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Abstract: Data clustering is useful in a wide range of application areas. The Animal Migration
Optimization (AMO) algorithm is one of the recently introduced swarm-based algorithms, which
has demonstrated good performances for solving numeric optimization problems. In this paper, we
presented a modified AMO algorithm with an entropy-based heuristic strategy for data clustering.
The main contribution is that we calculate the information entropy of each attribute for a given
data set and propose an adaptive strategy that can automatically balance convergence speed and
global search efforts according to its entropy in both migration and updating steps. A series of
well-known benchmark clustering problems are employed to evaluate the performance of our
approach. We compare experimental results with k-means, Artificial Bee Colony (ABC), AMO, and
the state-of-the-art algorithms for clustering and show that the proposed AMO algorithm generally
performs better than the compared algorithms on the considered clustering problems.

Keywords: animal migration optimization; information entropy; data clustering

1. Introduction

The clustering problem is a basic research topic in data mining [1–3]; it is encountered in a number
of academic and practical fields such as text document analysis, web data analysis, image processing,
data compression, and bioinformatics. In recent years, we have viewed an increasing number of
publications on the models and algorithms of data clustering [4–7], since the topic plays an important
role in these fields. The task of clustering is to recognize natural groupings in multidimensional
data based on certain similarity measures. For example, Euclidean distance is a measurement for
evaluating similarities between clusters, which is one of the most frequently used distances in clustering
problems. Specifically, given N objects, one should allocate each object to one of K clusters with the
aim of minimizing the sum of squared Euclidean distances between each object and its corresponding
centroid of the cluster. Formally, the problem can be described as follows [8,9]:

Min C px, zq , C px, zq “
N
ÿ

i“1

K
ÿ

j“1

wij ‖ xi ´ zj ‖2, i “ 1, 2, . . . , N, j “ 1, 2, . . . , K , (1)

where N is the number of patterns, and K is the number of clusters; xi is the location of the i-th pattern,
and zj is the center of the j-th cluster, and it is obtained by the following Equation (2):

zj “
1
Nj

N
ÿ

i“1

wijxi , (2)
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where Nj is the number of patterns in the j-th cluster, and wij is the association weight of pattern xi to
cluster j, i.e., wij is 1 if pattern i belongs to cluster j and 0 otherwise.

Generally, the clustering problem is computationally difficult, namely NP-hard [10], so
investigating efficient optimization algorithms to find better clusters is still an important task.
The difficulty for designing and improving such algorithms is to propose effective strategies for
optimization and to find suitable values of control parameters. Over the last several decades, a wide
variety of algorithms and improvements have been presented and analyzed, which are mainly divided
in two kinds: hierarchical methods and partitional methods. The k-means algorithm [11] is a basic and
well-known partitional method. It starts from k random positions (centroids) and iterates by updating
these centroids until they are no longer moved. The algorithm aims to minimize an objective function,
which can be described as follows:

f pX, Cq “
N
ÿ

i“1

min
!

‖ xi ´ ck ‖2 |k “ 1, 2, . . . , K
)

, (3)

where xi is the location of the i-th pattern, and ck is the k-th centroid. This method is easy to
handle, but it often converges to a local optimum, so the quality of results highly depends on the
initialization positions.

In order to overcome this issue, an alternative approach is swarm-based or metaheuristic-based
optimization algorithms, where the genetic algorithm [12–14], particle swarm optimization [15–17],
and the Artificial Bee Colony (ABC) algorithm [18,19] are typical ones. Very recently, some new
metaheuristic algorithms have been proposed, such as Monarch Butterfly Optimization (MBO) [20],
Elephant Herding Optimization (EHO) [21], and Animal Migration Optimization algorithm (AMO) [22].
Among these, the AMO algorithm, proposed by Li et al., is an efficient one [22]. Recent studies have
shown that the AMO algorithm is good at solving many numeric optimization problems, and it
performs well on benchmark instances. These metaheuristic-based algorithms have shown excellent
performance on solving many optimization problems [23–26]. They can always achieve good solutions
compared to other heuristic algorithms. Metaheuristic-based algorithms have also been employed to
deal with clustering problems [27–32], since such problems are naturally optimization problems.

In addition, information entropy is a good measure for data clustering, and it is often used as
a heuristic. To cluster high-dimensional objects in subspaces and determine the importance of each
dimension, Jing et al. [33] proposed a method that combines the weight entropy into the objective
function to be minimized, and they also introduced an extra step to compute the contribution of
each dimension to each cluster. Furthermore, information entropy was used for determining the
optimal number of clusters. Liang et al. [34] proposed an approach to measure within-cluster entropy
and between-cluster entropy with the aim of determining the number of clusters in a given data set
effectively. Cheung and Jia [35] investigated clustering on mixed data composed of numerical and
categorical attributes, and proposed an iterative clustering algorithm. To analyze similarities between
objects, they provided a method to estimate the significance of categorical attributes using information
theory, and then showed that the algorithm can determine the number of clusters automatically
without prefixing control parameters.

