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Abstract: Weight aggregation is the key process to solve a multiple-attribute group decision-making
(MAGDM) problem. This paper is trying to propose a possible approach to objectivize subjective
information and to aggregate information from attribute values themselves and decision-makers’
judgment. An MAGDM problem without information about decision-makers’ and attributes’ weight
is considered. In order to define decision-makers’ subjective preference, their utility function is
introduced. The attributes value matrix is converted into a subjective attributes value matrix based
on their subjective judgment on attribute values. By utilizing the entropy weighting technique,
decision-maker’s subjective weight on attributes and objective weight on attributes are determined
individually based on the subjective attributes value matrix and attributes value matrix. Based on
the principle of minimum cross-entropy, all decision-makers’ subjective weights are integrated into
a single weight vector that is closest to all decision-makers’ judgment without any extra information
added. Then, by applying the principle of minimum cross-entropy again, a weight aggregation method
is proposed to combine the subjective and objective weight of attributes. Finally, an MAGDM example
of project choosing is presented to illustrate the procedure of the proposed method.

Keywords: multiple-attribute group decision-making; principle of minimum cross-entropy; entropy
weighting technique; weight aggregation
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1. Introduction

Making decisions is a part of our daily routine. However, making the right decision has become
more and more complicated as problems are growing in magnitude and longitude. More and more
attributes of different alternatives must be considered or a group of decision-makers’ judgment needs
to be collected. Multiple-attribute group decision-making (MAGDM) might be the most common, but
complex problem in the decision science field, which has been regarded as one of the most significant
activities in industry, service, business, etc.

Group decision-making (GDM) or collaborative decision-making is a situation faced when
individuals collectively make a choice from the alternatives before them. The decisions made by groups
are often different from those made by individuals. There is much debate as to whether this difference
results in decisions that are better or worse, and factors that impact other social group behaviors also
affect group decisions [1]. Moreover, consensus-reaching processes play an increasingly important
role in the resolution of GDM problems: a solution acceptable to all of the experts participating in a
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problem is necessary in many real-life contexts. A large number of consensus approaches have been
proposed to support groups in such processes (see [2–4]).

Multiple attribute decision-making (MADM) is an approach employed to solve problems
involving selection from among a finite number of alternatives. An MADM method specifies how
attribute information is to be processed in order to arrive at a choice. MADM methods require both
inter- and intra-attribute comparisons and involve appropriate explicit tradeoffs [5]. Finding the
appropriate weight for each attribute is one of the main points in MADM problems [6]. Since there
might coexist attributes of a different (cost/benefit) and even a conflicting nature, it cannot be assumed
that they all have equal weights, and many subjective and/or objective methods were proposed in
the past, such as theanalytic hierarchy process (AHP) method, the weighted least squares method, the
Delphi method, the entropy method, multiple objective programming, principle element analysis, etc.

Simply speaking, MAGDM could be regarded as a combination of MADM and GDM. The aim of
MAGDM is to obtain the optimal alternative(s) or to rank the predefined alternatives from a given
alternative set based on the information given by different decision-makers, where each alternative
has multiple attributes [7]. To solve MAGDM problems, one has to consolidate all decision-makers’
preference information upon different attributes for each alternative. During this process, the key
procedure is to determine and aggregate the weights of attributes and decision-makers’ power.
The fundamental prerequisite of group decision-making is how to aggregate individual experts’ preference
information on alternatives [8]. Information aggregation is a technique through which individual
experts’ preferences can be combined into an overall one by using a proper aggregation technique.

In order to rank alternatives with more than one attribute, distance-based measures are
widely-used approaches, and they have been studied by many researchers [9–23], which can be
used to compare the alternatives with some ideal results. Through this comparison, the alternative
that is closest to the ideal one is assumed to be the best [12–14]. Different distance-based measures
have the same purpose to measure similarity or divergence between alternatives or attributes. Usually,
when using distance measures in decision-making, one could normalize them by using the aggregation
operators and obtain some distance measures, such as the Hamming distance measure [9,12], the
Euclidean distance measure [13,15], the Minkowski distance measure [16], the ordered weighted
distance measure [21,22], etc. All of these measures are applied in many different areas. In this paper,
we assumed that distance-based measures are a kind of information divergence between attributes,
which can be measured well by the entropy method.

