¨ , l.

(13)

3.2. Simplification of Optimization Problem

In the problem (13), the number of unknown parameters is l ` lpl ` 1q{2, which can be lowered
by handling properly its constraints. First of all, let us suppose:

KΣKT “ Λ, (14)

where Λ “ diagpλ2
1, . . . , λ2

l q, and λi ą 0, i “ 1, ¨ ¨ ¨ , l. If the diagonal elements of Λ are treated as
unknown parameters taking the place of Σ, the number of unknown parameters in the problem (13) is
reduced to 2l. Then, the objective function of Equation (13) is rewritten as:

min
µ,Λ

´
1
2

lndetpK´1ΛK´1q `
1
2a

µTµ`
1
2a

trpK´1ΛK´1q. (15)

As lnpdetpK´1ΛK´1qq “ lnpdetpK´1K´1Λqq, we have:

´
1
2

lndetpK´1ΛK´1q “ ´

l
ÿ

i“1

lnλi ´
1
2

lndetP, (16)

where P “ K´1K´1. Since trpK´1ΛK´1q “ trpK´1K´1Λq and both K´1 and K are symmetric and
invertible matrices, we obtain:

trpK´1K´1Λq “
1
2a

l
ÿ

i“1

pPqiiλ
2
i , (17)

where pPqii ą 0. Disregarding the term´ 1
2 lndetP in the objective function, problem (13) is rewritten as:

min
µ,λ

´
l
ř

i“1
lnλi `

1
2a

l
ř

i“1
pPqiiλ

2
i `

1
2a µTµ

s.t. Kiµ´ ηλi ď ti,
ti ď Kiµ` ηλi,
λi ą 0, i “ 1, ¨ ¨ ¨ , l.

(18)

Assuming λi “ λ where in i “ 1, ¨ ¨ ¨ , l, the problem of GMR is obtained as:

min
µ,λ

´ llnλ` 1
2a λ2

l
ř

i“1
Pii `

1
2a µTµ

s.t. Kiµ´ ηλ ď ti,
ti ď Kiµ` ηλ,
λ ą 0, i “ 1, ¨ ¨ ¨ , l.

(19)
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Comparing the problems (18) and (19) reveals that GMR is a special case of GDW-KR.

3.3. Analysis of Optimization Problem

Proper generalization of GDW-KR can be guaranteed by Theorem 1 based on the two-sided
PAC-Bayesian theorem. However, that of GDW-KR is realized here by analyzing Equation (18) based
on the empirical Rademacher complexity [29].

Definition 2. (empirical Rademacher complexity) Let G be a family of functions mapping from X to ra, bs and
px1, . . . , xlq a fixed sample of size l with elements in x. Then, the empirical Rademacher complexity of G with
respect to px1, . . . , xlq is defined as:

ŜpGq “ E
σ

«

sup
gPG

ˇ

ˇ

ˇ

ˇ

ˇ

2
l

l
ÿ

i“1

σigpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

,

where σ “ pσ1, . . . , σlq
T with σi s independent uniform random variables taking values in t´1,`1u [30].

Theorem 2. GDW-KR can be properly generalized, which is guaranteed by keeping the balance between the
empirical Rademacher complexity and the fitting error.

Proof. The objective function of the problem (18) is rewritten as:

´ a
l
ÿ

i“1

lnλi `
1
2

l
ÿ

i“1

pPqiiλ
2
i `

1
2

µTµ. (20)

Suppose the function set is as follows:

Qc “ t

l
ÿ

j“1

µjkpx, xjq
ˇ

ˇ

ˇ
x P Rm, µ P Rl , µTKµ ď c2 u, (21)

where c is a positive real number. Let ŜpQcq denote the empirical Rademacher complexity of Qc.
Suppose another function set is defined as:

Hc “ tă β, φpxq ą |||β|| ď cu , (22)

where φ is the feature mapping corresponding to the kernel k.