Though there are several clustering algorithms that employ information entropy to analyze
similarities of clusters, there are rare algorithms that use entropy as heuristic information for
optimization. In this paper, we propose an information entropy-based AMO algorithm for solving
clustering problems. The key feature of the algorithm is that a new migration method as well as a new
population updating method controlled by information entropy is proposed. The original migration
method is designed for common optimization problems, but the clustering data possess their own
distribution, and values of attributes always have cluster properties, so the new migration method
employs entropy heuristics to control the searching direction of each attribute, and a similar strategy
is also incorporated into our population updating method. We perform intensive experiments on
benchmark instances. Experimental results show that our new approach can find better clustering
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results compared to other approaches presented recently, and further indicate that our new approach
accelerates convergence speed of optimization.

The remainder of this paper is organized as follows: In Section 2, we briefly review the
AMO algorithm, and the entropy-based AMO algorithm for clustering problems is introduced in
Section 3. Benchmarks for evaluating algorithms and experimental results are given in Section 4.
Finally, conclusions are provided in Section 5.

2. The AMO Algorithm

In this section, we briefly introduce the AMO algorithm. The AMO algorithm is a swarm-based
algorithm inspired by the migration phenomenon of animals. In the algorithm, individuals are
regarded as positions of animals, and positions can be moved by mainly two operations: animal
migration and population updating. The operation of animal migration simulates behaviors of
animal groups moving from the current area to a new area. New positions of individuals will be
produced according to the direction of animal migration, where three migration rules are considered:
Individuals move towards the same direction as their neighboring individuals; individuals remain
near their neighboring individuals; and individuals avoid collisions with their neighboring individuals.
Using the three migration rules, a probability approach is introduced to yield new positions of
individuals. The algorithm begins with a randomly initialization population, which is comprised of
NP feature vectors with Dx dimensions, which can be stated as follows:

xi,j,0 “ xj,min ` randi,j¨
`

xj,max ´ xj,min
˘

, (4)

where xj,max and xj,min are the maximum value and the minimum value of the j-th dimension. xi,j,0 is
the j-th dimension value of the i-th individual in the initialization population, and randi,j is a uniformly
random number between 0 and 1, i = 1, . . . , NP and j = 1, . . . , Dx.

After producing the initialization population, animal migration and population updating
operations are performed iteratively. During the animal migration, the individuals are supposed
to move to new positions according to the positions of their neighboring individuals, which can be
described as follows:

xi,j,G`1 “ xi,j,G ` δ¨
´

xneighborhood,j,G ´ xi,j,G

¯

, (5)

where xi,j,G is the j-th dimension value of the i-th individual in the current population G, and xi,j,G`1 is
the j-th dimension value of the i-th individual in the new population G + 1; xneighborhood,j,G is the j-th
dimension value of the neighboring individual of xi,j,G, which is defined using a ring topology scheme
illustrated in Figure 1. In AMO, Li et al. [22] employ the four nearest individuals and the i-th individual
itself for each dimension as its neighborhood and choose one individual in the neighborhood randomly
as xneighborhood,j,G. As an example, Figure 1 shows the neighborhood of xi,j,G if i-th individual is xi,j,G.
For the j-th dimension, xneighborhood,j,G is selected from the (i´ 2)-th individual, the (i´ 1)-th individual,
the i-th individual, the (i + 1)-th individual, and the (i + 2)-th individual. δ is a random number
produced by a Gaussian distribution with N (0, 1).

Entropy 2016, 18, 185 3 of 15 

 

can find better clustering results compared to other approaches presented recently, and further 
indicate that our new approach accelerates convergence speed of optimization. 

The remainder of this paper is organized as follows: In Section 2, we briefly review the AMO 
algorithm, and the entropy-based AMO algorithm for clustering problems is introduced in  
Section 3. Benchmarks for evaluating algorithms and experimental results are given in Section 4. 
Finally, conclusions are provided in Section 5. 

2. The AMO Algorithm 

In this section, we briefly introduce the AMO algorithm. The AMO algorithm is a swarm-based 
algorithm inspired by the migration phenomenon of animals. In the algorithm, individuals are 
regarded as positions of animals, and positions can be moved by mainly two operations: animal 
migration and population updating. The operation of animal migration simulates behaviors of 
animal groups moving from the current area to a new area. New positions of individuals will be 
produced according to the direction of animal migration, where three migration rules are 
considered: Individuals move towards the same direction as their neighboring individuals; 
individuals remain near their neighboring individuals; and individuals avoid collisions with their 
neighboring individuals. Using the three migration rules, a probability approach is introduced to 
yield new positions of individuals. The algorithm begins with a randomly initialization population, 
which is comprised of NP feature vectors with  dimensions, which can be stated as follows: 

, , 	= 	 , + , ∙ ( , − , ), (4) 

where ,  and ,  are the maximum value and the minimum value of the j-th dimension. , ,  is the j-th dimension value of the i-th individual in the initialization population, and ,  
is a uniformly random number between 0 and 1, i = 1, …, NP and j = 1, …, 	 . 

