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Abstract: Recognition of emotions is still an unresolved challenge, which could be helpful to
improve current human-machine interfaces. Recently, nonlinear analysis of some physiological
signals has shown to play a more relevant role in this context than their traditional linear exploration.
Thus, the present work introduces for the first time the application of three recent entropy-based
metrics: sample entropy (SE), quadratic SE (QSE) and distribution entropy (DE) to discern between
emotional states of calm and negative stress (also called distress). In the last few years, distress
has received growing attention because it is a common negative factor in the modern lifestyle of
people from developed countries and, moreover, it may lead to serious mental and physical health
problems. Precisely, 279 segments of 32-channel electroencephalographic (EEG) recordings from 32
subjects elicited to be calm or negatively stressed have been analyzed. Results provide that QSE
is the first single metric presented to date with the ability to identify negative stress. Indeed, this
metric has reported a discriminant ability of around 70%, which is only slightly lower than the
one obtained by some previous works. Nonetheless, discriminant models from dozens or even
hundreds of features have been previously obtained by using advanced classifiers to yield diagnostic
accuracies about 80%. Moreover, in agreement with previous neuroanatomy findings, QSE has also
revealed notable differences for all the brain regions in the neural activation triggered by the two
considered emotions. Consequently, given these results, as well as easy interpretation of QSE, this
work opens a new standpoint in the detection of emotional distress, which may gain new insights
about the brain’s behavior under this negative emotion.
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1. Introduction

From a psycho-physiological point of view, emotions consist of mental processes characterized
by a strong activity and high degree of hedonistic content [1]. Their study is highly interesting because
they are present in a variety of daily human activities including learning, verbal and nonverbal
communication and rational decision-making processes [1]. Moreover, although the recognition of
emotions plays a key role in the communication and interaction among people, nowadays automatic
systems are not completely able to interpret human feelings [2]. This dysfunction often makes current
human-machine interfaces (HMIs) unable to execute proper emotion-based actions [2]. Hence,
more research is essential to improve affective computing systems, which are becoming increasingly
applied to growing fields such as medicine [3,4], digital society [5] or computer games [6].
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A major problem for the identification of emotions is the lack of a standard model for their
definition [7]. In fact, several theories attempting to classify numerous emotional states can be found
in the literature. Thus, Ekman firstly defined six basic emotions universally accepted including
happiness, surprise, sadness, fear, disgust and anger, their combination being also able to characterize
more complex feelings [8]. For instance, a total of fifty-five emotions were described with this model
in the HUMAINE Project [9]. However, nowadays, the most widely used emotion classification model
is the two-dimensional approach proposed by Russell [10]. This model is based on how pleasant or
unpleasant (valence) a stimulus is, as well as on its ability to produce excitement or calmness (arousal)
on a normal subject. A wide range of emotions can then be defined depending on the combination of
different levels of arousal and valence [10], such as can be seen in Figure 1.
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Figure 1. Graphical representation of the emotion classification model proposed by Russell [10].

Another relevant problem dealing with emotions is that they are highly intercorrelated. Thus,
subjects rarely describe isolated positive or negative feelings [1]. Additionally, a stimulus can trigger
different emotions within several people, mainly depending on their mood, personality, disposition
or motivation [1]. Hence, this high variability in expression of emotions makes their automatic
identification remain as a challenging task [7]. Nonetheless, some neurophysiological studies have
suggested that most of emotions can lead to measurable changes in physiological activity [11].
Indeed, it has been mainly reported that the emotional state of a person can directly affect the
arousal level of his nervous system [12]. Thus, some authors have tried to quantify objectively
the physiological alterations triggered by different emotions. With respect to this, voice and facial
expressions have been widely analyzed [11]. However, these physical features vary across cultures
and nationalities and, therefore, they are unable to recognize emotions successfully in a universal
way [13]. In contrast, a more general and objetive identification of emotions has been reached from
the analysis of some physiological signals, such as the electrocardiogram (ECG), the electromyogram
(EMG) or the electro-dermal activity (EDA) [7]. However, the methods’ performance dealing with
these recordings is still far from being optimal to be included in HMIs [7].