For any hpxq in Hc, letting β “
l
ř

i“1
µiφpxiq gives:

hpxq “ă β, φpxq ą“ă
l
ÿ

i“1

µiφpxiq, φpxq ą“
l
ÿ

i“1

µikpx, xiq, (23)

and:

||β||2
“ă

l
ÿ

i“1

µiφpxiq,
l
ÿ

j“1

µjφpxjq ą“

l
ÿ

i,j“1

µiµj ă φpxiq, φpxjq ą “

l
ÿ

i,j“1

µiµjkpxi, xjq “ µTKµ. (24)
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Then, Hc is a superset of Qc. Based on the derivation in [30], we obtain ŜpQcq ď ŜpHcq and
the following:

ŜpHcq “ E
σ

«

sup
hPHc

ˇ

ˇ

ˇ

ˇ

ˇ

2
l

l
ř

i“1
σihpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

“ E
σ

«

sup
||β||ďc

ˇ

ˇ

ˇ

ˇ

ˇ

C

β, 2
l

l
ř

i“1
σiφpxiq

G
ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď 2c
l E

σ

«

||
l
ř

i“1
σiφpxiq||

ff

“ 2c
l E

σ

»

–

˜C

l
ř

i“1
σiφpxiq,

l
ř

j“1
σjφpxjq

G¸1{2
fi

fl

ď 2c
l

˜

E
σ

«

l
ř

i,j“1
σiσjkpxi, xjq

ff¸1{2

“ 2c
l

˜

l
ř

i“1
kpxi, xiq

¸1{2

.

Then, we have:
ŜpFcq ď 2c

a

trpKq{l. (25)

In view of Equation (21), c can be minimized by minimizing µTKµ. Calculating by
Cauchy–Schwarz inequality yields:

µTKµ “ xµ, Kµy ď ||µ|| ¨ ||Kµ|| ď ||K|| ¨ ||µ||2. (26)

Since the kernel function is predefined, 1
2 µTµ in Equation (20) can reduce the empirical

Rademacher complexity of Qc.
Under the constraints of the problem (18), the smaller λi, the less the fitting error. The term:

´ a
l
ÿ

i“1

lnλi `
1
2

l
ÿ

i“1

pPqiiλ
2
i .

prevents λi from getting too small or too large, and thus the model
l
ř

j“1
µjkpx˚, xjq is free from overfitting

and underfitting the training data. So the term can be taken as a special loss function. Thereby, it can
be concluded that proper values of a and η guarantee the balance between the empirical Rademacher
complexity and the fitting error. Thus, GDW-KR promises a desirable generalization performance.
Then, we have Theorem 2. ˝

Theorem 2 shows that balancing the empirical Rademacher complexity and the fitting loss is
consistent with the two-sided PAC-Bayesian theorem for GDW-KR.

3.4. Solution of Optimization Problem

The results of regularized kernel-based regression are used to obtain the approximate solution of
the problem (18). Regularized kernel-based regression is described as:

min
µ,ε

1
2 pµ

Tµ` C
l
ř

i“1
ε2

i q

s.t. Kiµ´ ti “ εi,
i “ 1, ¨ ¨ ¨ , l,

(27)

where C is the regularization parameter.
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Let µ be the solution to Equation (27). Using the KKT conditions, µ is analytically computed as:

µ “ p
I
C
`KTKq´1KTt. (28)

Then, assuming that µ is known as µ and ignoring the term 1
2a µTµ in the objective function, then

we rewrite Equation (18) as:
min

λi
´ lnλi `

pPqii
2a λ2

i

s.t. λi ě t˚i ,
λi ą 0,

(29)

where t˚i “ |Kiµ´ ti| {η, i “ 1, ¨ ¨ ¨ , l. The second derivative of the objective function of the problem (29)
is λi

´2
` pPqii{a that must be larger than 0 when λi ą 0. Let λi be the solution to Equation (29), which

is determined by:

λi “

#

a

a{pPqii, t˚i ď
a

a{pPqii;
t˚i , t˚i ą

a

a{pPqii.
(30)

Thus, the algorithm consists of the following steps:

Step 1: Make independent non-duplicated observations tpxi, tiqu
l
i“1.