Moreover, a variety of weight aggregation methods have been developed in the past few decades
to our best knowledge. Among these methods, the ordered weighted averaging (OWA) operator
introduced by [24] is the most widely-used one. The work in [25] introduced a continuous-ordered
weighted averaging (COWA) operator in order to aggregate the interval arguments, which has attracted
more and more attention from researchers [7,26–30].

From the literature, the different methods of decision-making and weight aggregation are based
on different assumptions on the decision system, which, more or less, unavoidably added subjective
or extra information to the decision system. Additionally, this added information may lead to an
unreliable conclusion, though it may or may not influence the results of the decision. Hence, when
solving MAGDM, we should avoid additional information as much as possible. Furthermore, it can be
found that weight aggregation is of great importance in solving an MAGDM problem, and methods
based on the distance measure have been playing a key role. In order to find an optimal decision
in an MAGDM problem, one has to weight the importance of decision-makers and attributes to
comprise all decision-makers’ judgment on alternatives and attributes. Therefore, solving an MAGDM
problem is a process of integrating objective divergence from data and subjective divergence from
decision-makers. First of all, an appropriate measure of divergence or a feasible distance measure is
necessary. Cross-entropy is a widely-used approach to measure the divergence from one probability
distribution to another without adding extra information. Therefore, this paper, referring to existing
practices, views the weight vector as a probability distribution and applies cross-entropy to measure
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the mentioned divergences in an MAGDM problem. Secondly, in the weight aggregation procedure,
it is a fundamental requirement to integrate all information from attributes and decision-makers
without additional information. Information-theoretic entropy-based methods, such as the maximum
entropy principle, minimum cross-entropy principle and the entropy weighting technique, can meet
the requirement correctly. In consideration of this, we will try to utilize the minimum cross-entropy
principle and entropy weighting technique to fulfil this demand.

In short, this paper will introduce a utility function to convert the attribute value matrix into
the subjective attribute value matrix. Then, by using the entropy weighting technique, we obtain the
subjective and objective weight, and by using the principle of minimum cross-entropy, an optimal
model is established to aggregate weights in order to minimize the distance measure between subjective
and objective weight. This study is completely based on the information entropy method and follows
the general research framework of MAGDM, which provides a new way of thinking and a method for
solving common MAGDM problems.

The rest of the paper is organized as follows. In Section 2, we briefly describe some preliminaries.
Section 3 presents the weight determination method based on the entropy weighting technique and
the weight aggregation model based on the principle of minimum cross-entropy. Section 4 provides
an illustrative example. Section 5 concludes and summarizes the main conclusions.

2. Preliminaries

In this section, an MAGDM problem is set up and its general solving steps are discussed. Then,
we briefly review the entropy weighting technique and the principle of minimum cross-entropy.

2.1. Procedures of Solving MAGDM

A multiple-attribute group decision-making problem can be defined as a quadruple
< A, C, D, X >, where:

A = {ai| = 1, 2, · · · , m} is the alternative set for every decision-maker and is indexed by i
and m > 2;

C = {cj|j = 1, 2, · · · , n} is the attribute set for each alternative, and attributes are assumed to be
additive and independent in this paper for simplicity;

D = {dk|k = 1, 2, · · · , l} is the decision-maker set; and
X = {xij|i = 1, 2, · · · , m; j = 1, 2, · · · , n} is the normalized value of the j-th attribute for the i-th

alternative, i.e.,

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (1)

The matrix X is the objective value of attributes. However, every decision-maker may have their
own judgment on these values based on his or her preference. Hence, all decision-makers’ judgment
has to be integrated in order to solve an MAGDM problem. In this paper, we are going to introduce
a utility function to express decision-makers’ preference in accordance with the general approach
in decision theory. Let uk(x) be the k-th decision-maker’s utility function. Therefore, the problem
confronted with the k-th decision-maker is:

Uk = uk(X) =


uk(x11) uk(x12) · · · uk(x1n)

uk(x21) uk(x22) · · · uk(x2n)
...

