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Abstract: We consider bipartite mixed states ρ in a d ⊗ d quantum system. We say that ρ is PPT
if its partial transpose 1⊗ T(ρ) is positive semidefinite, and otherwise ρ is NPT. The well-known
Werner states are divided into three types: (a) the separable states (the same as the PPT states);
(b) the one-distillable states (necessarily NPT); and (c) the NPT states which are not one-distillable.
We give several different formulations and provide further evidence for the validity of the conjecture
that Werner states of type (c) are not two-distillable.
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1. Introduction

Let H = HA ⊗ HB be the Hilbert space for the quantum system consisting of two parties,
A and B (Alice and Bob). We assume that the Hilbert spaces HA and HB have the same finite
dimension, which we denote by d. A product state is a tensor product ρA ⊗ ρB of the states ρA and ρB
of the first and second party, respectively. A bipartite state ρ is separable if it can be written as a convex
linear combination of product states. We say that a bipartite state is entangled if it is not separable.
We say that ρ is PPT if its partial transpose σ = 1⊗ T(ρ), computed in some fixed orthonormal (o.n.)
basis of HB, is a positive semidefinite operator. Otherwise, σ has a negative eigenvalue, and we say
that ρ is NPT.

It is more complicated to give the definition of distillability for bipartite states ρ. For that
purpose, we have to consider multiple copies of ρ. For k copies, the density matrix is the k-th tensor
power ρ⊗k which acts on the Hilbert space H⊗k. We can identify H⊗k with the tensor product of the
Hilbert spaces H⊗k

A and H⊗k
B . In this way, we can view ρ⊗k as a bipartite state. Thus, any vector

|ψ〉 ∈ H⊗k has its Schmidt decomposition and a well-defined Schmidt rank.
The definition of distillability given below is not the original one, but it is the only one that we

are going to use. Replacing the original definition with this one was nontrivial (see [1]).

Definition 1. For a bipartite state ρ acting on H and an integer k ≥ 1, we say that ρ is k-distillable if
there exists a (non-normalized) pure state |ψ〉 ∈ H⊗k of Schmidt rank that is at most two, such that

〈ψ|σ⊗k|ψ〉 < 0, σ = 1⊗ T(ρ). (1)

We say that ρ is distillable if it is k-distillable for some integer k ≥ 1.

The entanglement of a state ρ which is not distillable is known as bound entanglement.
If a bipartite state ρ is separable, then it is PPT, i.e., σ is positive semidefinite, and consequently

ρ is not distillable. For the same reason, the entangled bipartite PPT states are not distillable, i.e.,
their entanglement is bound. Equivalently, every distillable bipartite state is necessarily NPT. It is not
known whether the converse holds, i.e., whether every bipartite NPT state is distillable. However, it
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is widely believed that the converse is false. Actually, the following conjecture has been raised in [2,3]
(see also [4], (p. 62)).

Conjecture 1. There exist bipartite NPT states which are not distillable, i.e., bound NPT
entanglement exists.

It is known [5] that for each integer k ≥ 1, there exist examples of bipartite states which are
distillable but not k-distillable.

We fix an o.n. basis |i〉, i = 1, 2, . . . , d of HA, and an o.n. basis of HB for which we use the same
notation. The context will make clear which basis is used. After fixing these bases, we can define the
flip operator F : H → H by

F = ∑
i,j
|i, j〉〈j, i|.

The (non-normalized) Werner states onH (see [6], Example 1) can be parametrized as follows:

ρW(t) = 1− tF, −1 ≤ t ≤ 1. (2)

Several different parametrizations of Werner states appear in the literature (see e.g., [6–8]). We
have chosen the one above because of its simplicity. It is easy to express the parameter used in these
and other references in terms of our parameter t.

Let |ψmax〉 ∈ H be the maximally entangled (pure) state given by

|ψmax〉 =
1√
d

∑
i
|i, i〉.

Its density matrix is the projector

P =
1
d ∑

i,j
|i, i〉〈j, j|.

Since dP is the partial transpose of F, the partial transpose of ρW(t) is

σW(t) = 1− tdP.

The following facts about the Werner states are well-known.

Proposition 1. The Werner states ρW(t) are:

(a) separable for −1 ≤ t ≤ 1/d;
(b) 1-distillable for 1/2 < t ≤ 1;
(c) NPT but not one-distillable for 1/d < t ≤ 1/2.

For (a) and (c), see [7] (p. 59) and [9], and, for (b), see [2] (Theorem 2) and [3,8].

From now on, unless stated otherwise, we assume that d ≥ 3. (In Section 4, we will consider
briefly the case d = 2.) The importance of Werner states for the distillability problem for bipartite
states was first established in [7].

Proposition 2. Conjecture 1 is equivalent to the assertion that some NPT Werner states ρW(t) are
not distillable.

In fact, the following stronger conjecture is believed to be true [2,3,10].

Conjecture 2. None of the Werner states ρW(t), 1/d < t ≤ 1/2, are distillable.
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The above two conjectures have been open for more than 15 years. In order to stimulate further
research related to these conjectures, we propose yet another one. Namely, we shall consider a very
weak version of Conjecture 2.

Conjecture 3. None of the Werner states ρW(t), 1/d < t ≤ 1/2, are 2-distillable.

For the k-distillability problem, the following fact [2] (Lemma 4) is useful.

Proposition 3. If ρW(1/2) is not k-distillable, then none of the states ρW(t), 1/d < t < 1/2, is k-distillable.

In view of this proposition, it suffices to prove Conjecture 3 for t = 1/2 only. Extensive numerical
evidence for the validity of this conjecture in the case d = 3 is presented in [2,3,8] and [11]. In [11],
it is also claimed that their numerical proof is rigorous. The case d = 4 was analyzed in [12], but it
remains open.

For an alternative approach to Conjecture 1, see the very recent paper [13]. Actually, the authors
of that paper study the positive linear maps between matrix algebras which remain positive under
tensoring of n copies of themselves for each n = 2, 3, . . .. Completely positive and completely
co-positive linear maps are trivial examples. They show that the existence of non-trivial examples
implies the existence of bound NPT entanglement. Moreover, they construct a one-parameter family
of candidates for non-trivial maps of that kind, which is reminiscent of the family of Werner states.

Our paper is organized as follows. In Section 2, we construct a hermitian biquadratic form Φ and
show that Conjecture 3 is equivalent to Φ being positive semidefinite, Φ ≥ 0. The form Φ depends
on 4d arbitrary vectors xi, yi ∈ HA and ui, vi ∈ HB, i = 1, 2, . . . , d.

In Section 3, we obtain a formula which expresses Φ as a function of four matrices X, Y, U, V of
order d, where X = [ x1 x2 · · · xd ], etc. From that formula, we deduce that Φ is invariant under an
action of the product of two copies of the unitary group U(d).