Step 2: Select the kernel function, and choose the proper relevant parameter (s).
Step 3: Compute K´1 and P.
Step 4: Solve the problem (27), and let µ be its solution.
Step 5: Substitute K and µ into Equation (18), and obtain λ from Equation (30).

For the observation x˚, the forecast value is:

sTµ “
l
ÿ

j“1

µjkpx
˚, xjq, (31)

where µ “ pµ1, . . . , µlq
T, and s = pkpx˚, x1q, . . . , kpx˚, xlqq

T. And, the forecast interval is calculated as:

”

sTµ´ η˚
a

sTΣs, sTµ` η˚
a

sTΣs
ı

, (32)

where Σ = K´1ΛK´1 and η˚ ą 0.

3.5. Kernel Function and Model Selection

The kernel function plays an important role in kernel function methods. There are three common
types of kernel functions: linear function, polynomial function and radial basis function (RBF). Many
actual applications demonstrate that RBF tends to display its desirable performance under general
smoothness assumptions. With no additional knowledge of the data set available, that makes the very
reason for our adoption of the kernel function [31]:

kpx, xjq “ exp
!

´||x´ xj||2
{2σ2

)

. (33)

Hyper-parameters also bear heavily on the generalization performance of kernel function methods.
Model selection is to seek proper values of hyper-parameters commonly by means of cross-validation
and grid search [32]. The k-fold cross-validation [12,13] partitions the training data into k disjoint
subsets of approximately equal size. A series of k models are then trained, each using a different
combination of k ´ 1 subsets. The model selection criterion, such as the mean squared error, is then
evaluated for each model in each case, utilizing the subset of the data not used in training that model.
Recently, evolutional algorithms, such as genetic algorithm and particle swarm optimization, have
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been adopted to guide the parameters selection process [33–36]. Regularized kernel-based regression
uses genetic algorithm to seek the proper values of σ and C. An individual in genetic algorithm
represents a possible parameter combination. The fitness of each individual is calculated by the k-fold
cross-validation.

4. Experiments

Experiments were performed to verify the effectiveness of the proposed GDW-KR. The models
were built using MATLAB 7.7. The quadratic problems involved were solved through the optimization
toolbox QP in MATLAB. The experiments were made on a computer with a Win7 32 bit OS running on
3.1-GHz Intel Core i5-3450 with 4 GB RAM.

4.1. Formulation of Product-Design Time Forecast

To validate the proposed method, the design of plastic injection molds is studied. An injection
mold is a kind of single-piece-designed product and the design process is usually driven by customer
orders. The design process of injection mold is involved in many product development projects. The
design time forecast is meaningful for the optimization of the whole product development process.

Factor values of product-design time are obtained by fuzzy measurable house of quality
(FM-HOQ) [7]. Suppose that a design order for a kind of injection mold and the specification of
the molding product are given to us. Then the customer demands should be analyzed and some useful
mold characteristics should be extracted. The technical customer demands are taken into account.
Some demands are originally described as quantitative information (e.g., the mold life is 3000 h), while
others are expressed as qualitative information (e.g., the molding product precision is high). A unified
fuzzy measurement scheme for all these demands is established, five linguistic levels are used [7]. The
importance degrees of these demands are also represented by fuzzy weight sets.

For the specific mold design, the designer should specify the grades of membership of demand
weights and demand measures, whose assignments can be made based on the customer demands given
on the design order, and on the designer’s objective evaluation of the degrees of importance and scope
of the demands. A survey-based methodology is applied for identifying engineering characteristics
and time factors, which is performed through self-administered questionnaires from several mold
companies in Nanjing. Then, nine kinds of engineering characteristics are selected: mold structure,
cavity number, wainscot gauge variation, injection pressure, injection capacity, ejector type, runner
shape, manufacturing precision and form feature number. Then we can construct a planning FM-HOQ
to map and measure characteristics for technical demands. Among the time characteristics with large
influencing weights are structure complexity (SC), model difficulty (MD), wainscot gauge variation
(WGV), cavity number (CN), mold size (MS) and form feature number (FFN), the first three of which
are expressed as linguistic variables and the last three as numerical ones. Here, the influencing weights
that indicate the influence degree on product-design time are different from the indexes of importance
in FM-HOQs. Figure 1 presents the application procedure of our model.
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4.2. Product-Design Time Forecast Based on GDW-KR

