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Abstract: A class of complex self-organizing systems subjected to fluctuations of environmental
or intrinsic origin and to nonequilibrium constraints in the form of an external periodic forcing
is analyzed from the standpoint of information theory. Conditions under which the response of
information entropy and related quantities to the nonequilibrium constraint can be optimized via a
stochastic resonance-type mechanism are identified, and the role of key parameters is assessed.
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1. Introduction

One of the principal features of complex self-organizing systems is the multitude of a priori
available states [1]. This confers to their evolution an element of unexpectedness, reflected by the
ability to choose among several outcomes and the concomitant difficulty of an observer to localize the
actual state in state space. This is reminiscent of a central problem of information and communication
theories [2], namely how to recognize a particular signal blurred by noise among the multitude of
signals emitted by a source.

The connection between self-organization and information finds its origin in the pioneering works
of Haken and Nicolis [3,4]. In the present work, we explore this connection in a class of multistable
systems subjected to stochastic variability generated by fluctuations of intrinsic or environmental origin,
as well as to a systematic nonequilibrium constraint in the form of a weak external periodic forcing. As
is well known, stochasticity typically induces transitions between the states [5]. Furthermore, under
appropriate conditions, one witnesses sharp, stochasticity-induced amplification of the response to the
periodic forcing, referred to as stochastic resonance [6]. Our objective is to relate these phenomena to
information processing.

A general formulation of the stochastic dynamics in the presence of a periodic forcing for
multistable systems involving one variable is presented in Section 2, where, building on previous
work by one of the present authors [7], the classical linear response theory of stochastic resonance
in bistable systems is extended to the case of an arbitrary number of simultaneously stable states.
In Section 3, a set of entropy-like quantities characterizing the complexity, variability and predictability
of the system viewed as an information processor are introduced. Their dynamics as induced by the
dynamics of the underlying multistable system is analyzed in Section 4. It is shown that by varying
some key parameters the system can attain states of optimal response and predictability. The main
conclusions are summarized in Section 5.
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2. Self-Organization and Stochastic Resonance in a Periodically-Forced Multistable System

Consider a one-variable nonlinear system subjected to additive periodic and stochastic forcings.
The evolution of such a system can be cast in a potential form [1,5],

dx
dt

= −∂U(x, t)
∂x

+ F(t) (1)

where x is the state variable and the stochastic forcing F(t) is assimilated to a Gaussian white noise of
variance q2,

< F(t) >= 0, < F(t)F(t′) >= q2δ(t− t′) (2a)

We decompose the generalized potential U as:

U(x, t) = U0(x)− εx sin ωt (2b)

Here, U0 is the potential in absence of the periodic forcing, and ε, ω stand for the amplitude and
frequency of the forcing, respectively. In the classical setting of stochastic resonance, U0(x) possesses
two minima (associated with two stable steady states of the system) separated by a maximum. In the
present work, this setting is extended by allowing for the existence of an arbitrary number n of stable
steady states and, thus, for a U0(x) possessing n minima 1, · · · , n separated by intermediately situated
maxima. Furthermore, we stipulate that the leftmost and rightmost minima one and n are separated
from the environment by impermeable boundaries, such that there are no probability fluxes directed
from these states to the environment [7].

A simple implementation of this setting amounts to choosing U0(x) in such a way that
the successive minima and maxima are equidistant and of equal depth and height, respectively.
These conditions become increasingly difficult to fulfill for increasing n if U0(x) has a polynomial form.
For the sake of simplicity, we will therefore adopt the following model for U0(x):

U0(x) = − cos x, 0 ≤ x ≤ 2πn (3a)

with stable and unstable states located respectively at:

π, 3π, 5π, · · ·
2π, 4π, 6π, · · · (3b)

Equations (1) and (2) describe a composite motion consisting of a combination of small-scale
diffusion around each of the stable states and of large-scale transitions between neighboring stable
states across the intermediate unstable state. The latter is an activated process whose rate depends
sensitively on the potential barrier (cf. Equation (2b)):

∆U = ∆U0 − ε∆x sin ωt

= U0(xunst)−U0(xst)− ε(xunst − xst) sin ωt (4a)