Within this context, the identification of emotions from electroencephalographic (EEG) recording
has recently begun to be explored because it may give more valuable information than other
physiological signals [14]. In fact, whereas the brain is the primary response source to any external
stimulus, other physiological signals can only capture the subsequent secondary processes generated
by this organ [14]. With respect to this, novel methods to quantify functional connectivity among
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different brain areas have been proposed with the aim of discovering new insights about the brain’s
response to different emotional processes [15,16]. Thus, these algorithms have been used to identify
different emotions elicited by audiovisual stimuli [16–18], as well as to characterize mental disorders,
such as major depression [19,20], consciousness problems [21], epilepsy [22], Alzheimer’s [23]
or schizophrenia [24].

Additionally, numerous works have also shown a greater usefulness of the nonlinear analysis
of several physiological signals compared to their traditional linear exploration [7]. However, no
rigorous studies in this respect have been conducted from single EEG channels [14,25]. Therefore, the
main goal of the present work is to analyze the ability of three novel entropy-based measures, i.e.,
sample entropy (SE), quadratic SE (QSE) and distribution entropy (DE), to identify some emotions
from the EEG signals. It is interesting to note that non-linearity in the brain is introduced even at
the cellular level, since the dynamical behavior of individual neurons is governed by threshold and
saturation phenomena [26]. More globally, the brain also presents a really complex and heterogeneous
performance, which makes its behavior far from being considered linear [27]. Hence, the use of
entropy-based metrics in the described context is completely justified. Indeed, these kinds of indices
have already shown an interesting ability to reveal useful clinical information in mental disorders,
such as Alzheimer’s [26,28,29], epilepsy [30] or depression [31].

In the last few years, an emotion receiving increasingly attention is negative stress (also called
distress), since it is a major problem in developed countries [32,33]. In fact, typical factors in the
current lifestyle of those countries, such as competitiveness, social judgement, productivity demands
or information overload, lead many people to a frenetic rhythm [33]. This emotion has been
defined as the change from a state of calm to another of excitement to preserve the integrity of the
organism [32,34]. Moreover, it has been assessed in a wide variety of scenarios, including driving
tasks [34], military exercises [35], surgical procedures [36] and online exams [37]. A recent study has
also quantified negative stress in elderly who decide to stay at home to prevent major depression [38].
Although short-term distress may not be a risk factor for health, chronic negative stress can result in
mental diseases like generalized anxiety or depression [39]. Moreover, this emotion can sometimes
represent a risk factor for hypertension and coronary artery disease [40] as well as cause or aggravate
other physical disorders, such as irritable bowel syndrome, gastroesophageal reflux disease or back
pain [41,42]. As a consequence, the present work is completely focused on discerning between the
emotional states of calm and negative stress.

The remainder of the paper is organized as follows. Section 2 describes the used database, the
entropy-based metrics computed from the EEG recording as well as the developed statistical study.
Section 3 summarizes the obtained results, which are next discussed in Section 4. Finally, Section 5
presents concluding remarks.

2. Methods

2.1. Database

The freely available Database for Emotion Analysis using Physiological Signals (DEAP) [43] was
used in the present work. This dataset consists of 1280 EEG recordings corresponding to thirty-two
healthy volunteers with ages between 19 and 37 years (50% men, mean age 26.9). In order to elicit
different emotions, the subjects under study visualized forty, one minute-length, music videos with
emotional content. Then, participants rated the videos in terms of valence and arousal by using
self-assessment manikins (SAM). In these tests, intensity scales to quantify excitation and pleasure
are represented by graphic pictures expressing nine levels [44]. During the process, EEG recordings
were acquired at a sampling frequency of 512 Hz from 32 standard 10–20 system electrodes located
over the scalp. To prepare the signals for further analysis, they were referenced making use of
the typical Common Average Reference technique. In this approach, mean potential from all EEG
channels is removed from each single electrode. The signals were also downsampled to 128 Hz and
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band-pass filtered between 4 and 45 Hz. Moreover, eye blink artifacts were also removed by using
an algorithm based on independent component analysis. Additional details about the database and
EEG preprocessing can be found in [43].

Among all EEG recordings, only two subsets were chosen in order to validate the identification of
negative stress obtained by the proposed entropy-based indices, such as Figure 2 shows. Both groups
were selected according to previous works where the same problem was analyzed [45–47]. Thus, the
group of calm subjects was composed of the samples with an arousal level lower than 4 and a valence
level between 4 and 6. Similarly, the group of distressed individuals consisted of the samples with
an arousal level higher than 5 and a valence level lower than 3. The total number of analyzed EEG
recordings was 279, i.e., 146 from calm subjects and 133 from distressed subjects. Finally, it is worth
noting that only the last 30 s from each recording were analyzed, such as in previous works dealing
with the same database [43].
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Figure 2. Distribution of the samples contained by the DEAP dataset within the valence–arousal
space. Data chosen for study (i.e., calm and distressed subjects) are clearly highlighted.