In Section 4, we compute the matrix H = H(X, Y) of Φ when the latter is viewed as a hermitian
quadratic form in the 2d2 complex entries of U and V. The entries of X and Y play the role of
parameters. Conjecture 3 is equivalent to the claim that H ≥ 0. After partitioning H into four square
blocks of order d2, we show that the two diagonal blocks are positive definite matrices. We reduce the
task of proving that H ≥ 0 to the case where X is a diagonal matrix with positive diagonal entries.
In the case d = 2, we prove that H ≥ 0.

In Section 5, we prove that, for any d, H(X, Y) ≥ 0 when X and Y are diagonal matrices. We
point out that H(X, Y) is not diagonal even when both X and Y are. Since this is done for arbitrary
d, and the proof is nontrivial, we view this fact as an important piece of evidence for the validity
of Conjecture 3.

In Section 6, we prove that the inequality H(X, Y) ≥ 0 is equivalent to H(αX + βY, γX + δY) ≥ 0,
where αδ− βγ 6= 0. Hence, it suffices to prove the inequality H(X, Y) ≥ 0 when X is singular.

In Section 7, we consider the case d = 3. To prove that H(X, Y) ≥ 0, we may assume that X is
singular. Hence, X has rank 1 or 2. We prove that H(X, Y) ≥ 0 when X has rank 1. We also show that
the leading principal minor of H of order 10 is a positive semidefinite polynomial.

The superscripts ∗, T and † denote the complex conjugation, the transposition and the adjoint,
respectively. We denote by Mm the algebra of complex matrices of order m, and by Im the identity
matrix of Mm.

2. The Hermitian Biquadratic Form Φ

Since we are going to use only one Werner state, the one for t = 1/2, we set

ρW = ρW(1/2) = 1− F/2, σW = σW(1/2) = 1− dP/2.
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Conjecture 3 is equivalent to the claim that the inequality

〈ψ|σ⊗2
W |ψ〉 ≥ 0 (3)

is valid for all |ψ〉 ∈ H⊗2 of Schmidt rank ≤ 2. Such |ψ〉 can be written as |ψ〉 = |ψ1〉+ |ψ2〉, where

|ψ1〉 = |x〉 ⊗ |u〉, |ψ2〉 = |y〉 ⊗ |v〉.

Note that |x〉, |y〉 ∈ HA ⊗HA while |u〉, |v〉 ∈ HB ⊗HB. We point out that we do not require
|ψ1〉+ |ψ2〉 to be the Schmidt decomposition of |ψ〉, i.e., we do not require that 〈x|y〉 = 〈u|v〉 = 0. The
reason for this is to allow the vectors |x〉, |y〉, |u〉, |v〉 to be completely arbitrary.

We can rewrite |ψ1〉 and |ψ2〉 as

|ψ1〉 = ∑
i,j
|i, j, xi, uj〉, |ψ2〉 = ∑

i,j
|i, j, yi, vj〉.

The vectors |xi〉 and |yi〉 live in Alice’s second copy ofHA, while |ui〉 and |vi〉 live in Bob’s second
copy of HB. The summation is taken over all i and j in {1, 2, . . . , d}. Consequently, we can view the
left-hand side (LHS) of Equation (3) as a function of 4d vectors xi, yj, ur, vs:

Φ(x1, . . . , xd, y1, . . . , yd, u1, . . . , ud, v1, . . . , vd) = 〈ψ|σ⊗2
W |ψ〉.

As
σ⊗2

W = 1− 1
2
(1⊗ dP + dP⊗ 1) +

1
4

dP⊗ dP,

we have
Φ = Φ1 −

1
2
(Φ2 + Φ3) +

1
4

Φ4,

where

Φ1 = 〈ψ|ψ〉,
Φ2 = 〈ψ|1⊗ dP|ψ〉,
Φ3 = 〈ψ|dP⊗ 1|ψ〉,
Φ4 = 〈ψ|dP⊗ dP|ψ〉.

After the substitution |ψ〉 = |ψ1〉+ |ψ2〉, each of the Φk breaks up into four pieces. For instance,
we have

Φ2 = ∑
i,j,r,s
〈i, j, xi, uj|1⊗ dP|r, s, xr, us〉

+ ∑
i,j,r,s
〈i, j, xi, uj|1⊗ dP|r, s, yr, vs〉

+ ∑
i,j,r,s
〈i, j, yi, vj|1⊗ dP|r, s, xr, us〉

+ ∑
i,j,r,s
〈i, j, yi, vj|1⊗ dP|r, s, yr, vs〉.

We have computed each of the resulting 16 pieces. For instance, the second piece, say E, in the
above formula for Φ2, is computed as follows. We first observe that 〈i, j, xi, uj|1⊗ dP|r, s, yr, vs〉 = 0 if
r 6= i or s 6= j. Thus, we have
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E = ∑
i,j
〈xi, uj|dP|yi, vj〉

= ∑
i,j,r,s
〈xi, uj|r, r〉〈s, s|yi, vj〉

= ∑
i,j

(
∑

r
〈xi, uj|r, r〉 ·∑

s
〈s, s|yi, vj〉

)
= ∑

i,j
〈xi|u∗j 〉〈yi|v∗j 〉∗.

The final formulas are:

Φ1 = ∑
i
‖xi‖2 ·∑

j
‖uj‖2 + ∑

i
〈xi|yi〉 ·∑

j
〈uj|vj〉

+∑
i
〈yi|xi〉 ·∑

j
〈vj|uj〉+ ∑

i
‖yi‖2 ·∑

j
‖vj‖2,

Φ2 = ∑
i,j
|〈xi|u∗j 〉|2 + ∑

i,j
〈xi|u∗j 〉〈yi|v∗j 〉∗

+∑
i,j
〈yi|v∗j 〉〈xi|u∗j 〉∗ + ∑

i,j
|〈yi|v∗j 〉|2,

Φ3 = ∑
i,j
〈xi|xj〉〈ui|uj〉+ ∑

i,j
〈xi|yj〉〈ui|vj〉

+∑
i,j
〈yj|xi〉〈vj|ui〉+ ∑

i,j
〈yi|yj〉〈vi|vj〉,

Φ4 =

∣∣∣∣∣∑i
〈xi|u∗i 〉

∣∣∣∣∣
2

+ ∑
i,j
〈xi|u∗i 〉〈yj|v∗j 〉∗

+∑
i,j
〈xi|u∗i 〉∗〈yj|v∗j 〉+

∣∣∣∣∣∑j
〈yj|v∗j 〉

∣∣∣∣∣
2

.

These formulas show that each Φk, viewed as a function of the components of the xi and yj, is
a hermitian quadratic form. The same is true when we view them as functions of the components
of the ui and vj. Hence, we shall refer to the Φk (and Φ) as hermitian biquadratic forms. The next
proposition follows immediately from Equation (3) and the definition of the form Φ.

Proposition 4. Conjecture 3 is equivalent to the assertion that Φ ≥ 0.

3. Φ as a Function of Four Matrices

Let X denote the d × d matrix whose successive columns are the vectors x1, . . . , xd. Define
similarly the matrices Y, U, and V. Let Md denote the space of complex matrices of order d. Define the
inner product on Md by 〈A|B〉 = tr (A†B). For the corresponding norm, we have ‖A‖2 = tr (A† A).
The tensor product of matrices A = [aij] and B is defined as the block-matrix A⊗ B = [ai,jB].