In our experiments, 72 sets of molds with corresponding design time were obtained from a typical
company. The detailed characteristic data and design time of these molds compose the corresponding
patterns, as shown in Table 1. Numerical variables were normalized to be within [0, 1] by:

xd
i “

xd
i ´minpxd

i |
l
i“1q

maxpxd
i |

l
i“1q ´minpxd

i |
l
i“1q

, (34)

where l denotes the number of samples, d the number of numerical variables, xd
i the origin value of the

dth number variable, and xd
i the normalized value of the dth number variable. The linguistic variables,

VL, L, M, H and VH, were transformed into the crisp values in terms of expertise: 0.1, 0.25, 0.5, 0.75
and 0.95.

Table 1. Training and testing data of injection model design.

Molds Input Data Desired
Outputs (h)No. Name SC MD WGV CN MS FFN

1 Global handle L L L 4 3.1 3 23
2 Water bottle lid H L H 4 0.56 7 45.5
3 Medicine lid H M VL 4 1.5 6 37
4 Footbath basin VL VL VL 1 0.5 3 10
5 Litter basket L M H 1 2.1 12 42.5
6 Plastic silk flower L M M 1 7.1 4 29.5

. . . . . . . . . . . . . . . . . . . . . . . . . . .
71 Paper-lead pulley L M H 8 6.1 6 55
72 Winding tray M M VH 1 2.18 7 41.5

First of all, η should be determined, mainly based on the confidence level at which the forecast
interval includes the target. To make the confidence level higher than 95%, η should be greater than
1.96 computed by Φ´1p1´ p1´ 0.95q{2q. The value of η is then set to 1.96, and the same is true of η˚.
The target outputs were normalized to be within [0, 1].

The root mean square error (RMSE), the mean absolute percentage error (MAPE) and the mean
absolute error (MAE) are three criteria used to optimize model parameters:

RMSE “

d

1
l

l
ř

i“1
pti ´ t̂iq

2,

MAPE “ 1
l

l
ř

i“1

ˇ

ˇ

ˇ

ti´t̂i
ti

ˇ

ˇ

ˇ
,

MAE “ 1
l

l
ř

i“1

ˇ

ˇti ´ t̂i
ˇ

ˇ,

where t̂i is the forecast value for xi. The underlying assumption for using the RMSE is that the errors
are not biased and follow a normal distribution [37]. The MAPE cannot be used if there is a zero value
in tt1, ..., tlu, and puts a heavier penalty on negative errors (ti ă t̂i) than on positive errors. The MAE is
suitable to be used for uniformly distributed errors. Because model errors are likely to follow a normal
distribution rather than a uniform distribution, the RMSE is a better criterion than the MAE [37]. Thus,
we apply the RMSE as a criterion for optimizing model parameters.

The whole data set is divided into several subsets. We choose one subset as the testing set and
other ones as the training set. The combination of the genetic algorithm and 5-fold cross-validation
is implemented to seek its optimal parameters to minimize the RMSE for the training set. In the
genetic algorithm, each individual is evaluated by performing 5-fold cross-validation on the training
set. After the optimal parameters are obtained, the model is estimated by using the training set. Then,
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we calculate the forecast values and three criteria for the testing set. This procedure is repeated until
each subset has been used once as the testing set. The testing results of the experiments are averaged
over disjoint testing sets which cover the entire dataset. The selection ranges of σ and C are [0.01, 5]
and [0.01, 106] respectively. The value of a was selected from [10´6, 106].