2.2. Description of Entropy-Based Metrics

Nonlinear analysis has proven to be valuable in the assessment of physiological time series
because hidden information related to underlying mechanisms has been obtained in a wide variety
of clinical scenarios [48]. Nonetheless, although a high amount of nonlinear measures exist, entropies
based on quantifying time series regularity have been widely used in the last few years since they
can work successfully even with short and noisy recordings [49]. Indeed, approximate entropy (AE)
and its improved version SE are extensively known metrics, which examine a time series for similar
epochs and assign a non-negative number to the sequence, with larger values corresponding to more
irregularity in the data [50].

From a formal point of view, given N data points for a time series x(n) = {x(1), x(2), . . . , x(N)},
SE can be defined as follows [50]:

1. Form vector sequences of size m, Xm(1), . . . , Xm(N −m + 1), defined by Xm(i) = {x(i), x(i + 1),
. . . , x(i + m− 1)}, for 1 ≤ i ≤ N − m. These vectors represent m consecutive x values, starting
with the ith point.
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2. Define the distance between vectors Xm(i) and Xm(j), d[Xm(i), Xm(j)], as the absolute maximum
difference between their scalar components,

d[Xm(i), Xm(j)] = max
k=0,...,m−1

(
|x(i + k)− x(j + k)|

)
. (1)

3. For a given Xm(i), count the number of j (1 ≤ j ≤ N − m, j 6= i), denoted as Bi, such that the
distance between Xm(i) and Xm(j) is less than or equal to r. Then, for 1 ≤ i ≤ N −m,

Bm
i (r) =

1
N −m− 1

Bi. (2)

4. Define Bm(r) as

Bm(r) =
1

N −m

N−m

∑
i=1

Bm
i (r). (3)

5. Increase the dimension to m + 1 and calculate Ai as the number of Xm+1(i) within r of Xm+1(j),
where j ranges from 1 to N −m (j 6= i). Then, Am

i (r) is defined as

Am
i (r) =

1
N −m− 1

Ai. (4)

6. Set Am(r) as:

Am(r) =
1

N −m

N−m

∑
i=1

Am
i (r). (5)

Thus, Bm(r) is the probability that two sequences will match for m points, whereas Am(r) is the
probability that two sequences will match for m + 1 points. Finally, SE can be defined as

SE(m, r) = lim
N→∞

{
− ln

[Am(r)
Bm(r)

]}
, (6)

which is estimated by the statistic

SE(m, r, N) = − ln
[Am(r)

Bm(r)

]
. (7)

Although m and r are critical in determining the outcome of SE, no guidelines exist for
optimizing their values. In principle, the accuracy and confidence of the entropy estimate improve
as the number of length m matches increase. The number of matches can be increased by choosing
small m (short templates) and large r (wide tolerance). However, penalties appear when too relaxed
criteria are used [49]. For smaller r values, poor conditional probability estimates are achieved, while
for larger r values, too much detailed system information is lost and SE tends to 0 for all processes.
A slight modification of SE that makes it insensitive to the r selection is the named QSE [51]. This
measure allows r to vary as needed to achieve confident estimates of the conditional probability and
is defined as

QSE(m, r, N) = SE(m, n, r) + ln(2r). (8)

The most widely established values m and r for computation of these entropies are m = 1
or m = 2 and r between 0.1 and 0.25 times the standard deviation of the original time series [52].
Normalizing r in this manner gives, both to SE and QSE, a translation and scale invariance, in the
sense that they remain unchanged under uniform process magnification, reduction, or constant shift
to higher or lower values [52]. According to several previous works dealing with EEG recordings, SE
and QSE were here estimated using m = 1 and r = 0.15, 0.25 and 0.30 times the standard deviation of
x(n) [53]. Note that three values of r were considered to evaluate the effect of this parameter on the
entropy estimates.
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Despite the usefulness proved by both SE and QSE to reveal clinical information in many
contexts, some previous works have also noticed that they are only able to quantify a time
series irregularity, thus sometimes misinterpreting its real complexity [54,55]. Indeed, time series
irregularity can increase with the degree of randomness and, in this case, the increase in SE or
QSE may not be necessarily indicative of an increase in complexity [55]. One reason for this issue
may be the fact that these metrics do not take into consideration the multiple temporal scales
inherently presented by complex dynamics [54,55]. To overcome this problem, Costa et al. [54]
proposed a multi-scale approach based on computing SE from several time scales and then obtaining
their average. However, this metric requires larger time series than SE and QSE to obtain robust
results [54]. More recently, Li et al. [55] have proposed an alternative solution based on computing
spatial information from the distance matrix among m-length patterns. Thus, the metric named DE is
able to quantify complexity of times series as short as those required by SE and QSE [55].