Now the formulas for Φ can be rewritten in terms of the matrices X, Y, U, and V. We obtain that

Φ1(X, Y, U, V) = ‖X‖2‖U‖2 + ‖Y‖2‖V‖2 + 2<(tr (X†Y) · tr (U†V)),

Φ2(X, Y, U, V) = ‖XTU + YTV‖2,

Φ3(X, Y, U, V) = tr
(

XTX∗U†U + XTY∗V†U + YTX∗U†V + YTY∗V†V
)

,

Φ4(X, Y, U, V) = |tr (XTU + YTV)|2,
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where < stands for “the real part of”.
The first expression can be further simplified by using the standard Frobenius norm on the tensor

product of matrices
Φ1(X, Y, U, V) = ‖X⊗U + Y⊗V‖2.

The third expression also simplifies to

Φ3(X, Y, U, V) = ‖UXT + VYT‖2.

Consequently, we have

Φ(X, Y, U, V) = ‖X⊗U + Y⊗V‖2 (4)

−1
2

(
‖XTU + YTV‖2 + ‖UXT + VYT‖2

)
+

1
4

∣∣∣tr (XTU + YTV)
∣∣∣2 .

The next proposition follows immediately from the above formulas.

Proposition 5. The identity

Φ(AXB, AYB, A∗UB∗, A∗VB∗) = Φ(X, Y, U, V), (5)

holds true for arbitrary X, Y, U, V ∈ Md and A, B ∈ U(d).

4. The Matrix H of the Form Φ

We shall consider the entries of X and Y as parameters and those of U and V as complex
variables. Then, Φ (and each Φk) becomes a family of hermitian quadratic forms depending on the
mentioned parameters. Let H = H(X, Y) and Hk = Hk(X, Y), k = 1, 2, 3, 4, be the matrices of the
corresponding forms Φ and Φk. These are hermitian matrices of order 2d2.

For any complex matrix Z, let Z̃ denote the column vector obtained by writing the columns of
Z one below the other starting with the first column, then the second, etc. Now, we can express the
relationship between the form Φ and its matrix H by the formula

Φ(X, Y, U, V) =

[
Ũ
Ṽ

]†

H(X, Y)

[
Ũ
Ṽ

]
. (6)

By using the formulas given in Section 2, we obtain the following simple formulas:

H1 =

[
‖X‖2 tr (X†Y)

tr (Y†X) ‖Y‖2

]
⊗ Id2 , (7)

H2 =

[
X†X X†Y
Y†X Y†Y

]
⊗ Id, (8)

H3 =

[
Id ⊗ X∗XT Id ⊗ X∗YT

Id ⊗Y∗XT Id ⊗Y∗YT

]
, (9)

H4 =

[
X̃
Ỹ

]∗
·
[

X̃
Ỹ

]T

, (10)

for the matrices Hk. Those for H1 and H4 are obvious. We omit the tedious but straightforward
verification of the formulas for H2 and H3.
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For H, we obtain the formula

H(X, Y) = H1 −
1
2
(H2 + H3) +

1
4

H4, (11)

and for its trace

tr H(X, Y) =
(

d− 1
2

)2 (
‖X‖2 + ‖Y‖2

)
. (12)

In view of Proposition 4, we can restate Conjecture 3 in the following equivalent form.

Conjecture 4. H(X, Y) ≥ 0, ∀X, Y ∈ Md.

If A ∈ U(d), and we replace X and Y with AX and AY, respectively, then the Hk undergo
the transformation Z → (I2d ⊗ A∗)Z(I2d ⊗ AT). In fact, H1 and H2 remain fixed under this
transformation.

Similarly, if B ∈ U(d), and we replace X and Y with XB and YB, respectively, then the Hk
undergo the transformation Z → (I2 ⊗ B† ⊗ Id)Z(I2 ⊗ B⊗ Id). This time, H1 and H3 remain fixed. In
the case of H4, one should use the formulas

ÃX = (Id ⊗ A) · X̃, (ỸB)T = (Ỹ)T · (B⊗ Id),

which are not hard to verify.
Hence, the following proposition holds.

Proposition 6. For A, B ∈ U(d), we have

H(AXB, AYB) = (I2 ⊗ B† ⊗ A∗)H(X, Y)(I2 ⊗ B⊗ AT). (13)

Thanks to this proposition (or Proposition 5) we can simplify the task of proving Conjecture 4.
Indeed, it suffices to prove this conjecture when the matrix X is diagonal and its diagonal entries
are positive.

Let us partition H(X, Y) into four square blocks of size d2. The first diagonal block depends only
on X and the second one only on Y. By using Equation (11) and the formulas (7)–(9), we obtain that

H(X, Y) =

[
L(X) L(X, Y)

L(X, Y)† L(Y)

]
, (14)

where
L(X, Y) = tr (X†Y)Id2 −

1
2

(
X†Y⊗ Id + Id ⊗ X∗YT

)
+

1
4

X̃∗ỸT , (15)

and L(X) := L(X, X).
If X and Y are nonzero matrices, then the two diagonal blocks in Equation (14) are positive

definite matrices. This is shown in the next proposition.

Proposition 7. If X 6= 0 then L(X) > 0.

Proof. By Proposition 5, we may assume that X = diag(λ1, λ2, . . . , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.
Let s = ‖X‖2 = ∑ λ2

i . It follows from Equation (15) that L(X) = M + (1/4)X̃X̃T , where

M =
d⊕

i=1

(
(s−

λ2
i

2
)Id −

1
2

X2

)
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is a diagonal matrix with the diagonal entries

µij = s− (λ2
i + λ2

j )/2, i, j = 1, 2, . . . , d.

Since
µij ≥ µ1,1 = λ2

2 + · · ·+ λ2
d ≥ 0

for all i, j, we have L(X) ≥ 0. As X 6= 0, we have λ1 > 0. If λ2 > 0, then all µij > 0 and so L(X) > 0.
Otherwise, λi = 0 for i > 1 and L(X) is a diagonal matrix with positive diagonal entries. Hence,
again L(X) > 0.

The matrix H has order 2d2, but one can reduce the proof of Conjecture 4 to matrices of order d2.
This does not come for free since the smaller matrix will have a more complicated structure. Recall
that we may assume that X is a diagonal matrix with positive diagonal entries. For simplicity, we
set A = L(X), B = L(X, Y) and C = L(Y)t in Equation (14). Since A > 0, it suffices to show that
S := C − B† A−1B ≥ 0, see e.g., [14] (Proposition 8.2.3). (As X is diagonal, one can easily compute
A−1.) Proving that S ≥ 0 may be somewhat easier than proving that H ≥ 0. We shall use this
simplification to handle the case d = 2 below.

Recall that d ≥ 3 by the assumption made earlier, but Conjecture 4 also makes sense for d = 1
and d = 2. However, in these two cases, the determinant of H(X, Y) is identically 0. For d = 1, we
have H1 = H2 = H3 = H4 and the conjecture is obviously valid. It is also valid for d = 2.