After producing the initialization population, animal migration and population updating 
operations are performed iteratively. During the animal migration, the individuals are supposed 
to move to new positions according to the positions of their neighboring individuals, which can be 
described as follows: 

, , = , , + ∙ , , − , ,  , (5) 

where , , 	is the j-th dimension value of the i-th individual in the current population G, and , ,  is the j-th dimension value of the i-th individual in the new population G + 1; , ,  is the j-th dimension value of the neighboring individual of , , 	, which is defined 
using a ring topology scheme illustrated in Figure 1. In AMO, Li et al. [22] employ the four nearest 
individuals and the i-th individual itself for each dimension as its neighborhood and choose one 
individual in the neighborhood randomly as , , . As an example, Figure 1 shows the 
neighborhood of , , 	  if i-th individual is , , 	 . For the j-th dimension, , ,  is 
selected from the (i − 2)-th individual, the (i − 1)-th individual, the i-th individual, the (i + 1)-th 
individual, and the (i + 2)-th individual. 	 is a random number produced by a Gaussian 
distribution with N (0, 1). 

 

Figure 1. The concept of the local neighborhood of an individual. Figure 1. The concept of the local neighborhood of an individual.



Entropy 2016, 18, 185 4 of 16

The population updating simulates how animals leave the group and new individuals join in the
new population, as Equation (6) describes:

xi,j,G`1 “ xr1,j,G ` rand1¨
´

xbest,j,G ´ xi,j,G

¯

` rand2¨
`

xr2,j,G ´ xi,j,G
˘

, (6)

where xr1,j,G is the j-th dimension value of the individual to be updated, which is chosen randomly in
the current population; moreover, different from xi,j,G, xr2,j,G is the j-th dimension value of another
random individual, and xbest,j,G is the j-th dimension value of the best individual that has been found.
rand1 and rand2 are two uniformly random numbers between 0 and 1. The algorithm makes the
assumption that the number of animals in the population remains unchanged. Therefore, in the
updating, it replaces some of the animals with new individual according to a probability Pai, which is
related to the fitness of individuals and can be calculated as follows:

Pai “
sni
NP

, (7)

where Pai is the probability value of the i-th individual, NP is the number of the individuals in the
population, and sni is the sequence number of the fitness of i-th individual after being sorted by their
fitness in descending order, where i = 1, 2, . . . , NP. According to Equation (7), Pai is 1 if the i-th
individual is of the best fitness, whereas Pai is 1/NP if the i-th individual has the worst fitness.

Algorithm 1. Animal Migration Optimization (AMO) algorithm

1 begin
2 set the generation counter G “ 0 ; and randomly initialize NP individuals denoted as Xi
(1 ď i ď NP) with Dx dimensions.
3 evaluate the fitness for each individual.
4 while stopping criteria is not satisfied do
5 for i = 1 to NP do
6 for j = 1 to Dx do

7 xi,j,G`1 “ xi,j,G ` δ¨
´

xneighborhood,j,G ´ xi,j,G

¯

8 end for
9 end for
10 for i = 1 to NP do
11 evaluate the fitness of the offspring Xi,G`1, let Xi “ Xi,G`1 if Xi,G`1 is better than Xi
12 end for
13 select r1 and r2 randomly (r1 ‰ r2 ‰ i)
14 for i = 1 to NP do
15 for j = 1 to Dx do
16 if rand ą Pai then

17 xi,j,G`1 “ xr1,j,G ` rand1¨
´

xbest,j,G ´ xi,j,G

¯

` rand2¨
`

xr2,j,G ´ xi,j,G
˘

18 end if
19 end for
20 end for
21 for i = 1 to NP do
22 evaluate the fitness of the offspring Xi,G`1, let Xi “ Xi,G`1 if Xi,G`1 is better than Xi
23 end for
24 memorize the best solution achieved so far
25 end while
26 end



Entropy 2016, 18, 185 5 of 16

For each individual and each dimension, a uniformly random number, denoted by rand, between
0 and 1 will be produced as the probability to determine whether the individual is reserved or is
replaced by a new individual. Therefore, individuals with better fitness will be reserved with higher
probability in the next generation, while those with worse fitness will probably be replaced by new
individuals. Moreover, the animal with best position will be retained in the next generation. The entire
AMO algorithm is described in Algorithm 1 [22].

3. The Information Entropy-Based AMO

In this section, we present a modified AMO algorithm. The original AMO algorithm is good at
global searching and local searching, and can lead to a satisfactory solution for numeric optimization.
However, the data clustering problem is quite different from the benchmarks of numeric optimization
problems, as it is easy to see that data in a clustering problem usually has its own distributions. To adapt
the AMO algorithm for data clustering, we investigate inherent features and propose an entropy-based
AMO algorithm.