As long as the noise is sufficiently weak in the sense of q2 � ∆U, the characteristic time scale of
this motion is much slower than the characteristic time of diffusion around a given stable state, the
corresponding rate being given by Kramers’ formula [1,5],
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k(t) =
1

2π

√
|U′′(xunst)U′′(xst)| exp[− 2

q2 ∆U] (4b)

where the accents denote derivatives with respect to x.
Placing ourselves in this limit, we can map Equation (1) into a discrete state process [5,7] describing

the transfer of probability masses pi contained in the attraction basins of the stable states i (i = 1, · · · , n):

state 1
k12⇀↽
k21

state 2
k23⇀↽
k32

state 3 · · · · · · state n− 1
kn−1,n
⇀↽

kn,n−1
state n

The corresponding kinetic equations read [7]:

dpi
dt

= Tij(t)pj (i = 1, . . . , n) (5)

where Tij is the conditional probability per unit time to reach state i starting from state j. The transfer
operator T appearing in this equation is a tridiagonal matrix satisfying the normalization condition
∑i Tij(t) = 0, whose structure can be summarized as follows:

• Elements along the principal diagonal:

T11 = −k12(t), Tnn = −kn,n−1(t)

Tii = −(ki,i−1(t) + ki,i+1(t)) 2 ≤ i ≤ n− 1 (6a)

• Elements along the upper sub-diagonal:

Ti,i+1 = ki+1,i(t) 1 ≤ i ≤ n− 1 (6b)

• Elements along the lower sub-diagonal:

Ti−1,i = ki,i−1(t) 2 ≤ i ≤ n (6c)

The rate constants kij can be evaluated from Equations (4a) and (4b),

ki,i±1(t) = k(0)i,i±1 exp[
2ε

q2 ∆x(i, i± 1) sin ωt] (7a)

with:

∆x(i, i± 1) = xunst(i± 1)− xst(i) (7b)

k(0)i,i±1 =
1

2π

√
|U′′0 (xunst)U′′0 (xst)| exp[− 2

q2 ∆U0(i, i± 1)] (7c)

Equation (5) constitutes a linear system with time-periodic coefficients. In what follows, we focus
on the linear response, which will provide us with both qualitative and quantitative insights into the
role of the principal parameters involved in the problem.
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The starting point is to expand Equation (7a) in ε,

ki,i±1(t) = k(0)i,i±1 + ε∆i,i±1 sin ωt (8a)

with:

∆i,i±1 =
2
q2 k(0)i,i±1∆x(i, i± 1) (8b)

This induces a decomposition of the transfer operator T and of the probability vector
p = (p1, · · · , pn)

T in Equation (5) in the form:

T(t) = T0 + ε∆ sin ωt (9a)

p(t) = p0 + δp (t) (9b)

Here, T0 and ∆ are again tridiagonal matrices with elements given by Equations (6a)–(6c), where
ki,i±1(t) are replaced by k(0)i,i±1 and ∆xi,i±1, respectively. p0 is the invariant probability in absence
of the periodic forcing and δp the forcing-induced response. Notice that p0 and δp are normalized
to unity and to zero, respectively. Furthermore, since in absence of the forcing all k’s are equal
(cf. Equations (7c) and (3a)), the corresponding invariant probabilities p(0)i are uniform, p(0)i = 1/n.

Substituting Equation (9) into Equation (5) and adopting for compactness a vector notation, we
obtain to the first order in ε:

dδp
dt

= T0δp + ε sin ωt∆ · p0 (10)

The solution of this equation in the long time limit is of the form:

δp(t) = ε(A cos ωt + B sin ωt) (11a)

where the components Ai and Bi of A and B determine the amplitudes and phases of the δpi’s with
respect to the periodic forcing,

δpi(t) = (sign Bi) Ri sin (ωt + φi) (11b)

Ri = ε(A2
i + B2

i )
1
2 (11c)

φi = arctan
Ai
Bi

(11d)

Substituting Equation (11) into Equation (10) and identifying the coefficients of cos(ωt) and
sin(ωt), one obtains following the lines of [7] the following explicit expressions of Ai and Bi,