...
. . .

...
uk(xm1) uk(xm2) · · · uk(xmn)

 , k = 1, 2, · · · , l (2)

which can be viewed as a multiple attribute decision problem for the k-th decision-maker.
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The general process to solving an MAGDM problem can be described as follows. Assume that
the weight of attributes determined by the k-th decision-maker’s judgment is denoted by
βk = (βk

1, βk
2, · · · , βk

n). Thus, on the basis of the assumption of additivity and the independence
of attributes, the valuation of alternative ai by the k-th decision-maker is:

vk
i =

n

∑
j=1

βk
j uk(xij), i = 1, 2, · · · , m (3)

If the decision-makers’ importance is defined by a vector w = (w1, w2, · · · , wl), then the group
decision on different alternatives is:

si =
l

∑
k=1

wkvk
i , i = 1, 2, · · · , m (4)

Based on the value of si, the alternatives can be ranked or the optimal alternative can be determined.
In fact, by substituting Equation (3) into Equation (4), we can get that:

si =
l

∑
k=1

wk

n

∑
j=1

βk
j uk(xij) = F(w ◦ β) ◦ G(X) (5)

The above equation demonstrates that the essence of solving an MAGDM problem can be
formulated into the following four key procedures, which is depicted in Figure 1, as well.

M
A
G
D
M

C

A

D

X

G(X)

β

w F(w ◦ β)

F(w ◦ β) ◦ G(X)

Step 1

Step 2

Step 3

Step 4

Figure 1. The general steps of solving a multiple-attribute group decision-making (MAGDM) problem.
Step 1: Convert attribute value matrix X into G(X) to eliminate the difference of the unit and
direction of attribute value, such as normalization and standardization methods. Step 2: Determine
the decision-makers’ weight w and attributes’ weight β. Generally speaking, these weights can be
subjective, objective or their combination. Step 3: Aggregate the decision-makers’ weight w and
attributes’ weight β, which is denoted as F(w ◦ β). Step 4: Integrate the aggregated weight and the
value of attributes, which is denoted by F(w ◦ β) ◦ G(X). Then, all alternatives can be ranked by the
integration result.

In this paper, we will not investigate all of the procedures in Figure 1. Instead of that, we will
focus on the critical procedures of Steps 2 and 3, namely determining and aggregating decision-makers’
and attributes’ weight.

2.2. Entropy Weighting Technique

The entropy weighting technique is a widely-used method to determine the weight of an attribute
based on the differences between them without any additional or subjective information. The
differences are measured by information-theoretic entropy.



Entropy 2016, 18, 171 5 of 13

Generally speaking, multiple attribute decision-making has m alternatives, and each alternative
has n attributes. Let rij be a non-negative value of the j-th attribute for the i-th alternative, such that a
multiple attribute decision-making problem can be formalized into a matrix R as:

R =


r11 r12 · · · r1n
r21 r22 · · · r2n

· · · · · · . . . · · ·
rm1 rm2 · · · rmn

 (6)

In the entropy weighting technique, the entropy-based difference of the j-th attribute between
alternatives is viewed as the foundation to determine the weight of attributes. When the difference
of two alternatives about the j-th attribute is small, then this attribute does not provide sufficient
information to rank or distinguish the two alternatives. Therefore, the less is the difference, the smaller
is the weight. Mathematically, the weight of the j-th attribute in Equation (6) can be calculated out as:

ωj =
1− Ej

∑n
j=1(1− Ej)

, j = 1, 2, · · · , n (7)

where Ej is an extended and normalized entropy defined as:

Ej = −
1

ln m

m

∑
i=1

rij

∑m
i=1 rij

ln
rij

∑m
i=1 rij

, j = 1, 2, · · · , n (8)

It is easy to find that 0 6 ωj 6 1 and ∑n
j=1 ωj = 1 according to the properties of entropy.