3.1. Attribute Information Entropy

It is clear that data in a clustering problem is a collection of points in a multi-dimensional space.
In the general case, those points are not randomly positioned, so an attribute in the data may obey
a certain distribution. Therefore, it is more reasonable to use different strategies according to the
distribution of the attribute rather than to use a single strategy. Information entropy can be used to
evaluate the disorder degree of a stochastic variable, so it is a suitable measure of attributes to evaluate
their distribution. We will discuss information entropy of attributes in this subsection.

We use the method proposed by Shannon [36] to calculate information entropy, which is
usually called Shannon’s entropy. Shannon’s entropy is used widely in many information measures.
Given a clustering data set, we record the number of attributes as D, and the number of classes
(centroids) as k first. Then, to evaluate Shannon’s entropy value, we use hi pi “ 1, 2, . . . , Dq to denote
entropy of the i-th attribute, and discretize the attribute values, where each value is approximated to
its nearest integer, and then calculate the i-th attribute entropy as follows:

hi “ ´

highi
ÿ

j“lowi

pjlogpj , (8)

where lowi is the minimum integer, and highi is the maximum integer after discretization of attribute
values. pj is the percentage of the j-th integer of the attribute. Because attribute entropy will be
used to control the migration process of the animal population, which will be discussed in the next
subsection, we use the maximum possible entropy of the i-th attribute to normalize Shannon’s entropy
hi. The maximum possible entropy of the i-th attribute, denoted as maxhi, can be calculated as follows:

maxhi “ ´log
1

highi ´ lowi ` 1
. (9)

Finally, the normalized entropy of the i-th attribute normhi can be described as

normhi “
hi

maxhi
, (10)

where hi and maxhi is obtained from Equations (9) and (10), respectively. In the case that upi “ lowi,
we will set normhi to 1. Thus, a normalized information entropy vector NormH can be obtained and
NormH “ pnormh1, normh2, . . . , normhDq.
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3.2. The New Animal Migration Method

In this subsection, we present our new migration method. In the original AMO algorithm,
an individual may move towards one of its neighbors or move away from the neighbor in the migration
operation. This method guarantees diversification of the population. To enhance the convergence speed
of the migration step and to improve the effectiveness of global searching, we propose a new method
by using an alternative route, where two strategies are employed for migration. One is the original
method, where a neighbor is picked up with the method used in the original AMO [22]. The other is
newly proposed. It selects S individuals randomly from the current population (1 ď S ď NP), and
the best one among those S individuals will be picked up as a reference individual, denoted as Xre f ,G.
Usually, we set S to 5. This reference individual as well as the selected neighbor are taken as candidate
migration directions, rather than only moving towards their neighbors. Migration direction (moving
according to the reference individual or according to the neighbor) is controlled by a randomized
approach. To balance the efforts between diversification of the population and convergence speed,
information entropy is used here to make decisions. An attribute with large information entropy
implies that values of it are uncertain and disordered; thus, searching on this attribute converges
slowly, so we accelerate convergence on this attribute by moving it according to the position of the
global reference individual with a higher probability than attributes with lower information entropy.
Therefore, we present the new migration method as Procedure 1.

In Procedure 1, same as the original method, Xi,G is the current position of the i-th individual,
and Xneighborhood,G is the current position of the selected neighbor. The selection method is the same as
the original AMO; NP is the number of the individuals in the population, and DX is the dimension of
individuals; δ is a random number produced by a Gaussian distribution with N (0, 1). Different from
the original one, dimensions of an individual are not only processed by its neighbor and may also
be processed with Xre f ,G, where attribute entropy NormH controls the direction. Xre f ,G will be used
if rand (a uniformly distribution random number between 0 and 1) is smaller than the normalized
entropy of the attribute. Otherwise, the individual will move towards or away from Xneighborhood,G.

Procedure 1. The new animal migration operation

for i = 1 to NP do
Select the best one from S random individuals as Xre f ,G
for j = 1 to DX do

if rand ă normhj then

xi,j,G`1 “ xi,j,G ` δ¨
´

xre f ,j,G ´ xi,j,G

¯

else

xi,j,G`1 “ xi,j,G ` δ¨
´

xneighborhood,j,G ´ xi,j,G

¯

end if
end for

end for

3.3. The New Population Updating Method

During the population updating of AMO, animals will be replaced by a new individual
with a probability approach, and the new individual is produced by Equation (6). To further
enhance the convergence speed, we propose a new method to decide the manner of producing new
individuals, using an attribute entropy similar to the method of our migration method. Two updating
manners are involved in the method: moving towards the best individual and moving towards
both the best individual and a random individual. Attributes with a higher entropy will probably
move close to those of the best individual. The details of the method are shown as follows:
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Procedure 2. The new population updating operation

select randomly integers r1 ‰ r2 ‰ i
for i=1 to NP do

for j=1 to DX do
if rand1 ą Pa then

if rand2 ă normhj then

xi,j,G`1 “ xr1,j,G ` randa¨
´

xbest,j,G ´ xi,j,G

¯

else

xi,j,G`1 “ xr1,j,G ` randb¨
´

xbest,j,G ´ xi,j,G

¯

` randn¨
`

xr2,j,G ´ xi,j,G
˘

end if
end if

end for
end for

where NP is the number of the individuals in the population, and DX is the dimension of individuals;
rand1 and rand2 are both random numbers between 0 and 1 with uniform distribution. randa, randb,
and randn are random numbers between 0 and 1 to control the convergence speed.