As for SE and QSE, the first step to compute DE is to form N−m vectors of m samples in length.
Then, the distance matrix D = {d[Xm(i), Xm(j)]}, for all 1 ≤ i, j ≤ N−m, and its empirical probability
density function can be considered as a histogram of M bins. To reduce bias, elements with i = j are
excluded and DE is then computed as:

DE(m, M) = − 1
log2(M)

M

∑
k=1

pk log2(pk), (9)

pk being the probability of each bin. Note that DE is normalized and, therefore, it can only range
from 0 to 1 for one-peak and fully flat probability density functions of D, respectively. Moreover,
because a base-2 algorithm is used, M should be chosen as an integer power of 2. Nonetheless, the
selection of this value is not as critical as the selection of r in SE. Indeed, every relatively large value
of M can successfully quantify distribution of D. According to the authors’ recommendation [55],
values of M = 512 and m = 2 were used in the present study.

2.3. Statistical Analysis

Shaphiro–Wilks and Levene tests proved that distributions of SE, QSE and DE were normal and
homoscedastic for all the EEG channels. Consequently, results are expressed as mean ± standard
deviation (std) for all the samples belonging to the same group and statistical differences between
emotional states of calm and distress were assessed by a Student’s t-test. A value of statistical
significance ρ < 0.05 was considered as significant.

In order to assess the discriminant ability of each metric, two different approaches were
considered. Firstly, all the EEG recordings were jointly considered and a tenfold stratified
cross-validation was used. This kind of cross-validation allows for obtaining a highly reliable
performance generalization of the metric under study [56]. Indeed, this approach makes use of all the
available data both for training and testing, thus avoiding the problem that classification results could
be highly dependent on the choice for a training-test split. Precisely, the database was first partitioned
into 10 equally sized fold, rearranging the data to ensure that each fold is a good representative of the
whole. Subsequently, 10 iterations of training and validation were performed, such that within each
one, a fold of the data was held out for validation, whereas the other ones were used for learning.
For each learning set, a receiver operating characteristic (ROC) curve was used to obtain the optimal
discriminant threshold between calm and distressed subjects. The ROC is the result of plotting the
fraction of true positives out of positives (i.e., sensitivity) against the fraction of false positives out
of negatives (i.e., 1−specificity) at various threshold settings. Sensitivity was here considered as the
percentage of stressed subjects correctly classified, whereas the rate of calm individuals properly
identified was considered as specificity. The optimal threshold was selected as that one providing the
highest accuracy, i.e., the highest number of subjects correctly classified. At the end, accuracy was
also obtained for the test fold and averaged for the 10 iterations.
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On the other hand, to evaluate the effect of the inter-individual variability on the cross-validated
discriminant ability obtained for each metric, a subject-related classification was also carried out.
Thus, the mean classification threshold resulting from the cross-validation approach was used to
classify the samples from each single subject, and average values of sensitivity, specificity and
accuracy for all individuals in the database were finally computed.

Additionally, the relationships among the nonlinear dynamics quantified from the different brain
areas were analyzed by means of decision trees and fuzzy rules. Thus, several optimal combinations
of the SE, QSE and DE values obtained from all the EEG channels were first considered under study.
Note that the growth of every tree was always stopped when any node only contained samples from
a group of subjects or less than 20% of all samples. Moreover, every node was split by using an
impurity-based Gini index [57]. It is also mandatory to mention that the effect of a dimensionality
reduction approach, such as analysis of principal component analysis (PCA) [58], on the classification
result was also explored from this kind of classifier. Thus, an experiment feeding a decision tree with
the first principal components explaining 95% of variability in entropy values for all EEG channels
was developed. Nonetheless, a well-known limitation of tree-based classifiers is the use of highly
strict decision thresholds. Thereby, classification based on lighter fuzzy rules was also considered. In
this case, for each input variable, two membership functions were built making use of a Gaussian
distribution curve. The slopes and widths of each membership function were computed with a
neuronal network, such that half of the samples were used as a training set and the remaining ones
as a test group.