2.3. Principle of Minimum Cross-Entropy

Cross-entropy is a distance measure from one probability distribution to another. The principle
of minimum cross-entropy (POMCE) was formulated by [31] and is detailed in [32]. Sometimes, it is
also referred to as the Kullback–Leibler (K-L) principle. POMCE is also referred to as the principle of
minimum discrimination information, the principle of minimum directed divergence, the principle of
minimum distance or the principle of minimum relative entropy.

Let Q = {q1, q2, · · · , qN} be a probability distribution for a random variable X that takes N values.
POMCE is to derive a distribution P = {p1, p2, · · · , pN} of X that takes all of the given information
into consideration and makes the distribution as near to Q as possible. Mathematically, POMCE can
be formulated as the following model.

min D(P||Q) =
n

∑
i=1

pi ln
pi
qi

s.t.


N

∑
i=1

pi = 1

N

∑
i=1

pi fri = ar, r = 1, 2, · · · , k

where D(P||Q) is the definition of cross-entropy, ar is some known information about random variable
X and fri are functions defined with respect to ar. More information and properties of cross-entropy
and POMCE can be found in [33].

In fact, although it is often viewed as a metric of distance, the cross-entropy is not a true metric;
for example, it is not symmetric: the cross-entropy from P to Q is generally not the same as that
from Q to P. In spite of that, the cross-entropy is still a very important basic divergence measure
for probability distribution divergence and is applied in many related fields. In this paper, we will
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continue to take the cross-entropy as the divergence measure to aggregate different information from
attributes and decision-makers.

3. Weight Aggregation Model Based on POMCE

In an MAGDM problem, determining decision-makers’ weight and attributes’ weight objectively
and aggregating weights plausibly is of great importance. In this paper, we will propose a weight
determination and aggregation method based on the entropy weighting technique and the principle of
minimum cross-entropy. The framework is presented in Figure 2.

Weight
Aggregation

Objective
Weight

Subjective
Weight

w Minimum cross-entropy
model

Entropy weighting
method

α

X Utility
function

U1

Ul

...
Entropy

weighting
method

β1

βl

...
Minimum

cross-entropy
model

β0

Figure 2. Proposed approach of determining and aggregating weight.

First, the attribute value matrix X will be converted into Uk by the decision-makers’ utility
function, which is used to show their subjective judgment on different attributes. Second, by utilizing
the entropy weighting method, the subjective attribute weight βk can be derived from Uk, respectively.
βk are viewed as subjective weight vectors because they are obtained from matrix Uk, which is different
decision-makers’ subjective judgment on attributes. Now, all βk can be formed into a subjective
attribute weight matrix β. Then, in order to find a weight vector that can aggregate all decision-makers’
judgment on the attribute weight, a model based on POMCE is developed to integrate βk’s into
β0, which is thought of as the subjective weight vector of attributes integrating all decision-makers’
judgment. Meanwhile, objective attribute weight α can be also calculated out by the entropy weighting
technique based on the attribute value matrix X. At last, the subjective weight β0 and the objective
weight α are integrated similarly into ω by the established model based on POMCE.

Comparing to the general procedure in Figure 1, the proposed approach has two features. First,
instead of using the group utility function, the individual utility function is applied to reflect each
decision-maker’s judgment on attributes, which may avoid the influences of some unfavorable
situations where some decision-makers tend to compromise their own different opinions to keep
consistent with the group. Second, by applying POMCE to integrate all decision-makers’ judgment on
the weight of attributes into a subjective weight vector, any subjective or additional information out of
the decision system will be excluded, which may assure the plausibility and objectivity of weights.
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3.1. Objective Weight of Attributes

By applying the entropy weighting technique onto attribute value matrix X, objective weight of
attributes α can be obtained as:

α = (α1, α2, · · · , αn) (9)

where:

αj =
1− Ej

∑n
j=1(1− Ej)

, j = 1, 2, · · · , n

Ej = −
1

ln m

m

∑
i=1

xij

∑m
i=1 xij

ln
xij

∑m
i=1 xij

, j = 1, 2, · · · , n

This weight vector fully depends on the data from the attribute value matrix without considering
decision-makers’ judgment on the value of attributes. Hence, it can be treated as the objective weight.