The whole data set is first divided into six disjoint subsets. When subset 6 is used as the testing set,
the optimal combinational parameters of regularized kernel-based regression are selected as σ “ 2.119
and C “ 998746.999, and the optimal parameter of GDW-KR turns out to be a “ 910.190. As illustrated
by Figure 2, our GDW-KR gives the valid forecast intervals, excluding T1 and T10. In T10, the forecast
interval fails to cover its corresponding target value. In T1, the interval range is too large to provide
useful information.
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Actual forecast values are listed in Table 2 for comparison of the models. The RMSE, the MAPE,
the MAE and the average testing time are introduced to compare the forecast performance of different
models. Here, the testing time means the time that is spent on solving the optimization problem
and on obtaining the testing results when the hyper-parameters are given. Table 3 shows the results
from four forecast models, which indicate that GDW-KR promises as high precision as other models
do, and that GDW-KR can generate the forecast intervals simultaneously, thus facilitating product
development to a certain extent.

Table 2. Forecast results from four different models when using subset 6 as the testing set.

No.
Designed
Outputs

Forecast Results

Fv-SVM v-SVR GMR GDW-KR

T1 31 35.315 31.236 30.134 32.928
T2 41 40.672 39.167 38.186 39.155
T3 62 62.029 63.521 64.075 63.291
T4 34.5 33.313 32.754 30.900 32.232
T5 16 16.424 16.761 16.877 16.156
T6 32.5 32.965 32.418 32.243 32.801
T7 42.5 40.243 38.516 38.566 38.811
T8 16.5 15.394 15.280 15.346 14.708
T9 22 21.521 21.066 19.963 20.417
T10 54.5 46.391 47.324 46.821 47.789
T11 55 54.149 52.771 53.509 54.304
T12 41.5 41.752 39.893 39.883 40.894
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Table 3. Error statistics of four forecast models.

Model
Testing Results Average Testing

Time (s)RMSE MAPE MAE

Fv-SVM 2.374 0.042 1.905 0.781
v-SVR 2.387 0.041 1.814 0.764
GMR 2.549 0.055 2.137 0.572

GDW-KR 2.366 0.041 1.848 0.583

The whole data set is then divided into 4 disjoint subsets. Figure 3 illustrates the results of
GDW-KR from the first 54 training samples, and demonstrates that GDW-KR still performs well.
Table 4 shows error statistics of four forecast models. GDW-KR does provide a satisfactory performance
with small samples, and has thus been proved to be of better performance, appropriate to cases with
small samples.Entropy 2016, 18, 231 13 of 17 
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Table 4. Error statistics of four forecast models from 54 training samples.

Model
Testing Results Average Testing

Time (s)RMSE MAPE MAE

Fv-SVM 2.156 0.038 1.615 0.770
v-SVR 2.141 0.037 1.617 0.728
GMR 2.205 0.038 1.624 0.568

GDW-KR 2.133 0.037 1.599 0.579

4.3. Extended Application of GDW-KR

Besides design time forecast, GDW-KR can also be extended to other regression problems with
small samples. The Slump Test dataset, the Machine CPU dataset and the Yacht Hydrodynamics
dataset, which are all from the UCI repository [38], are used to evaluate the extended application of
GDW-KR. In these datasets, Fv-SVM behaves the same as v-SVR, as there is no fuzzy variable. Thus,
the results of Fv-SVM are not presented here. Each dataset is divided into 6 disjoint subsets. In our
experiments, both the target output and numerical attributes were normalized to be within [0, 1].

The Concrete Slump Test covers seven input and three output variables as well as 103 data points.
The 28-day Compressive Strength is taken as the desired output variable. For the case of the Concrete
Slump Test, the results of GDW-KR are compared with those of other two models. Concrete Slump
Test results are shown in Figure 4. The three error indices of different three models are given in Table 5.
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On the Slump Test, GDW-KR offers forecast values with high accuracy and forecast intervals with
good validity.
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Table 5. Error statistics of three forecast models on the Slump Test dataset.