3. Results

The three considered entropies were computed for non-overlapped segments of N = 640 samples,
such that their final values for each subject were obtained from the average of six segments. Although
statistically significant differences among SE values were computed for r = 0.15, 0.25 and 0.30 were
noticed, in no case were emotional states of calm and distress successfully discerned. A similar result
was also obtained for DE and, consequently, Table 1 only shows classification outcomes yielded by
QSE. As expected, in this case, no statistically significant differences between QSE values computed
for the three different thresholds r were observed. Thus, this table only presents information about
QSE values obtained for r = 0.25. In the interest of clearness, the table has been divided into two parts
to display EEG channels separately from left and right brain hemispheres. Moreover, EEG channels
have been sorted from front to back for each hemisphere.

Interestingly, most of the EEG channels (27 out of 32) showed statistically significant differences
between both emotional states (see first column, Table 1). Although they belong to several brain areas,
including frontal, central, parietal, temporal and occipital regions, it is interesting to note that the most
remarkable differences were noticed in parietal channels CP1, CP2 and P4. Nonetheless, temporal
channel T7 and frontal channels F3 and AF4 also reported highly relevant differences between both
emotions. Another relevant observation is that QSE provided higher values for stressed subjects than
for calm individuals from all the EEG channels, such as can be visually observed from Figures 3 and 4.
Moreover, it is also worth highlighting that frontal, temporal, right parietal and left occipital areas
presented more irregular dynamics for both emotional states than the remaining brain regions.

Table 1. Results obtained from QSE. Mean and std values for emotional states of calm and negative
stress, statistical significance (ρ), sensitivity (Se), specificity (Sp) and accuracy (Ac) for all EEG
channels are presented.

Hemisphere EEG Significance Global Analysis Subject-Related Analysis

(L)eft/(R)ight Channel Value, ρ Se (%) Sp (%) Ac (%) Se (%) Sp (%) Ac (%)

L Fp1 0.006 47.72 67.16 57.89 66.84 60.58 60.31
L AF3 0.0021 59.06 61.80 60.50 60.88 63.79 60.16
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Table 1. Cont.

Hemisphere EEG Significance Global Analysis Subject-Related Analysis

(L)eft/(R)ight Channel Value, ρ Se (%) Sp (%) Ac (%) Se (%) Sp (%) Ac (%)

L F3 7.11 × 10−5 58.46 67.80 63.35 61.94 59.10 59.30
L F7 > 0.05 60.24 42.91 51.88 53.64 63.90 55.35
L FC5 0.0307 32.66 81.84 58.40 48.16 53.56 50.43
L FC1 > 0.05 38.17 67.42 54.30 41.79 51.77 45.00
L C3 0.038 27.75 77.46 53.77 42.28 49.49 47.45
L T7 7.88 × 10−5 56.34 61.77 59.17 67.57 67.68 64.46
L CP5 > 0.05 27.26 78.52 54.05 41.70 63.36 54.71
L CP1 1.55 × 10−6 47.28 78.57 63.66 68.98 68.69 65.18
L P3 0.0048 41.30 67.60 55.05 49.88 51.07 51.63
L P7 0.0003 50.26 71.71 61.49 72.24 66.30 66.35
L PO3 0.0205 25.81 83.49 55.99 49.50 45.43 50.03
L O1 0.0132 54.18 55.89 55.09 66.84 55.13 61.64
L Oz 0.002 49.79 71.39 61.09 66.91 60.20 60.68
L Pz 0.0123 40.42 71.34 56.60 53.04 57.53 54.82

R Fp2 0.0008 67.10 49.41 57.83 64.27 59.16 60.52
R AF4 1.60 × 10−5 62.51 61.58 62.05 71.24 71.81 67.40
R Fz 0.0023 55.32 64.20 59.93 68.31 62.25 62.68
R F4 0.0062 31.66 78.86 56.35 52.60 56.53 55.97
R F8 0.0233 43.16 73.64 59.11 55.66 59.25 57.06
R FC6 0.0325 40.30 72.06 56.91 67.81 62.81 63.09
R FC2 > 0.05 54.06 62.32 58.38 59.69 52.99 55.66
R Cz 0.001 57.28 61.14 59.25 65.04 70.46 64.85
R C4 0.035 53.73 63.14 58.67 63.39 66.77 60.69
R T8 0.0003 64.59 56.03 60.11 65.40 66.47 61.62
R CP6 0.0088 48.56 62.46 55.80 66.88 65.36 63.14
R CP2 4.25 × 10−6 67.24 57.09 63.71 72.97 73.71 68.54
R P4 3.86 × 10−7 52.69 82.94 68.52 85.38 78.04 76.49
R P8 0.0002 63.10 64.04 63.59 71.83 69.26 65.91
R PO4 0.0009 53.31 64.39 59.11 60.79 56.75 59.47
R O2 > 0.05 31.30 71.14 52.16 49.62 48.78 49.95
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Figure 3. Graphical representation of average QSE values obtained from all EEG channels for (a) calm
and (b) distressed subjects.
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Figure 4. Boxplots of QSE values for emotional states of calm and distress obtained from the most
statistically significant EEG channels.