Proposition 8. Conjecture 4 is true for d = 2.

Proof. We may assume that X =

[
a 0
0 b

]
with a, b > 0. Let Y =

[
u1 v1

u2 v2

]
, and let us partition H

as in Equation (14) and set again A = L(X), B = L(X, Y) and C = L(Y). Let t4 − c1t3 + c2t2 − c3t + c4

be the characteristic polynomial of S := C− B† A−1B. A computation shows that c4 = 0. Set

p = a2 + b2,

q = a4 + 4a2b2 + b4,

r = p(|u2|2 + |v1|2) + |av2 − bu1|2.

After some tedious computations, we found the following formulas for the ci:

2pqc1 = 4(p2 + a2b2)|av2 − bu1|2 + p(2a2b2 + 3q)(|u2|2 + |v1|2),
4p2qc2 = q|av2 − bu1|4 + p(7a4 + 22a2b2 + 7b4)(|u2|2 + |v1|2)|av2 − bu1|2

+2p2
(
(q + 3a2b2)

(
|u2|2 + |v1|2

)2
+ 2(a4 + a2b2 + b4) |u2v1|2

+2
∣∣∣abu2v1 + (av2 − bu1)

2
∣∣∣2) ,

4pqc3 = r
(∣∣∣2abu2v1 + (av2 − bu1)

2
∣∣∣2 + 2a2b2(|u2|4 + |v1|4)

+p(|u2|2 + |v1|2)|av2 − bu1|2 + 2p2 |u2v1|2
)

.

Since p, q, r > 0, we conclude that all coefficients ci ≥ 0. Hence, S ≥ 0 (see e.g., [14] (Proposition 8.2.6)).

We shall consider the case d = 3 in Section 7.
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5. The Diagonal Case

We say that a matrix pair (X, Y) is generic if the matrices X and Y are linearly independent and
some linear combination of them is nonsingular.

In this section, we prove that H(X, Y) ≥ 0 when both X and Y are diagonal matrices, while d is
arbitrary. This appears to be a trivial case, but it is not so as H(X, Y) is not diagonal even if X and Y
are. We prove a slightly stronger result.

Theorem 1. If (X, Y) is a generic pair of diagonal matrices, then H(X, Y) > 0.

Proof. We denote the diagonal entries of X and Y by λ1, . . . , λd and µ1, . . . , µd respectively. The
hypothesis implies that λk 6= 0 or µk 6= 0 for each k. After replacing H with ΠHΠT where Π is
a suitable permutation matrix, H becomes direct sum of d2 − d blocks of order 2 and an additional
block of order 2d. It suffices to show that each of these blocks is positive definite.

The blocks of order 2 are indexed by the integers p = (i− 1)d + j, where i, j ∈ {1, 2, . . . , d} and
j 6= i. For such index p, the corresponding block of order 2 is the principal submatrix H(p) of the
original matrix H corresponding to indices p and p + d2. Explicitly, we have

H(p) =
d

∑
k=1

ck

[
|λk|2 λ∗k µk
λkµ∗k |µk|2

]
,

where ck = 1 for k 6= i, j and ci = cj = 1/2. Each matrix on the right-hand side is positive semidefinite
of rank 1. If H(p) is singular, then all of these matrices must be singular and must have the same
kernel. This contradicts the linear independence of X and Y. Hence, H(p) must be positive definite.

It remains to consider the block B of size 2d, i.e., the principal submatrix of H corresponding to
the indices (i − 1)d + i and (i − 1)d + i + d2 for 1 ≤ i ≤ d. We have B = B1 − (B2 + B3)/2 + B4/4,
where Bk denotes the corresponding principal submatrix of Hk. Let us first consider the matrix
B′ = B1 − (B2 + B3)/2. After a suitable simultaneous permutation of rows and columns, B′ breaks
up into the direct sum of d blocks G(i) of order 2, where i ∈ {1, 2, . . . , d}. Explicitly, we have

G(i) = ∑
k 6=i

[
|λk|2 λ∗k µk
λkµ∗k |µk|2

]
.

Each G(i) is positive semidefinite of rank 1 or 2. Thus, in the decomposition B = B′ + B4/4, we have
B′ ≥ 0 and B4 ≥ 0. If all G(i) > 0, then B′ > 0, and so B > 0.

It remains to consider the case where some G(i), say G(1), is singular. By Cauchy–Schwarz
inequality, the vectors (λ2, λ3, . . . , λd) and (µ2, µ3, . . . , µd) are linearly dependent. It follows that all
other G(i) must be positive definite. Consequently, the nullspace of B′ is one-dimensional and is
spanned by the column vector having all components 0 except the first which is −µ2 and (d + 1)-th
which is λ2. This vector is not killed by B4, because λ1µ2 − λ2µ1 6= 0. Hence, we conclude
that B > 0.

Corollary 1. Conjecture 4 is valid when X and Y are diagonal matrices.

Proof. This follows from the theorem because any pair of diagonal matrices can be approximated by
a generic pair of diagonal matrices.

6. Reduction to the Singular Case

Let us show that H(X, Y) satisfies yet another identity. Let

Λ =

[
α β

γ δ

]
∈ GL2(C), (16)
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and

(ΛT)−1 =

[
α′ β′

γ′ δ′

]
. (17)

By using [
α γ

β δ

] [
α′ β′

γ′ δ′

]
=

[
1 0
0 1

]
,

we deduce that

(αX + βY)⊗ (α′U + β′V) + (γX + δY)⊗ (γ′U + δ′V) = X⊗U + Y⊗V,

(αX + βY)T(α′U + β′V) + (γX + δY)T(γ′U + δ′V) = XTU + YTV,

(α′U + β′V)(αX + βY)T + (γ′U + δ′V)(γX + δY)T = UXT + VYT .

Consequently, Equation (4) implies that

Φ(αX + βY, γX + δY, α′U + β′V, γ′U + δ′V) = Φ(X, Y, U, V).

By using Equation (6) and the formula[
α′Ũ + β′Ṽ
γ′Ũ + δ′Ṽ

]
=
(
(ΛT)−1 ⊗ Id2

) [ Ũ
Ṽ

]
,

we obtain the new identity

H(αX + βY, γX + δY) = (Λ∗ ⊗ Id2)H(X, Y)(ΛT ⊗ Id2). (18)

It suffices to prove the inequality H(X, Y) ≥ 0 for generic pairs (X, Y) only. If (X, Y) is generic,
we can choose Λ ∈ GL2(C) such that αX + βY is a singular matrix. Thus, the identity Equation (18)
shows that it suffices to prove H(X, Y) ≥ 0 when X is singular and Y is invertible.

Yet another conjecture, which is simpler and stronger than Conjecture 4, may be of interest.
Let us introduce the real valued polynomial D(X, Y) = det H(X, Y). By taking the determinants in
Equation (13), we obtain that

D(AXB, AYB) = D(X, Y), ∀A, B ∈ U(d). (19)

From Equation (18), we deduce that

D(αX + βY, γX + δY) = |αδ− βγ|2d2
D(X, Y) (20)

is valid when Λ is invertible. Since both sides are polynomials, this identity must be valid
for arbitrary Λ.