3.4. The Entire Algorithm for Solving Clustering Problems

With discussions and newly proposed strategies in the above subsections, we present our
Entropy-based Animal Migration Optimization (EAMO) combining both the new migration method
and the new population updating method.

For solving clustering problems by the EAMO, initializing the population is the first operation.
During this process, we set an initial population with NP animal individuals where an individual is
a vector with length Dx = Dˆ K , where D is the number of attributes of the input dataset, and K is
the number of clustering centroids. Positions of K clustering centroids are encoded into the vector,
where the first centroid corresponds to the first D elements, and the second centroid corresponds to
the second D elements, and so on. Each value in the initial individual vector is produced randomly
and uniformly between the maximum value and the minimum value of the corresponding attribute
in the input data set. After initialization of population, the EAMO performs optimization iteratively,
where Equation (3) is used to evaluate fitness of individuals, until the stopping criterion is satisfied.
The detailed description of the algorithm framework is listed as follows.

As is shown in Algorithm 2, it starts from generating initial individuals randomly and uniformly
in the ranges of attributes from the input data set, and it then calculates the normalized entropy
vector NormH. Afterwards, the algorithm performs optimization iteratively, where the proposed
entropy-based migration operation and population updating operation are employed. Attributes will
be updated by the population updating operations with probability Pa, which is the same as the
original AMO algorithm. After each migration of an individual, we calculate the fitness of the new
location by Equation (3) in Section 1. The new location will replace the current one if the new fitness is
better than that of the old location. Identical to the migration operation, new better individuals will
replace old ones after each population’s updating step. In addition, the best individual found so far
will be recorded after all individuals are processed by migration and population updating operations.
The algorithm terminates if it achieves the maximum number of iterations, which is the same as the
original AMO. The flowchart of the information entropy-based AMO algorithm is shown is Figure 2.
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Algorithm 2. Information Entropy-based Animal Migration Optimization (EAMO) algorithm

1 begin
2 evaluate the information entropy for attributes, and calculate the entropy vector NormH
3 set the generation counter G “ 0, and randomly initialize NP individuals denoted as Xi
(1 ď i ď NP)
4 evaluate the fitness for each individual in the population
5 while stopping criteria is not satisfied do
6 perform the new animal migration operation (Procedure 1)
7 for i = 1 to NP do
8 evaluate the fitness of the offspring Xi,G`1, let Xi “ Xi,G`1 if Xi,G`1 is better than Xi
9 end for
10 perform the new population updating operation (Procedure 2)
11 for i = 1 to NP do
12 evaluate the fitness of the offspring Xi,G`1, let Xi “ Xi,G`1 if Xi,G`1 is better than Xi
13 end for
14 memorize the best solution achieved so far
15 end while
16 end

Entropy 2016, 18, 185 8 of 15 

 

Algorithm 2. Information Entropy-based Animal Migration Optimization (EAMO) algorithm 
1 begin 
2 evaluate the information entropy for attributes, and calculate the entropy vector  
3 set the generation counter = 0, and randomly initialize 	 individuals denoted as  	  (1 ≤ ≤ ) 
4 evaluate the fitness for each individual in the population 
5 while stopping criteria is not satisfied do 
6    perform the new animal migration operation (Procedure 1) 
7    for i = 1 to 	 do 
8        evaluate the fitness of the offspring , , let = ,  if ,  is better than  
9    end for 
10   perform the new population updating operation (Procedure 2) 
11   for i = 1 to  do 
12       evaluate the fitness of the offspring , , let = ,  if ,  is better than  
13   end for 
14   memorize the best solution achieved so far 
15 end while 
16 end 

 

Figure 2. The flowchart of the information entropy-based animal migration optimization algorithm. 

4. Experiments 

In this section, we carry out computational experiments to evaluate our algorithm. First, we 
introduce benchmark data sets we used, and intensive experiments are then performed and 

Figure 2. The flowchart of the information entropy-based animal migration optimization algorithm.



Entropy 2016, 18, 185 9 of 16

4. Experiments

In this section, we carry out computational experiments to evaluate our algorithm. First, we
introduce benchmark data sets we used, and intensive experiments are then performed and compared
to other well-known clustering algorithms. We also analyze the effectiveness of our migration methods
by comparing with the EAMO algorithm without entropy heuristics.

4.1. Data Set

We select 12 well-known benchmark problems from University of California Irvine (UCI) Machine
Learning Repository to test those algorithms. Those data sets we choose are frequently used as
benchmark for clustering, where the numbers of attributes and the number of classes in each data set
are quite different. Table 1 summarizes the main characteristics of those data sets.