3.2. Subjective Weight of Attributes

Meanwhile, one has to consider decision-makers’ attitudes about attributes to solve an MAGDM
problem reasonably. In accordance with the general approach in decision theory, we use the utility
function to reflect different decision-makers’ preferences upon attributes. In the same way, the k-th
decision-maker’s subjective weight on attributes can be obtained by using the entropy weighting
method for his or her subjective attribute matrix Uk as defined in Equation (2).

βk = (βk
1, βk

2, · · · , βk
n), k = 1, 2, · · · , l (10)

Then, all decision-makers’ weight vector can be formulated into a weight matrix β, such that:

β =


β1

1 β1
2 · · · β1

n
β2

1 β2
2 · · · β2

n
...

...
. . .

...
βl

1 βl
2 · · · βl

n

 (11)

where:

βk
j =

1− Ek
j

∑n
j=1(1− Ek

j )
,

Ek
j = −

1
ln m

m

∑
i=1

uk(xij)

∑m
i=1 uk(xij)

ln
uk(xij)

∑m
i=1 uk(xij)

,

j = 1, 2, · · · , n; k = 1, 2, · · · , l

The weight vector βk fully depends on the k-th decision-maker’s utility function, which reflects
a subjective judgment on the importance of attributes. Hence, we viewed β as a subjective weight matrix.

3.3. Weight Aggregation

In order to combine all decision-makers’ judgment, we introduced a minimum distance method
based on POMCE. Let β0 = (β0

1, β0
2, · · · , β0

n) be the attribute weight that integrates all decision makers’
attitudes. For this purpose, β0 should be as close as possible to every βk. Hence, we assume that the
weighted sum of the cross-entropy distance of β0 to βk should be minimized, such that:
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min D =
l

∑
k=1

wkDk(β0||βk) (12)

s.t.


n

∑
j=1

β0
j = 1

β0
j > 0

(13)

where w = (w1, w2, · · · , wl) is the decision-makers’ power vector and:

Dk(β0||βk) =
n

∑
j=1

β0
j ln

β0
j

βk
j
, k = 1, 2, · · · , l (14)

which is the Kullback–Leibler distance or cross-entropy from β0 to βk.
To solve the above optimization model, define a Lagrange function as:

L(β0, λ) =
l

∑
k=1

wk

n

∑
j=1

β0
j ln

β0
j

βk
j
+ (λ− 1)

(
n

∑
j=1

β0
j − 1

)
(15)

where (λ− 1) is the Lagrange multiplier. The optimality conditions can be obtained by taking partial
derivatives of β0

j (j = 1, 2, · · · , n) and λ, such that:

Lβ0j =
∂L

∂β0j
=

l

∑
k=1

wk

(
1 + ln

β0j

βkj

)
+ (λ− 1) =

l

∑
k=1

wk ln
β0j

βkj
+ λ = 0 (16)

Lλ =
∂L
∂λ

=
n

∑
j=1

β0j − 1 = 0 (17)

From Equation (16), we can get:

β0
j = exp

(
l

∑
k=1

wk ln βk
j − λ

)
, j = 1, 2, · · · , n (18)

By substituting the above equation into Equation (17),

λ = ln

[
n

∑
j=1

exp

(
l

∑
k=1

wk ln βkj

)]

Then, it can be achieved that:

β0
j =

exp

(
l

∑
k=1

wk ln βk
j

)
n

∑
j=1

exp

(
l

∑
k=1

wk ln βk
j

) , j = 1, 2, · · · , n

By now, the proposed method is proven to be feasible.
In the above model, the decision-makers’ importance is assumed to be known. If it is unknown,

the object function can be reformed into:

min D =
l

∑
k=1

Dk(β0||βk) (19)
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Following the same procedure, it is easy to obtain a similar solution of β0. Furthermore, based
on the result, the distance from βk to β0, namely Dk(βk, β0), can be calculated out. The smaller is
Dk(βk, β0), the more consistent with the common knowledge is the k-th decision-maker’s judgment.
Hence, his or her judgment should be weighted more. Based on this consideration, we propose a
method to determine decision-makers’ power as:

wk =
1−Dk(βk||β0)

∑l
k=1(1−Dk(βk||β0))