Classification outcomes for the two considered analyses are also presented in Table 1. Thus,
average values of sensitivity, specificity and accuracy obtained from stratified tenfold cross-validation
are displayed by the columns labeled ”Global Analysis”. On the other hand, the last columns show
results for the subject-related classification. In this case, mean values of sensitivity, specificity and
accuracy for the 32 individuals under study are presented. In general, results for both cases are in
agreement with the aforementioned statistical differences between emotional states. Indeed, the right
parietal channel P4 provided the highest discriminant ability between calm and stressed subjects.
Moreover, parietal and central-parietal channels P8, CP1 and CP2 as well as frontal channels F3 and
AF4 also reported notably high values of diagnostic accuracy. Nonetheless, it is worth noting that
differences between diagnostic accuracies for both cases were notably limited, thus ranging from
0.34% to 9.3% with a mean value of 3.77%± 2.54%. However, apart from F3, EEG channels providing
the highest statistical differences between both emotional states presented a higher discriminant
ability for subjected-related classification than when all the data were considered together. For
instance, QSE values for the channel P4 provided an accuracy increase from 68.52% to 76.49%.
Nonetheless, for other channels, the accuracy got worse, thus even reaching values slightly lower
than 50%.

In view of these outcomes, two tree-based classification models were considered to study the
possible relationships among EEG channels. Thus, QSE values were only used to obtain a first
discriminant model. The resulting two-level classifier combined the channels P4 and O1, such as
Figure 5a displays. As expected, the most statistically significant channel P4 was initially used to
identify the group of stressed subjects by means of the highest QSE values. The remaining individuals
were classified by considering the regularity in the left occipital area (channel O1). Thus, in this case,
the fact that this brain region presented more irregular dynamics for calm subjects than for stressed
individuals was used to discern between both emotional states. In this way, considering jointly all
of the data, the discriminant model improved diagnostic accuracy of P4 more than 3.5% because it
yielded values of sensitivity, specificity and accuracy of 80.34%, 63.22% and 72.17%, respectively. Note
that although specificity was slightly reduced regarding the classification reported by P4, sensitivity
was increased around 18%. It is also interesting to highlight that when the classifier was redesigned
by only considering the ten first principal components explaining 95% of variability, a very similar
accuracy of 73.12% was also obtained. Nonetheless, in this case, more balanced values of sensitivity
and specificity of 77.02% and 76.21%, respectively, were reported. Moreover, another relevant result
was that no great differences in the contribution of all EEG channels to the considered principal
components were observed. In fact, only maximum differences of around 3% were observed.
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QSE(O1) >= 2.101QSE(O1) < 2.101

Stress

Stress

Calm

(a)

QSE(P4) < 3.403 QSE(P4) >= 3.403

QSE(O1) >= 2.101QSE(O1) < 2.101 DE(Cz) < 0.904 DE(Cz) >= 0.904

Stress Calm Stress Calm

(b)

Figure 5. Tree-based discriminant models obtained by considering (a) only QSE values from all EEG
channels and (b) SE, QSE and DE values from all EEG channels.

A second tree-based discriminant model was also constructed by considering values of SE, QSE
and DE computed from all the EEG channels. In this case, a modified version of the classifier
previously described was obtained, such as can be observed in Figure 5b. Indeed, only DE was
additionally considered to obtain an improved discrimination between subjects presenting a highly
irregular brain activity in the right parietal area (covered by P4). Thus, sensitivity and accuracy were
improved around 7% and 3%, since the discriminant model reported values of sensitivity, specificity
and accuracy of 87.49%, 62.18% and 75.29%, respectively.