Entropy 2016, 18, 172 5 of 13

Ai =
1

N2
4πk0

n
2
q2 ∑

k even
cos

(k− 1)π
2n

cos
(2i− 1)(k− 1)π

2n
ω

λ2
k + ω2

Bi =
1

N2
4πk0

n
2
q2 ∑

k even
cos

(k− 1)π
2n

cos
(2i− 1)(k− 1)π

2n
λk

λ2
k + ω2

(12)

where λk is given by:

λk = −2k0(1− cos
(k− 1)π

n
) k = 1, · · · , n (13)

and k0 is the value of the unperturbed rates k(0)i,i±1.
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Figure 1. Amplitude scaled by α = 2ε∆x/q2: (a) of the response Ri (Equation (11c)); (b) of the
coefficient Bi (Equation (12)); and (c) the behavior of the phase φi (Equation (11d)) in the case of n = 30
coexisting stable states for different values of the ratio ω/k0 = 0.01 (full lines), 0.1 (dashed lines) and
1 (dotted lines).

Figure 1a–c depicts the maxima Ri and the phases of δpi(t) as a function of i, keeping n and q2

fixed as obtained by numerical evaluation of the analytic expressions (12). The plot of the coefficient
Bi as a function of i in Figure 1b shows that this coefficient is subjected to several changes in sign.
This entails that the corresponding response (Equation (11b)) will be subjected to an additional phase
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shift of π in regions where Bi is negative. As can be seen, the maximal response is obtained for the
boundary states one and n. This is due to the fact that while the intermediate states are depleted by
transferring probability masses to both of their neighbors, for the boundary states, the depletion is
asymmetric. Furthermore, for given noise strength q2, the response is more pronounced in the range of
low frequencies, as expected to be the case in stochastic resonance. Note that for n odd, the response
in the middle state is strictly zero. Finally, varying q2 for fixed ω provides an optimal value q2

opt for
which the amplitude of the response is maximized.

3. Multistability, Information Entropy, Information Production and Information Transfer

In this section, we introduce a set of quantities serving as measures of the choice and
unexpectedness associated with self-organization and, in particular, with the multiplicity of available
states of the system introduced in Section 2. We start with information (Shannon) entropy [1–4]:

SI = −
n

∑
i=1

pi ln pi (14)

where the probabilities pi of the various states are defined by Equations (5), (9b) and (11). As a
reference, we notice that in the absence of the nonequilibrium constraint provided by the external
forcing, the probabilities are uniform, pi = 1/n, and SI in this state of full randomness attains its
maximum value:

SI,max = ln n (15)

The deviation from full randomness, and thus, the ability to reduce errors, is conveniently measured
by the redundancy:

R = 1− SI
SI,max

= 1− SI
ln n

(16)

We come next to the link with dynamics. Differentiating both sides of Equation (14) with respect to
time and utilizing Equation (5), we obtain a balance equation for the rate of change of SI .

dSI
dt

= −∑
i

dpi
dt

ln pi

= −∑
ij

Tij pj ln pi

Setting:

Tij = wij i 6= j

Tii = −∑
i 6=j

Tji = wii (17)

we can rewrite this equation in the more suggestive form:

dSI
dt

= −∑
ij

ln pi(wij pj − wji pi)

=
1
2 ∑

ij
ln

pj

pi
(wij pj − wji pi)
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Writing:

ln
pj

pi
= ln

wij pj

wji pi
− ln

wij

wji

we finally obtain:

dSI
dt

= σI + JI (18a)

where the information entropy production σI and the associated flux JI are defined by [8,9]:

σI =
1
2 ∑

ij
(wij pj − wji pi) ln

wij pj

wji pi
≥ 0 (18b)

JI =
1
2 ∑

ij
(wij pj − wji pi) ln

wij

wji
(18c)

We notice the bilinear structure of σI in which the factors within the sum can be viewed as
generalized (probability) fluxes and their associated generalized forces. This is reminiscent of the
expression of entropy production of classical irreversible thermodynamics [10]. As a reference, in the
state of equipartition realized in the absence of the external forcing, one has pi = 1/n, wij = k0, and σI
vanishes along with all individual generalized fluxes and forces. This property of detailed balance,
characteristic of thermodynamic equilibrium, breaks down in the presence of the forcing, which
introduces a differentiation in pi and an asymmetry in the wij. σI measures, therefore the distance
between equilibrium and nonequilibrium on the one side and between direct (i to j) and reverse (j to i)
process on the other. In this latter context σI is also closely related to the Kullback information.