, k = 1, 2, · · · , l (20)

Therefore, the above model is feasible whether the decision-makers’ weight is known or not.
Anyway, different decision-makers’ weights of attributes can be aggregated based on the

minimum cross-entropy model. Furthermore, β0 can be viewed as the subjective weight of attributes
based on all decision-makers’ judgment. As we proposed earlier, to solve MAGDM, one should
combine the subjective weight β0 and objective weight α. Assuming that the subjective and objective
weight have different importance, let γ > 0 denote the importance of subjective weight and 1−γ be the
importance of objective weight. The aggregated weight should be close to the subjective and objective
weight. Therefore, we establish the following model to combine the subjective and objective weight.

min γD(ω||β0) + (1− γ)D(ω||α) (21)

s.t.


n

∑
j=1

ωj = 1

ωj > 0
(22)

where ω = (ω1, ω2, · · · , ωn) is the aggregated weight. By using the same method as before, it is easy
to obtain that:

ωj =
exp[γ ln β0

j + (1− γ) ln αj]

n

∑
j=1

exp[γ ln β0
j + (1− γ) ln αj]

, j = 1, 2, · · · , n

By now, the weight of attributes is determined by the minimum cross-entropy principle with
respect to subjective and objective weight. Then, combining with the value of attributes, the MAGDM
problem can be solved by other methods, such as the weighted sum method, the technique for order
preference by similarity to ideal solution (TOPSIS) method, and so on.

4. Illustrative Example

In the following, an MAGDM problem of determining what kind of air-conditioning systems
should be installed in a library (adapted from [34] and discussed by [35,36]) is used to illustrate the
proposed method.

A city is planning to build a municipal library. One of the problems facing the city development
commissioner is choosing from five feasible plans (a1, a2, a3, a4, a5) the kind of air-condition system to
be installed in the library. The alternatives are to be evaluated by three experts dk(k = 1, 2, 3) (whose
weight vector is w = (0.3, 0.2, 0.5) under three major factors: economic, functional and operational.
Two monetary attributes and six non-monetary attributes are considered. They are:

• c1: owing cost ($/ft2);
• c2: operating cost ($/ft2);
• c3: performance (*);
• c4: noise level (Db);
• c5: maintainability (*);
• c6: reliability (%);
• c7: flexibility (*);
• c8: safety (*),
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where the * unit is from 0–1 scale, the three attributes c1, c2 and c4 are cost attributes and the other
five attributes are benefit attributes.

In the original example, different decision-maker’s judgment are given in Tables 1–3. There is no
objective value matrix of attributes. In order to apply our approach, assume that the objective value
matrix X is the same as U1 in Table 1, i.e., assume that u1(x) = x.

Table 1. Objective value matrix X and decision matrix U1.

c1 c2 c3 c4 c5 c6 c7 c8

a1 4 6 0.9 35 0.5 95 0.4 0.7
a2 2 5 0.5 70 0.4 75 0.8 0.5
a3 4 5 0.6 65 0.8 85 0.8 0.6
a4 6 4 0.8 40 0.9 90 0.7 0.8
a5 5 6 0.7 55 0.6 95 0.5 0.9

Table 2. Decision matrix U2.

c1 c2 c3 c4 c5 c6 c7 c8

a1 5 6 0.7 37 0.3 98 0.5 0.4
a2 2 5 0.6 74 0.6 70 0.6 0.6
a3 5 4 0.5 67 0.9 80 0.6 0.7
a4 4 5 0.7 42 0.9 85 0.9 0.6
a5 3 7 0.8 54 0.7 90 0.3 0.8

Table 3. Decision matrix U3.

c1 c2 c3 c4 c5 c6 c7 c8

a1 3 6 0.9 40 0.6 93 0.4 0.5
a2 4 7 0.5 72 0.4 78 0.8 0.7
a3 6 5 0.6 75 0.8 89 0.9 0.6
a4 7 6 1.0 48 0.8 94 0.6 0.8
a5 5 4 0.9 60 0.8 95 0.5 0.9

Now, we apply the procedure in Figure 2 to solve the given MAGDM problem. The procedure is
structured in the following phases.