Finally, it should be mentioned that results provided by tree-based classifiers were not improved
by considering lighter decision thresholds via fuzzy rules. Indeed, the four fuzzy rules designed from
QSE values for channels P4 and O1 only provided a diagnostic accuracy of 70.46%, with sensitivity
and specificity values of 58.61% and 81.08%, respectively. Similarly, the eight fuzzy rules achieved
from QSE values for channels P4 and O1 and DE values for the channel Cz were only able to reach a
discriminant ability of 73.46%, with sensitivity of 61.13% and specificity of 81.63%.

4. Discussion

To the best of our knowledge, no thorough works exploring application of nonlinear analysis to
the EEG recording for recognition of emotions can be found in the literature [14,25]. Thus, only a few
studies have considered nonlinear indices, such as fractal dimension, correlation dimension or some
entropy-based measures, to discern between emotional states of calm and negative stress [45–47].
Nonetheless, AE has revealed a promising ability to identify some emotions [59] and, therefore,
the present work introduces for the first time the use of SE, QSE and DE to detect negative stress.
These indices are improved versions of AE because SE was firstly designed to reduce the bias
caused by including self-matches in its computation [50] and, more recently, QSE and DE have been
proposed to resolve some SE issues. Precisely, QSE has been devised to reduce SE sensitivity to the
threshold r [51], which has been here supported by the results presented for r = 0.15, 0.25 and 0.30,
and DE to overcome SE limitation in the complexity estimation of times series [55].

Obtained outcomes have proven that only QSE is able to discern successfully between the two
considered emotional states. Although this result could seem a bit surprising because SE and QSE
are based on the same computation approach, QSE insensitivity to the threshold r plays a key role to
obtain accurate estimates of times series regularity [51]. Indeed, in SE computation, r is habitually
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normalized by original data standard deviation to avoid the effect of amplitude changes on the
identification of similar patterns [49]. However, several authors have reported that this normalization
is inappropriate to obtain precise regularity estimates in some cases [60–62]. For instance, if a time
series presents quick and sudden amplitude changes, the standard deviation obtained from intervals
of several seconds in length will not be useful to compute time series regularity from very short
segments. Hence, QSE ability to estimate entropy and discard the effect of every amplitude change
in time series could justify the different results obtained from both metrics. On the other hand, DE
makes use of a very different computation approach from QSE and SE. Moreover, although time
series normalization may notably influence entropy estimation, which might be responsible for the
presented results, this aspect has not been analyzed by the authors who introduced recently the
metric [55]. Therefore, this aspect will have to be addressed in a future work.

Although comparison among works should be considered with caution, since different ways to
elicit emotions may trigger different cognitive processes [7], it is interesting to note that the present
study has only shown a slightly poorer classification between emotional states of calm and distress
than previous studies. Thus, whereas QSE values, both from single channels or their tree- and
fuzzy-based combinations, have provided discriminant abilities between 70% and 75%, diagnostic
accuracies around 80% have been previously reported [45–47]. However, it is mandatory to underline
that these high discriminant rates have always been reached by combining dozens or even hundreds
of features through advanced classifiers, such as support vector machines or neural networks [45–47].
Hence, the largest contribution of the present work is the introduction of a single entropy-based
measure with a remarkable ability to discriminate between the two considered emotional states. In
fact, the easy clinical interpretation of QSE may open a new standpoint in EEG-based identification
of emotions, as well as provide new insights about the brain’s behavior under different feelings.

It is also interesting to note that QSE combination with regularity and complexity levels
measured from different brain areas has also improved its ability to identify negative stress. In
this case, the obtained discriminant models, based both on decision trees or fuzzy rules, are still
easily interpretable, since they only resulted in a few levels of classification (see Figure 5). Hence,
they differ significantly from those proposed in previous works, where the clinical meaning of every
single metric is blurred within the classification approach. Nonetheless, this later behavior has also
been noticed when PCA was considered to exploit the redundant information from all EEG channels.
Indeed, all the brain areas contributed in a very similar way to the principal components used for
classification and, regrettably, no clear interpretations about their response to the emotional states of
calm and distress could then be elucidated.