Note that D(X, 0) = 0 for all matrices X. More generally, we claim that D(X, Y) = 0 if X
and Y are linearly dependent. Indeed, it suffices to choose a matrix Λ as in Equation (16) such that
γX + δY = 0 and apply Equation (20). The converse of this claim is false, but we conjecture that it is
true in a weaker form.

Conjecture 5. If d ≥ 3, then D(X, Y) 6= 0 for generic (X, Y).

Theorem 1 shows that this conjecture is true when the matrices X and Y are diagonal. As this
conjecture deals with only one polynomial and has no positivity conditions whatsoever, it should be
much easier to prove (or disprove).
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Proposition 9. Conjecture 4 is a consequence of Conjecture 5.

Proof. Let X1 and Y1 be any matrices in Md. We have to show that H(X1, Y1) is positive semidefinite.
Clearly, it suffices to prove this when the pair (X1, Y1) is generic. Let (X0, Y0) be a generic pair of
diagonal matrices. Then, H(X0, Y0) is positive definite by Theorem 1. Consequently, D(X0, Y0) > 0,
and all eigenvalues of H(X0, Y0) are positive. We can join the pairs (X0, Y0) and (X1, Y1) by a
continuous path (Xt, Yt), 0 ≤ t ≤ 1, such that (Xt, Yt) is generic for each t. By Conjecture 5,
D(Xt, Yt) 6= 0 for all t. Hence, H(Xt, Yt) has no zero eigenvalues. Since the eigenvalues of H(Xt, Yt)

are continuous functions of t, and they are all positive for t = 0, they must all remain positive for all
values of t. In particular, this is true for t = 1. We thus conclude that H(X1, Y1) is positive definite.

7. The Case d = 3

In this section, we consider only the case d = 3. As mentioned earlier, in order to prove that
H(X, Y) ≥ 0, it suffices to do that in the case when X is singular. Thus, the rank of X is 1 or 2. We
shall prove the inequality in the case when this rank is 1.

Proposition 10. If X, Y ∈ M3, and some linear combination of X and Y has rank one, then H(X, Y) ≥ 0.

Proof. We may assume that X and Y are linearly independent and that X has rank one. Since we can
multiply X by a nonzero scalar, by applying Proposition 6, we may assume that

X =

 1 0 0
0 0 0
0 0 0

 .

By applying the same proposition, we may also assume that

Y =

 a u v
x b 0
y 0 c

 ,

where b, c, u, v ≥ 0.
We partition the matrix H = H(X, Y) as in Equation (14) and set A = L(X), B = L(X, Y),

C = L(Y). As explained in Section 4, it suffices to show that the matrix S := C− B† A−1B is positive
semidefinite. Let

p(t) =
9

∑
k=0

(−1)kckt9−k, c0 = 1,

be the characteristic polynomial of S. The ck are polynomials in the real variables b, c, u, v and the
complex variables x, y and their conjugates x∗, y∗. (The variable a does not occur.)

Set ck = pk/dk, where dk = 2k for k < 9 and d9 = d8 = 256. Then, the pk are polynomials
with integer coefficients. All these computations were performed by using Maple since the pk may
have several thousand terms. We claim that the polynomials pk are positive semidefinite, i.e., they
have nonnegative values for all real b, c, u, v and all complex x, y. The inequality H(X, Y) ≥ 0 is a
consequence of this claim.

To prove our claim, we construct positive semidefinite polynomials qk, k ∈ {1, 2, . . . , 9}, such that
the difference pk − qk|bux − cvy|2 is also a positive semidefinite polynomial. We have q1 = q2 = 0.
The other qk are given in the Appendix. The qk are obviously positive semidefinite. The proof that
the differences pk − qk|bux− cvy|2 are positive semidefinite requires the use of Maple (or some other
software for symbolic algebraic computations). We just expand pk − qk|bux − cvy|2 and check that
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all coefficients are nonnegative integers and all monomials that occur in the expansion are hermitian
squares. For instance, we have

p1 = 5(u2 + v2 + |x|2 + |y|2) + 6(b2 + c2),

p2 = 41
(
(u2 + v2)2 + (|x|2 + |y|2)2)

)
+62(b2 + c2)2 + 6b2c2

+91(u2 + v2)(|x|2 + |y|2)

+102
(

b2(u2 + |x|2) + c2(v2 + |y|2)
)

+108
(

b2(v2 + |y|2) + c2(u2 + |x|2)
)

.

As an aside, we mention that in the case when

X =

 a 0 0
0 b 0
0 0 c

 , Y =

 u1 v1 w1

u2 v2 w2

u3 v3 w3

 ,

where a, b, c > 0 and ui, vi, wi ∈ C, the leading principal minor µ10 of H of order 10 is a positive
semidefinite polynomial. This follows from the following explicit expression for µ10 as a sum of
squares of real polynomials:

µ10 =
1

512
(2a2 + b2 + c2)2(a2 + 2b2 + c2)(a2 + b2 + 2c2) · p,

where

p = 2(a2 + 2b2 + c2)(a2 + b2 + 2c2) ·
(
(4a4 + b4 + c4 + 5a2(b2 + c2) + 4b2c2)|bw3 − cv2|2

+(a2 + b2)(a2 + c2)(|cu1 − aw3|2 + |av2 − bu1|2)
)

+(a6 + b6 + c6 + 11a2b2c2 + 5(a4(b2 + c2) + b4(a2 + c2) + c4(a2 + b2))
)
· q,

and

q = 2(a2 + 2b2 + c2)(a2 + b2 + 2c2)(|v3|2 + |w2|2)
+(a2 + 2b2)(a2 + b2 + 2c2)(|u3|2 + |w1|2)
+(a2 + 2c2)(a2 + 2b2 + c2)(|u2|2 + |v1|2).

Note that the equality µ10 = 0 implies that Y is a scalar multiple of X.

8. Results and Discussion

We consider the question whether the Werner d ⊗ d states ρW(t) = 1 − tF, 1/d < t ≤ 1/2,
where F is the flip operator, are two-distillable. The question whether these states are distillable has
been considered previously in references [2,8,11,12], and it has been conjectured that they are not
distillable, which implies that they are not two-distillable. All evidence so far supports Conjecture 3
saying that these states are not two-distillable. We present in this paper a novel method to attack this
conjecture, and we obtain further evidence for its validity. In view of the well-known fact stated as
Proposition 3, it suffices to prove Conjecture 3 for t = 1/2 only.
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We first construct a hermitian biquadratic form depending on 2d vectors x1, . . . , xd, y1, . . . , yd ∈ HA
and 2d vectors u1, . . . , ud, v1, . . . , vd ∈ HB and show that Conjecture 3 is equivalent to Φ being
positive semidefinite.