Here, we give a brief description of those data sets. All of those data sets come from real-world
applications ranging from healthy and medicine to education and criminological investigation.
TAE and CMC in Table 1 are the abbreviations of Teaching Assistant Evaluation Data Set and
Contraceptive Method Choice Data Set, respectively. The largest data set consists of 1473 objects
characterized by 10 attributes, and the data set with the most attributes are Wine Data Set and StatLog
(Heart) Data Set, up to 13 attributes. Most data sets have two or three categories, whereas there are six
categories in Glass Identification, which is the largest in all data sets. Some of them consist of both
categorical attributes and numerical attributes.

Table 1. Main characteristics of benchmark data sets.

Name of Data Set No. of Attributes No. of Classes Size of Data Set

Survival 3 2 306
Iris 4 3 150

Scale 4 3 625
TAE 5 3 151

Thyroid 5 3 215
Column 6 3 310

Seeds 7 3 210
Glass 9 6 214

Cancer 9 2 683
CMC 10 3 1473
Wine 13 3 178
Heart 13 2 270

4.2. Comparisons with Other Algorithms

In order to demonstrate the effectiveness and performance of the proposed EAMO algorithm, we
incorporate our entropy-based method into the source code of AMO and implement the new clustering
algorithm within MATLAB (version 7.8, The MathWorks, Inc., Natick, MA, USA). The k-means,
ABC [18,19], and AMO [22] are considered for comparisons. In addition, we compare our algorithm
with recent algorithms such as GSA-KM [37], BH [38], and WK-means [39].

To make a fair comparison, we set population size to 100 for ABC, AMO, and EAMO and each
algorithm with maximum 100 iterations as the stop criterion. We perform all experiments on a laptop
with an Intel(R) Core(TM) i5-4200M 2.50 GHz CPU, and 4 GB RAM, running Windows 10. Each data
set is tested 30 times with random initial solutions. We recorded the result of each run, and counted best
and average results of 30 runs to evaluate optimization ability. Standard deviation is also calculated to
show the robustness of the algorithms. The results are listed in Table 2.
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Table 2. Comparison on the results of basic algorithms and Entropy-based Animal Migration Optimization (EAMO).

Data Set Criteria k-means ABC AMO EAMO

Survival
Mean (Best) 2903.4982 (2625.1076) 2567.2675 (2566.9889) 2566.9952 (2566.9890) 2566.9889 (2566.9889)

Standard Deviation 307.5890 0.4008 5.9079 ˆ 10´3 4.6754 ˆ 10´7

Iris
Mean (Best) 107.6928 (97.3259) 96.7499 (96.6558) 98.1011 (96.6928) 96.6555 (96.6555)

Standard Deviation 14.8955 0.2213 1.2251 2.2391 ˆ 10´5

Scale
Mean (Best) 1426.1337 (1423.8514) 1425.3914 (1423.8286) 1429.0310 (1426.7837) 1424.5965 (1423.8204)

Standard Deviation 2.2840 1.5454 1.1745 0.8896

TAE
Mean (Best) 1538.4288 (1505.5616) 1505.7132 (1490.9285) 1496.4112 (1492.5982) 1490.9258 (1490.9258)

Standard Deviation 47.6131 19.3756 2.9332 3.0209 ˆ 10´5

Thyroid Mean (Best) 2138.9111 (1987.4110) 1884.8222 (1866.7054) 1930.2179 (1905.8493) 1882.4999 (1866.5277)
Standard Deviation 166.2917 12.1113 13.9454 11.9139

Column
Mean (Best) 9577.1141 (8990.6570) 8339.0336 (7792.2072) 7929.8714 (7806.5808) 7767.4119 (7767.3986)

Standard Deviation 1100.9190 354.7481 78.0536 7.0552 ˆ 10´2

Seeds
Mean (Best) 331.6019 (313.2168) 312.0665 (311.8318) 317.3699 (312.2431) 311.7985 (311.7978)

Standard Deviation 41.0606 0.1724 5.3389 3.9593 ˆ 10´3

Glass
Mean (Best) 266.8226 (215.6775) 241.2736 (221.2115) 289.4854 (277.1934) 227.3104 (214.4359)

Standard Deviation 35.5765 9.7262 6.7866 11.6376

Cancer
Mean (Best) 2988.0368 (2986.9613) 2965.0793 (2964.6066) 2976.7421 (2964.7393) 2964.3872 (2964.3870)

Standard Deviation 0.6596 0.6028 21.1566 6.8615 ˆ 10´4

CMC
Mean (Best) 5949.9685 (5703.4379) 5703.3675 (5699.1821) 5748.2252 (5715.3219) 5693.7649 (5693.7253)

Standard Deviation 557.9685 3.0824 19.0655 0.1186

Wine
Mean (Best) 18,153.4816 (16,555.6794) 16,295.5560 (16,294.1536) 16,301.7626 (16,295.6501) 16,293.3755 (16,292.6728)

Standard Deviation 1768.3431 1.0243 4.3872 0.8060

Heart
Mean (Best) 11,240.6272 (10,695.7974) 10,623.9668 (10,623.2945) 10,625.2158 (10,623.3220) 10,622.9832 (10,622.9824)