On the other hand, another interesting advantage of the present work is the higher spatial
resolution considered to analyze the brain’s behavior under negative stress. Thus, whereas most
of previous works only studied a few EEG channels from the frontal area [45,46], regularity and
complexity of all brain regions were here analyzed by considering 32 channels. This kind of analysis
allows us to obtain a global vision about how this organ reacts to different emotional stimuli. With
respect to this, Figure 3 shows that distressed individuals reported more irregular dynamics than
calm subjects for the whole brain, thus suggesting a relevant neural activation during negative stress.
This finding is in agreement with other previous neuroanatomy studies, which have provided that
the brain secretes hormones, such as adrenaline or dopamine, into the bloodstream and directly in its
cortex to intensify mental concentration [63]. Obviously, considering stress as a reaction to preserve
organism’s integrity, a concentration increase has mandatorily to occur during this emotion [34,63]. In
addition, other previous works have also suggested a similar neural activation of most brain regions
in subjects exposed to very distressfull [64] as well as chronic hyperarousal and post-traumatic
experiences [65]. Similarly, a low and regular neuronal activity during an emotional state of calm
has also been previously reported by works dealing with different relaxing therapies. Indeed,
nonlinear indices like Lyapunov exponents or SE have been able to notice significant decreases in
brain activation during relaxing music, foot reflexology and meditation [66,67].
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Nonetheless, despite the general growth of neural activity during negative stress, it should also
be highlighted that all brain regions did not provide the same behavior. With respect to this, Figure 6
shows how QSE differences from emotional states of calm and distress were especially relevant in the
left frontal (channel F3) and right parietal (channel P4) areas. As before, this finding is consistent
with previous works. Thus, Nitschke [68] reported a large asymmetry in neural activity under
anxiety conditions, the left frontal area being the most active region. Moreover, in that study, a high
brain activity in the right parietal area was also noticed during distress-inducing experiences [68].
In a similar way, Todder et al. [69] observed remarkable differences in the activity of right and left
frontal areas for post-traumatic stress disorder (PTSD) patients and healthy subjects. More precisely,
although a low-resolution electrical tomography was used, a higher activity in the left ventrolateral
prefrontal brain cortex was noticed for PSTD patients than for controls. On the other hand, brain
parietal areas have been associated with the arousal component of an emotion and frontocentral
regions with both valence and arousal components [68,70].
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Figure 6. Graphical representation of the differences between QSE values for emotional states of calm
and negative stress obtained from all EEG channels.

In view of this close agreement between previous clinical studies and the presented results, as
well as the limited influence that has shown the inter-subject variability on the identification of calm
and distressed individuals, it is worth considering that QSE’s performance could be extrapolated
to other datasets. Indeed, it has also been corroborated that the map of average QSE differences
displayed by Figure 6 remains unaltered for most subjects in the database. Nonetheless, in order to
confirm this assumption as well as evaluate the robustness of the presented results, further studies
are required. With respect to this, connectivity analysis among brain areas by using nonlinear
synchronization measures would also be very interesting to obtain new insights about the brain’s
response to different emotions. Moreover, it could also be useful to assess the possibility of discerning
between positive and negative stress, since both feelings can cause a different impact on people’s
mood and health.

Finally, some comments about the analyzed DEAP dataset deserve consideration. Firstly, it was
not created specifically to discern between emotional states of calm and negative stress and, indeed,
many other emotions can be found (see Figure 2). Despite this and that international databases
containing different kind of stimuli to elicit emotions exist and have been widely used to design
tailored experiments [7], this dataset was selected because it is the only freely available database
of physiological signals for the recognition of emotions [43]. Hence, the obtained results can be
considered completely unbiased and the presented methodology can be easily and fairly compared
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with other algorithms. Secondly, only EEG recordings have been analyzed in the present work,
thus rejecting information offered by other physiological signals, also included in the database.
Nonetheless, analysis of complementary information among EEG recordings and other physiological
signals requires an extensive and detailed study, which is out of the scope of this work. Anyway, given
its interest, it will be addressed in the future. Lastly, it should be noted that the used visual stimuli
were sufficiently long to elicit several subsequent emotions, thus making the self-assessment of their
arousal and valence levels difficult. This fact could explain why the results obtained in every work
using the DEAP database have been relatively low compared with other studies where experiments
are tailored [32].

5. Conclusions

Quadratic sample entropy has proven to be the first single metric with the ability to discern
between emotional states of calm and negative stress from EEG recordings. Indeed, this index has
only reported a discriminant ability slightly lower than previous works, where a wide variety of
features have been required to be combined with advanced classifiers. Moreover, this entropy-based
measure has also been able to reveal significant differences in the neural activity generated by both
emotional states for all the brain areas. Nonetheless, in accordance with previous findings, the highest
rates of neural activation have been found in left frontal and right parietal regions. These results
together with their easy interpretation make quadratic sample entropy a promising index for the
recognition of negative stress as well as to gain new information about how the brain works under
this emotion.
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