Next, we organize the vectors x1, . . . , xd into the matrix X = [ x1 · · · xd ], and, similarly,
we construct the matrices Y, U, V from the remaining 3d vectors. It turns out that the form Φ has
relatively simple expression Equation (4) in terms of the matrices X, Y, U, V. By using this expression,
we deduce that Φ is invariant under the action of the product of two copies of the unitary group U(d).
More precisely, Φ(X, Y, U, V) is invariant under the transformation, which sends

X → AXB, Y → AYB, U → A∗UB∗, V → A∗VB∗,

where A, B ∈ U(d).
If we fix the matrices X and Y, then Φ(X, Y, U, V) becomes an ordinary hermitian quadratic

form in the 2d2 complex entries of the matrices U and V. We compute the matrix H = H(X, Y) of
this hermitian quadratic form (see the formula (11)). Then, Conjecture 3 reduces to the claim that
H(X, Y) ≥ 0 for all matrices X, Y ∈ Md.

Let α, β, γ, δ be complex numbers such that αδ − βγ 6= 0. We prove in Proposition 6 that
H(X, Y) ≥ 0 if and only if H(αX + βY, γX + δY) ≥ 0. We can choose such α, β, γ, δ so that the
matrix αX + βY becomes singular. Hence, it suffices to prove the inequality H(X, Y) ≥ 0 when X is
singular. By using the action of U(d)×U(d), we can additionally assume that X is a diagonal matrix
with nonnegative diagonal entries.

Even when both X and Y are diagonal matrices, the matrix H(X, Y) is not diagonal in general.
However, we did prove that H(X, Y) ≥ 0 in that case (see Theorem 1). Since this is true for any d
and the proof is nontrivial, we view this fact as an important piece of evidence for the validity of
Conjecture 3 in the general case.

Recall that H = H(X, Y) is a hermitian matrix of order 2d2. After partitioning H into four square
blocks of order d2, we show that the two diagonal blocks are positive definite matrices (assuming that
X and Y are nonzero matrices). By using the four blocks of H, one can easily construct a hermitian
matrix S of order d2 such that H ≥ 0 if and only if S ≥ 0. By using this trick, we proved by brute
force that H ≥ 0 is true in the case d = 2. This also follows from the fact that ρW(1/2) is separable
when d = 2.

Assume now that d = 3. Since we may assume that X is singular, its rank is 1 or 2. We prove
that H(X, Y) ≥ 0 when X has rank 1. This is done by using the above mentioned trick which replaces
H by S, which is of order 9. We compute the characteristic polynomial of S and prove that S ≥ 0 by
showing that this polynomial has no negative roots. We also show that the leading principal minor
of H of order 10 is a positive semidefinite polynomial.

To finish off the case d = 3, it remains to consider the case when the matrix X has rank 2. We may
assume that X is a diagonal matrix with the diagonal entries 1, a, 0, and a > 0. We were not able to
compute the characteristic polynomial of S. Then, we made the additional assumption that Y is real.
By subtracting a multiple of X from Y, we can also assume that the first entry of Y vanishes. After
these simplifications, we succeeded with computing the determinant of S. Its denominator is

256(a2 + 1)3(a2 + 2)2(2a2 + 1)2(a4 + 4a2 + 1).

The numerator is a (non-homogeneous) polynomial of degree 36 in nine real variables, having
487,056 terms. We stopped at this point, short of reaching our goal to write this numerator as a sum
of squares.

9. Conclusions

The old conjecture that the bipartite bound NPT entanglement exists is still open. We have
proposed a much simpler conjecture that, in d⊗ d, the NPT Werner states which are not one-distillable
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are also not two-distillable. We have reformulated this conjecture in several different ways and
provided new evidence for its validity, especially for d = 3.
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Appendix

We list here the polynomials qk, k > 2, used in Section 7.

q3 = 2,

q4 = 11(u2 + v2 + |x|2 + |y|2) + 14(b2 + c2),

q5 = 22(u4 + v4 + |x|4 + |y|4) + 38(b4 + c4)

+44(u2 + v2 + |x|2 + |y|2) + 52(u2 + v2)(|x|2 + |y|2)

+59
(

b2(u2 + |x|2) + c2(v2 + |y|2)
)

+65
(

b2(v2 + |y|2) + c2(u2 + |x|2)
)
+ 86b2c2,

q6 = 296b2c2(u2 + v2 + |x|2 + |y|2)
+254(b2v2|y|2 + c2u2|x|2)
+225(b2 + c2)(u2|y|2 + v2|x|2)
+202(b2u2|x|2 + c2v2|y|2) + 198b2c2(b2 + c2)

+192(b2 + c2)(u2v2 + |x|2|y|2)
+168(u2|x|2(v2 + |y|2) + v2|y|2(u2 + |x|2))
+141(b4(v2 + |y|2) + c4(u2 + |x|2))
+116(b4(u2 + |x|2) + c4(v2 + |y|2))
+106(b2(v4 + |y|4) + c2(u4 + |x|4))
+86(b2(u4 + |x|4) + c2(v4 + |y|4))
+84((u2 + v2)(|x|4 + |y|4) + (|x|2 + |y|2)(u4 + v4))

+60(u2v2(u2 + v2) + |x|2|y|2(|x|2 + |y|2))
+50(b6 + c6) + 20(u6 + v6 + |x|6 + |y|6) + 3|bux + cvy|2,

q7 = 802b2c2(u2|x|2 + v2|y|2) + 778b2c2(u2|y|2 + v2|x|2)
+688b2c2(u2v2 + |x|2|y|2)
+574(b2v2|y|2(u2 + |x|2) + c2u2|x|2(v2 + |y|2))
+515b2c2(b2(v2 + |y|2) + c2(u2 + |x|2))
+488(b2u2|x|2(v2 + |y|2) + c2v2|y|2(u2 + |x|2))
+470b2c2(b2(u2 + |x|2) + c2(v2 + |y|2)) + 418(b4v2|y|2 + c4u2|x|2)
+384u2v2|x|2|y|2 + 364b4c4 + 336b2c2(u4 + v4 + |x|4 + |y|4)
+331(b4 + c4)(u2|y|2 + v2|x|2)
+324(b2v2|y|2(v2 + |y|2) + c2u2|x|2(u2 + |x|2))
+278(b4 + c4)(u2v2 + |x|2|y|2)
+274(u2|y|2(b2|y|2 + c2u2) + v2|x|2(b2v2 + c2|x|2))
+260(b4u2|x|2 + c4v2|y|2)
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+250(u2|y|2(b2u2 + c2|y|2) + v2|x|2(b2|x|2 + c2v2))

+214(b2u2|x|2(u2 + |x|2) + c2v2|y|2(v2 + |y|2)) + 210b2c2(b4 + c4)

+204(u2v2(b2v2 + c2u2) + |x|2|y|2(b2|y|2 + c2|x|2))
+192(u2v2(|x|4 + |y|4) + |x|2|y|2(u4 + v4))