Standard Deviation 1229.5013 0.7614 1.2657 2.5003 ˆ 10´3

The best values are indicated in bold type.
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As can be seen in Table 2, EAMO is able to achieve better average performance than other
algorithms (k-means, ABC, and AMO) for all data sets. For the Survival data set, ABC and EAMO
both find the smallest best values, i.e., 2566.9889, but the standard deviation of EAMO is 4.6754 ˆ 10´7,
which is at least 4 orders of magnitude better than the results of other algorithms. Similar results
can also be found on some other data sets, such as Iris, TAE, Seeds, Cancer, and Heart. For those
data sets mentioned above, EAMO achieves the smallest mean and best values compared to other
algorithms, and standard deviations are all several orders of magnitude better than the results of other
algorithms. For Glass data set, EAMO achieves better performance, except for the standard deviation.
Furthermore, the results in Table 2 also indicate that the EAMO has the strongest robustness with
competitive mean values for most clustering problems.

Moreover, we compare our algorithm with clustering algorithms recently proposed. They are
GSA-KM [37], BH [38], and WK-means [39]. The results of those three algorithms are from the
experiments results in [37–39], respectively. Table 3 shows the comparison results of those algorithms
and EAMO.

The results of five data sets in Table 3 have been found from their works [37–39]. Compared with
the GSA-KM algorithm, it is obvious that EAMO performs better for four of the data sets (Iris, Cancer,
Wine and CMC) out of five compared data sets. Compared with the BH algorithm, EAMO is able to
find better results for three data sets (Iris, Cancer and Wine) out of four compared data sets, where
the BH algorithm achieves the best solution for the data set of Glass among these four algorithms.
In addition, the results of EAMO are also better than those of WK-means for all three compared data
sets. Those comparison results prove that EAMO can perform better in most clustering problems than
other existing algorithms.

Table 3. Comparison on the results of recent clustering algorithms and EAMO.

Data Set Criteria GSA-KM [37] BH [38] WK-means [39] EAMO

Iris

Mean 96.689 96.65681 96.6565 96.6555
Best 96.679 96.65589 96.6555 96.6555

Worst 96.705 96.66306 96.6704 96.6555
Standard Deviation 0.0076 0.00173 0.00251 2.2391 ˆ 10´6

Cancer

Mean 2965.21 2964.39539 - 2964.3871
Best 2965.14 2964.38878 - 2964.3870

Worst 2965.30 2964.45074 - 2964.3902
Standard Deviation 0.0670 0.00921 - 6.8615 ˆ 10´4

Wine

Mean 16,294.31 16,294.31763 16297 16,293.3755
Best 16,294.25 16,293.41995 16294 16,292.6728

Worst 16,294.64 16,300.22613 16304 16,295.7335
Standard Deviation 0.0406 1.65127 2.2019 0.8060

Glass

Mean 214.22 211.49860 - 227.3104
Best 211.47 210.51549 - 214.4359

Worst 216.08 213.95689 - 255.7101
Standard Deviation 1.1371 1.18230 - 11.6376

CMC

Mean 5697.36 - 5751.04 5693.7649
Best 5697.03 - 5694.6 5693.7253

Worst 5697.87 - 5988.3 5694.3680
Standard Deviation 0.2717 - 57.9428 0.1186

The best values are indicated in bold type. The dashed line is filled in the cell if no result can be found.

4.3. Analysis of Entropy-Based Heuristics

In this subsection, we further investigate the contribution of the entropy-based heuristics in our
EAMO algorithm. Two AMO-based algorithms are selected for comparison. The first one is a modified
EAMO, denoted by EAMO1, by using the newly proposed animal migration operation and the original
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population updating operation of the AMO. The second one, denoted by EAMO2, is obtained by using
the newly proposed population updating operation and the original animal migration operation of
the AMO.

Similar to the experiment in the previous section, 12 data sets are tested with 30 runs for EAMO,
EAMO1, and EAMO2. Parameter settings are the same as in the previous experiment. We calculate
best and average results as well as the standard deviation to compare with the results of EAMO. Table 4
shows the results of those experiments.

From Table 4, it is clear that EAMO1 and EAMO2 are better than AMO, as they obtain better
solutions for most data sets. Between EAMO1 and EAMO2, EAMO1 performs better, as we can see
that both mean and best solutions produced by EAMO1 are better than those of EAMO2. On the
other hand, EAMO is better than EAMO1 since it performs best on mean results for 10 data sets,
whereas EAMO1 performs best only for 3 data sets, and the same mean result is obtained for the
data set Survival. Furthermore, EAMO has a good ability to find best results, as it finds the best
solutions of 11 data sets, while there are only 6 data sets for which EAMO1 finds the best solutions.
Therefore, it can be concluded that both entropy-based heuristic operations make efforts on improving
searching effectiveness.

To show statistical results of all data sets, we record the best run by all algorithms for each data
set and calculate relative percentage deviation of each run by using Equation (11).