Step 1. Apply the entropy weighting technique to the objective value matrix (in Table 1) to obtain
the objective weight of attributes. The result is:

α = (0.2464, 0.0482, 0.0939, 0.1545, 0.1922, 0.0168, 0.1540, 0.0939) (23)

Step 2. Again, apply the entropy weighting technique to the subjective value matrices (in Tables 1–3)
to obtain the subjective weight matrix. The result is:

β =

0.2464 0.0482 0.0939 0.1545 0.1922 0.0168 0.1540 0.0939
0.1931 0.0680 0.0468 0.1287 0.2304 0.0240 0.2171 0.0918
0.1926 0.0801 0.1522 0.1257 0.1420 0.0117 0.1986 0.0971

 (24)

Step 3. Apply the weight aggregation model as shown in Equations (12) and (13), where the
decision-makers’ weights are set to be w = (0.3, .0.2, 0.5). The aggregation result is:

β0 = (0.2115, 0.0679, 0.1060, 0.1370, 0.1746, 0.0153, 0.1909, 0.0969) (25)
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Step 4. Aggregate the objective weight vector α and the subjective vector β0 by applying the
proposed model as in Equation (21), where it is assumed that γ = 0.4. The result is:

ω = (0.2325, 0.0554, 0.0989, 0.1477, 0.1855, 0.0163, 0.1683, 0.0954) (26)

Step 5. Normalize the objective value matrix in Table 1. For benefit attributes, let:

rij =
xij −minj xij

maxj xij −minj xij

and for cost attributes, let:

rij =
maxj xij − xij

maxj xij −minj xij

Then, the normalized decision matrix is obtained as shown in Table 4.

Table 4. Normalized decision matrix.

c1 c2 c3 c4 c5 c6 c7 c8

a1 0.5000 0.0000 1.0000 1.0000 0.2000 1.0000 0.0000 0.5000
a2 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
a3 0.5000 0.5000 0.2500 0.1429 0.8000 0.5000 1.0000 0.2500
a4 0.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.7500 0.7500
a5 0.2500 0.0000 0.5000 0.4286 0.4000 1.0000 0.2500 1.0000

Step 6. By using the additive weighted aggregation (AWA) operator, the group decision values of
the alternatives are:

s1 = 0.4639, s2 = 0.4285, s3 = 0.5385, s4 = 0.6517, s5 = 0.3988

Step 7. Rank all alternatives aj(j = 1, 2, 3, 4, 5) in accordance with the values si:

s4 � s3 � s1 � s2 � s5

and the best alternative is a4.

Our approach has some different characteristics compared to the approach in [35]. First, the
method in [35] modifies every element in the decision matrix of every decision-maker at every step.
This means that in reality, every time, the decision-makers have to give new preferences for every
element in the decision matrix. However, in our approach, we only need decision-makers to give
their preferences once at the beginning. This can reduce a large amount of calculation and is easy to
apply in practice. Second, it is well-known that the weighting method is crucial and significant in a
multiple attribute group decision-making problem, and different weights probably lead to different
results. Hence, more and more attention is paid to objective approaches, which are assumed to be
more credible. In our method, all weight vectors are determined by the objective method, even for
the determination of the subjective weight vector, which assures the maximum objectivity. However,
it is necessary to take decision-makers’ subjectivity into consideration in MAGDM problems. In our
approach, decision makers’ subjective attitudes are expressed by their preference function, which is in
accordance with the general approach in decision theory. This makes our approach more plausible.

5. Conclusions

Weight aggregation is the key process to solving an MAGDM problem. In this paper, by using
the entropy weighting technique and the principle of minimum cross-entropy, the method of weight
determination and aggregation is discussed. In accordance with the general approach in decision
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theory, the decision-makers’ utility functions are introduced to reflect their preferences upon attributes.
By using the entropy weighting technique, the subjective and objective weights of attributes are
obtained. Then, based on the principle of minimum cross-entropy, an optimization model is developed
to aggregate subjective weights and objective weights. The proposed approach presents a new method
to objectivize subjective information and to aggregate information from attribute values themselves
and decision-makers’ judgment.
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