+180(u2v2(b2u2 + c2v2) + |x|2|y|2(b2|x|2 + c2|y|2))
+174(b4(v4 + |y|4) + c4(u4 + |x|4))
+168(u2 + v2)(|x|2 + |y|2)(u2v2 + |x|2|y|2)
+135(b6(v2 + |y|2) + c6(u2 + |x|2)) + 112(b4(u4 + |x|4) + c4(v4 + |y|4))
+100(b6(u2 + |x|2) + c6(v2 + |y|2)) + 96(u4 + v4)(|x|4 + |y|4)
+76(b2(v6 + |y|6) + c2(u6 + |x|6))
+56((u2 + v2)(|x|6 + |y|6) + (|x|2 + |y|2)(u6 + v6))

+52(b2(u6 + |x|6) + c2(v6 + |y|6)) + 48(u4v4 + |x|4|y|4)
+32(b8 + c8 + u2v2(u4 + v4) + |x|2|y|2(|x|4 + |y|4))
+(10(b2 + c2) + 7(u2 + v2 + |x|2 + |y|2))|bux + cvy|2

+8(u8 + v8 + |x|8 + |y|8),
q8 = 1248b2c2(u2v2(|x|2 + |y|2) + |x|2|y|2(u2 + v2))

+960b2c2(b2v2|y|2 + c2u2|x|2) + 820b2c2(b2 + c2)(u2|y|2 + v2|x|2)
+780b2c2(b2u2|x|2 + c2v2|y|2) + 776u2v2|x|2|y|2(b2 + c2)

+748b2c2(b2 + c2)(u2v2 + |x|2|y|2)
+628b2c2(u2|x|2(u2 + |x|2) + v2|y|2(v2 + |y|2))
+586b4c4(u2 + v2 + |x|2 + |y|2)
+576b2c2(u2|y|2(u2 + |y|2) + v2|x|2(v2 + |x|2))
+570(b4v2|y|2(u2 + |x|2) + c4u2|x|2(v2 + |y|2))
+488b2c2(u2v2(u2 + v2) + |x|2|y|2(|x|2 + |y|2))
+470(b2v2|y|2 + c2u2|x|2)(u2|y|2 + v2|x|2)
+428(b2v2|y|2 + c2u2|x|2)(u2v2 + |x|2|y|2)
+398b2c2(b2(v4 + |y|4) + c2(u4 + |x|4))
+394(b4u2|x|2(v2 + |y|2) + c4v2|y|2(u2 + |x|2))
+382(b2v2|y|2(u4 + |x|4) + c2u2|x|2(v4 + |y|4))
+366(b4v2|y|2(v2 + |y|2) + c4u2|x|2(u2 + |x|2))
+358b2c2(b4(v2 + |y|2) + c4(u2 + |x|2))
+332b2c2(b2(u4 + |x|4) + c2(v4 + |y|4))
+320(b2u2|x|2(v4 + |y|4) + c2v2|y|2(u4 + |x|4))
+306(b2u2|x|2 + c2v2|y|2)(v2|x|2 + u2|y|2)
+304b2c2(b4(u2 + |x|2) + c4(v2 + |y|2))
+284(b2v4|y|4 + c2u4|x|4) + 276b4c4(b2 + c2)

+274(b2u2|x|2 + c2v2|y|2)(u2v2 + |x|2|y|2)
+268(b4(u2|y|4 + v4|x|2) + c4(u4|y|2 + v2|x|4)) + 256(b6v2|y|2 + c6u2|x|2)
+234(b4(u4|y|2 + v2|x|4) + c4(u2|y|4 + v4|x|2))
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+192(b4(u2v4 + |x|2|y|4) + c4(u4v2 + |x|4|y|2)
+u2v2|x|2|y|2(u2 + v2 + |x|2 + |y|2))

+190(b6 + c6)(u2|y|2 + v2|x|2) + 186(b2 + c2)(u4|y|4 + v4|x|4)
+158(b2v2|y|2(v4 + |y|4) + c2u2|x|2(u4 + |x|4))
+152b2c2(u6 + v6 + |x|6 + |y|6)
+140(b4u2|x|2(u2 + |x|2) + c4v2|y|2(v2 + |y|2) + (b6 + c6)(u2v2 + |x|2|y|2))
+136(b4(u4v2 + |x|4|y|2) + c4(u2v4 + |x|2|y|4))
+122(b2(u2|y|6 + v6|x|2) + c2(u6|y|2 + v2|x|6)) + 120(b2u4|x|4 + c2v4|y|4)
+112(b2|x|2(b4u2 + v2|x|4) + c2v2(c4|y|2 + v4|x|2) + u2|y|2(b2u4 + c2|y|4))
+110(b6(v4 + |y|4) + c6(u4 + |x|4)) + 100b2c2(b6 + c6)

+96((b2 + c2)(u4v4 + |x|4|y|4) + (u2 + v2)(|x|4|y|4 + u2v2(|x|4 + |y|4))
+(|x|2 + |y|2)(u4v4 + |x|2|y|2(u4 + v4)))

+88(b4(v6 + |y|6) + c4(u6 + |x|6))
+80(b2(u2v6 + |x|2|y|6) + c2(u6v2 + |x|6|y|2))
+76(b2u2|x|2(u4 + |x|4) + c2v2|y|2(v4 + |y|4))
+64(u2v2(|x|6 + |y|6 + (|x|2 + |y|2)(u4 + v4))

+|x|2|y|2(u6 + v6 + (u2 + v2)(|x|4 + |y|4)))
+52(b8(v2 + |y|2) + c8(u2 + |x|2))
+48(b6(u4 + |x|4) + c6(v4 + |y|4) + u2v2(b2u4 + c2v4)

+|x|2|y|2(b2|x|4 + c2|y|4))
+32((u6 + v6)(|x|4 + |y|4) + (|x|6 + |y|6)(u4 + v4)

+b8(u2 + |x|2) + c8(v2 + |y|2) + b4(u6 + |x|6) + c4(v6 + |y|6))
+28b2c2|bux + cvy|2 + 24(b2(v8 + |y|8) + c2(u8 + |x|8))
+18(b2(v2 + |y|2) + c2(u2 + |x|2))|bux + cvy|2

+16((u8 + v8)(|x|2 + |y|2) + (u2 + v2)(|x|8 + |y|8)
+(u2 + v2)(|x|2 + |y|2)|bux + cvy|2)

+10(b2(u2 + |x|2) + c2(v2 + |y|2))|bux + cvy|2

+8(b10 + c10 + b2(u8 + |x|8) + c2(v8 + |y|8) + (b4 + c4)|bux + cvy|2),
q9 = 492b2c2u2v2|x|2|y|2

+349b2c2(b2v2|y|2(u2 + |x|2) + c2u2|x|2(v2 + |y|2))
+305b2c2(b2u2|x|2(v2 + |y|2) + c2v2|y|2(u2 + |x|2))
+260b4c4(u2|x|2 + v2|y|2)
+231b2c2(u2|x|2 + v2|y|2)(u2v2 + |x|2|y|2)
+230b4c4(u2 + |x|2)(v2 + |y|2)
+228b2c2(u2v2(|x|4 + |y|4) + |x|2|y|2(u4 + v4))