Model
Testing Results Average Testing

Time (s)RMSE MAPE MAE

v-SVR 0.021 0.044 0.014 0.795
GMR 0.023 0.047 0.015 0.583

GDW-KR 0.019 0.055 0.014 0.607

For the Machine CPU dataset and the Yacht Hydrodynamics, the error statistics of three forecast
models are presented in Tables 6 and 7, respectively. Figures 5 and 6 indicate the forecast results when
using subset 6 as the testing set.
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Table 7. Error statistics of three forecast models on the Yacht Hydrodynamics.

Model
Testing Results Average Testing

Time (s)RMSE MAPE MAE

v-SVR 0.034 3.585 0.025 1.196
GMR 0.036 3.772 0.027 0.710

GDW-KR 0.034 3.471 0.026 0.894

5. Conclusions

The control and decision of product development are based on the reasonable degree of the
distribution of product design time. In design time forecasting, the problems of small samples and
heteroscedastic noise ought to be considered.

This paper has presented a new model of kernel-based regression with Gaussian distribution
weights for product-design time forecasts, which combines Gaussian margin machines with
kernel-based regression. The kernel method performs well for the problem of small samples. Unlike
GMR, which assumes that the covariance matrix of the forecast values in the training set is an identity
matrix multiplied by a positive scalar, GDW-KR assumes that this matrix is a positive definite diagonal
matrix. GDW-KR is more suitable for addressing the problem of heteroscedastic noise than GMR, and
has the advantage of providing both point forecasts and confidence intervals simultaneously.

The plastic injection mold was studied before modeling. For convincing evaluation, experiments
with 72 real samples were conducted. Results from them have verified that GDW-KR promises not
only as high forecast accuracy as Fv-SVM and v-SVR but forecast intervals crucial to the control
and decision of product development. Undoubtedly, GDW-KR benefits from the merits of Gaussian
margin machines.
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Appendix A

Proof of Theorem 1. Suppose p, q P r0, 1s, and let DKLpp||qq denote the Kullback-Leibler divergence
between a Bernoulli variable with bias p to a Bernoulli variable with bias q. Then, we have:

DKLpp||qq “ plnpp{qq ` p1´ pqlnpp1´ pq{p1´ qqq.

If q ą p, we have DKLpp||qq ě pq´ pq2{p2qq, which implies that if DKLpp||qq ď x, then:

q ď p`
a

2px` 2x.

Using
?px ď pp` xq{2, we have:

q ď p1`
?

2{2qp` p2`
?

2{2qx “ C1 p` C2x. (A1)

Let S be tpxi, yiqu
l
i“1. We obtain:

ϕ
`

Nmpµ1, Σ1q, S
˘

“
1
l

l
ÿ

i“1

ϕ
`

Nmpµ1, Σ1q, pxi, yiq
˘

“
1
l

l
ÿ

i“1

Prpyixi
Tw ď 0q “

1
l

l
ÿ

i“1

Φ´1p´
yixT

i µ1
b

xT
i Σ1xi

q.

Based on the two-sided PAC-Bayesian theorem (or a Gaussian version of a theorem of
McAllester) [27], we have for any δ P [0,1], with probability at least 1´ δ over S, for all posterior
distributions Nmpµ1, Σ1q, the following holds:

DKL
`

ϕ
`

Nmpµ1, Σ1q, S
˘

||ϕ
`

Nmpµ1, Σ1q, D
˘˘

ď
DKL

`

Nmpµ1, Σ1q||Nmpµ0, Σ0q
˘

` ln 2l
δ

l ´ 1
. (A2)

Equation (A2) demonstrates that the average generalization error diverges from the average
training error by no more than a quantity which depends on the Kullback-Leibler divergence between
the posterior and prior distributions over weight vectors.

Combining Equations (A1) and (A2) yields for any δ P [0,1], with probability at least 1´ δ over S,
for Nmpµ1, Σ1q, the following holds:

ϕ
`

Nmpµ1, Σ1q, D
˘

ď C1
1
l

l
ÿ

i“1

Φp´
yixT

i µ1
b

xT
i Σ1xi

q ` C2
DKL

`

Nmpµ1, Σ1q||Nmpµ0, Σ0q
˘

` ln 2l
δ

l ´ 1
. ˝
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