RPD “
R´ Rb

Rb
, (11)

where R is the clustering result of a run of an algorithm for a data set, Rb is the best result of all runs
of all algorithms for the data set, and RPD is the percentage result of R. By doing so, results of all
data sets can be compared together. After that, we show the results made by those algorithms are
statistically significant by plotting 95% confidence intervals for the algorithm factor, which is depicted
in Figure 3. From it, we can clearly observe that the EAMO has a very good performance overcoming
all the remaining methods, such as ABC and AMO.
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Table 4. The results for analyzing entropy-based heuristics in EAMO.

Data Set Criteria AMO EAMO1 EAMO2 EAMO

Survival
Mean (Best) 2566.9952 (2566.9890) 2566.9889 (2566.9889) 2566.9893 (2566.9889) 2566.9889 (2566.9889)

Standard Deviation 5.9079 ˆ 10´3 7.1480 ˆ 10´6 5.8521 ˆ 10´4 4.6754 ˆ 10´7

Iris
Mean (Best) 98.1011 (96.6928) 96.6654 (96.6555) 96.9105 (96.6555) 96.6555 (96.6555)

Standard Deviation 1.2251 5.1261 ˆ 10´2 0.3622 2.2391 ˆ 10´5

Scale
Mean (Best) 1429.0310 (1426.7837) 1424.4484 (1423.8204) 1428.4623 (1426.5044) 1424.5965 (1423.8204)

Standard Deviation 1.1745 0.8696 1.0406 0.8896

TAE
Mean (Best) 1496.4112 (1492.5982) 1492.3297 (1490.9258) 1493.2173 (1490.9371) 1490.9258 (1490.9258)

Standard Deviation 2.9332 6.5013 1.7947 3.0209 ˆ 10´5

Thyroid Mean (Best) 1930.2179 (1905.8493) 1888.3010 (1868.3156) 1908.2889 (1890.3430) 1882.4999 (1866.5277)
Standard Deviation 13.9454 9.3286 12.0367 11.9139

Column
Mean (Best) 7929.8714 (7806.5808) 7767.4224 (7767.3987) 7776.3424 (7767.4122) 7767.4119 (7767.3986)

Standard Deviation 78.0536 7.7230 ˆ 10´2 19.4984 7.0552 ˆ 10´2

Seeds
Mean (Best) 317.3699 (312.2431) 311.7983 (311.7978) 312.3224 (311.7982) 311.7985 (311.7978)

Standard Deviation 5.3389 1.2377 ˆ 10´3 1.5837 3.9593 ˆ 10´3

Glass
Mean (Best) 289.4854 (277.1934) 238.1493 (217.1508) 274.2144 (246.1603) 227.3104 (214.4359)

Standard Deviation 6.7866 18.1387 12.0982 11.6376

Cancer
Mean (Best) 2976.7421 (2964.7393) 2964.4016 (2964.3871) 2964.9262 (2964.3904) 2964.3872 (2964.3870)

Standard Deviation 21.1566 4.7387 ˆ 10´2 2.0681 6.8615 ˆ 10´4

CMC
Mean (Best) 5748.2252 (5715.3219) 5693.9725 (5693.7275) 5710.9860 (5694.4730) 5693.7649 (5693.7253)

Standard Deviation 19.0655 0.5741 12.7324 0.1186

Wine
Mean (Best) 16,301.7626 (16,295.6501) 16,294.1431 (16,292.2713) 16,300.0215 (16,295.7006) 16,293.3755 (16,292.6728)

Standard Deviation 4.3872 1.5271 2.7806 0.8060

Heart
Mean (Best) 10,625.2158 (10,623.3220) 10,622.9897 (10,622.9825) 10,623.4615 (10,622.9833) 10,622.9832 (10,622.9824)

Standard Deviation 1.2657 2.3998 ˆ 10´2 0.7456 2.5003 ˆ 10´3

The best values are indicated in bold type.
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5. Conclusions

In this paper, we present a new AMO algorithm for clustering problems. The information
entropy of data in the clustering problems is employed as a heuristic for optimization in the new
algorithm. In order to speed up convergence of the proposed algorithm and improve the entire
searching performance, we take an alternative manner in the migration step to yield new positions
of individuals, where individuals not only move to or away from its neighborhood, but also make
movements according to a good individual selected from the entire population. We employ the
information entropy of each attribute to determine the probability of moving directions (moving
according to the neighbor or the good individual). Furthermore, the population updating method
is also modified with similar techniques in migration. Intensive experiments were performed to
evaluate effectiveness. The proposed EAMO is tested on 12 well-known benchmark problems from
the UCI Machine Learning Repository. Results are analyzed intensively by comparing with both
basic algorithms and recently proposed algorithms. The comparison results show that the proposed
EAMO algorithm can obtain better solutions than other existing algorithms. In future work, we will
consider using information entropy to measure the correlation between attributes to improve clustering
algorithms and recent metaheuristic algorithms to solve clustering problems, such as MBO and EHO.
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