+216b2c2(u2|x|2(v4 + |y|4) + v2|y|2(u4 + |x|4))
+200b2c2(b2v2|y|2(v2 + |y|2) + c2u2|x|2(u2 + |x|2))
+164b2c2(b4v2|y|2 + c4u2|x|2)
+149b2c2(b2(u2|y|4 + v4|x|2) + c2(u4|y|2 + v2|x|4))
+146u2v2|x|2|y|2(b4 + c4)
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+144b2c2(b2(u4|y|2 + u2v4 + v2|x|4 + |x|2|y|4)
+c2(u2|y|4 + u4v2 + v4|x|2 + |x|4|y|2))

+140b2c2(b2u2|x|2(u2 + |x|2) + c2v2|y|2(v2 + |y|2))
+131b2c2(b4 + c4)(u2|y|2 + v2|x|2)
+125b2c2(b2(u4v2 + |x|4|y|2) + c2(u2v4 + |x|2|y|4))
+120(b2c2(u4|x|4 + v4|y|4) + (b4v2|y|2 + c4u2|x|2)(u2|y|2 + v2|x|2))
+117b2c2(b4 + c4)(u2v2 + |x|2|y|2)
+112(b2c2(b4u2|x|2 + c4v2|y|2)

+u2v2|x|2|y|2(b2(v2 + |y|2) + c2(u2 + |x|2)))
+111(b4v2|y|2 + c4u2|x|2)(u2v2 + |x|2|y|2)
+110b4c4(b2(v2 + |y|2) + c2(u2 + |x|2))
+108b4c4(u4 + v4 + |x|4 + |y|4)
+104b4c4(b2(u2 + |x|2) + c2(v2 + |y|2))
+93(b4v2|y|2(u4 + |x|4) + c4u2|x|2(v4 + |y|4))
+92(b4v4|y|4 + c4u4|x|4) + 90b2c2(u4|y|4 + v4|x|4)
+80(b2c2(u4v4 + |x|4|y|4) + b2v4|y|4(u2 + |x|2) + c2u4|x|4(v2 + |y|2)

+u2v2|x|2|y|2(b2(u2 + |x|2) + c2(v2 + |y|2)))
+76b2c2(u2|x|2(u4 + |x|4) + v2|y|2(v4 + |y|4))
+74(b6v2|y|2(u2 + |x|2) + c6u2|x|2(v2 + |y|2))
+72(u4v4(b2|y|2 + c2|x|2) + |x|4|y|4(b2v2 + c2u2))

+70b2c2(b4(v4 + |y|4) + c4(u4 + |x|4))
+64(u4|y|4(b2v2 + c2|x|2) + v4|x|4(b2|y|2 + c2u2))

+61b2c2(u2|y|2(u4 + |y|4) + v2|x|2(v4 + |x|4))
+57(b4u2|x|2(v4 + |y|4) + c4v2|y|2(u4 + |x|4))
+56(b6c6 + b2v2|y|2(u2v4 + |x|2|y|4) + c2u2|x|2(u4v2 + |x|4|y|2))
+54(b6v2|y|2(v2 + |y|2) + c6u2|x|2(u2 + |x|2))
+48(b2c2(u2v2(u4 + v4) + |x|2|y|2(|x|4 + |y|4)

+b4(u4 + |x|4) + c4(v4 + |y|4)) + b2(v6 + |y|6) + c2(u6 + |x|6)
+b2v2|y|2(u2|y|4 + v4|x|2) + c2u2|x|2(u4|y|2 + v2|x|4))

+46(b4v2|y|2(v4 + |y|4) + c4u2|x|2(u4 + |x|4))
+45(b4 + c4)(u4|y|4 + v4|x|4)
+44(b4u2|x|2 + c4v2|y|2)(u2|y|2 + v2|x|2)
+40(b2v2|y|2(u6 + |x|6) + c2u2|x|2(v6 + |y|6)

+b2c2(b6(v2 + |y|2) + c6(u2 + |x|2)))
+39(b6(u2|y|4 + v4|x|2) + c6(v2|x|4 + u4|y|2)) + 36b4c4(b4 + c4)

+34(b6(u4|y|2 + v2|x|4) + c6(v4|x|2 + u2|y|4))
+33(b4(v6|x|2 + u2|y|6) + c4(u6|y|2 + v2|x|6))
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+32(b2v4|y|4(v2 + |y|2) + c2u4|x|4(u2 + |x|2)
+b4c2(u6 + |x|6) + b2c4(v6 + |y|6) + b8c2(u2 + |x|2)
+b2c8(v2 + |y|2) + b6u2|x|2(v2 + |y|2) + c6v2|y|2(u2 + |x|2)
+b2u2|x|2(u2|y|4 + v4|x|2) + c2v2|y|2(v2|x|4 + u4|y|2))

+28(b4(u6|y|2 + v2|x|6) + c4(v6|x|2 + u2|y|6))
+24(b2u2|x|2(v6 + |y|6) + c2v2|y|2(u6 + |x|6)

+(b4u2|x|2 + c4v2|y|2)(u2v2 + |x|2|y|2)
+u4v4(b2|x|2 + c2|y|2) + |x|4|y|4(b2u2 + c2v2))

+20(b8v2|y|2 + c8u2|x|2) + 17(b6(u2v4 + |x|2|y|4) + c6(u4v2 + |x|4|y|2))
+16((b2 + c2)(u4|y|4(u2 + |y|2) + v4|x|4(v2 + |x|2))

+(b8 + c8)(u2|y|2 + v2|x|2) + u2v2(b2|x|6 + c2|y|6)
+|x|2|y|2(b2u6 + c2v6) + b2v2|y|2(v6 + |y|6) + c2u2|x|2(u6 + |x|6)
+b2u4|x|4(v2 + |y|2) + c2v4|y|4(u2 + |x|2)
+b4(u2v6 + |x|2|y|6) + c4(u6v2 + |x|6|y|2)
+b6(v6 + |y|6) + c6(u6 + |x|6) + (b2v2|y|2 + c2u2|x|2)|bux + cvy|2)

+10(b8(v4 + |y|4) + c8(u4 + |x|4)
+b2c2(u2 + v2 + |x|2 + |y|2)|bux + cvy|2)

+8(b10c2 + b2c10 + b4(v8 + |y|8) + c4(u8 + |x|8)
+(b4 + c4)(u4v4 + |x|4|y|4) + v2|x|2(b2 + c2)(v6 + |x|6)
+u2|y|2(b2 + c2)(u6 + |y|6) + b2c2(|x|8 + |y|8 + u8 + v8)

+b2u2|x|2(u4v2 + |x|4|y|2) + c2v2|y|2(|x|2|y|4 + u2v4)

+(b2 + c2)(b2c2 + u2|y|2 + v2|x|2)|bux + cvy|2)
+4((b8 + c8)(u2v2 + |x|2|y|2) + (b4(v2 + |y|2) + c4(u2 + |x|2))|bux + cvy|2)
+2(b10(v2 + |y|2) + c10(u2 + |x|2)

+b6(u4v2 + |x|4|y|2) + c6(u2v4 + |x|2|y|4)).
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