Finally, in an information theory perspective, one is led to consider the information transfer
between a part of the system playing the role of “transmitting set” X and a “receiver set” Y separated
by a “noisy channel” [2,4]. In the dynamical perspective developed in this work, the analogs are two
states, say i and j, and a conditional probability matrix, W = {Wji}. The information transfer is then
simply the sum of the Shannon entropy and the Kolmogorov–Sinai entropy [1,4]:

h = −∑
ij

piWji ln Wji (19)

To relate h with the quantities governing the evolution of our multistable system, we need to
relate the transition probabilities Wij to the transition rates (probabilities per unit time) wij featured
in Equations (6) and (17). This requires in turn to map the continuous time process of the previous
section to a discrete-time Markov chain. To this end, we introduce the discretized expression of the
time derivative in Equation (5), utilize Equation (17) and choose the time step ∆t as a fraction of the
Kramers time associated with the passage over the potential barriers as discussed in Section 2:

∆t = (ki,i+1 + ki+1,i + ki,i−1 + ki−1,i)
−1 = κ−1 (20)

This leads to the discrete master-type equation:

pi(t + ∆t) = ∑
j

Wij pj(t) (21)
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where the stochastic matrix W is defined by:

Wi±1,i =
ki,i±1

κ

Wii =
ki+1,i + ki−1,i

κ
2 ≤ i ≤ n− 1 (22a)

W21 =
k12

κ
, W11 = 1− k12

κ
(22b)

Wn−1,n =
kn,n−1

κ
, Wnn = 1− kn,n−1

κ
(22c)

Introducing again as a reference the state in the absence of the forcing, one sees straightforwardly
that kij = k0, pi = 1/n and Wij = 1/4 for i 6= j, Wii = 1/2 for 2 ≤ i ≤ n− 1 and W11 = Wnn = 3/4.
Expression (19) reduces then to:

h(0) =
n− 2

2
· 3

2
ln 2 +

1
n
(−3

2
ln 3 + 4 ln 2) (23)

where the two terms on the right-hand side account, respectively, for the contributions of the
intermediate states and of the boundary states one and n.

It is worth noting that for n, even the Markov chain associated with the forcing-free system is
lumpable [11], in the sense that upon grouping the original states, one can reduce Equation (21) into a
system of just two states a and b, with Waa = Wbb = 3/4 and Wab = Wba = 1/4. In other words, in
the absence of the nonequilibrium constraint, the intermediate states play no role. The presence of
the forcing will change this situation radically by inducing non-trivial correlations and information
exchanges within the system.

4. Nonequilibrium Dynamics of Information and Stochastic Resonance

Our next step is to evaluate the quantities introduced in the preceding section in the presence
of the nonequilibrium constraint provided by the external forcing with emphasis on the roles of key
parameters, such as forcing amplitude and frequency, noise strength and number of states.

4.1. Information Entropy and Redundancy

Substituting expression Equation (9b) into Equation (14) and using the property ∑i δpi = 0, one
sees straightforwardly that the O(ε) contributions to SI cancel identically. Keeping the first non-trivial
(i.e., O(ε2)) parts, one obtains:

SI = S(0)
I + ∆SI (24a)

where:

S(0)
I = SI,max = ln n (24b)

and:

∆SI = −
n
2 ∑

i
δp2

i (24c)
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Using expression Equation (11b) for δpi, we may further decompose ∆SI into its time average
part ∆SI and a periodic modulation δSI around the average:

∆SI = −
ε2n
4 ∑

i
R2

i (25a)

δSI =
ε2n
4 ∑

i
R2

i cos(2(ωt + φi))

= R2
eff cos(2ωt + ψeff) (25b)

where the effective amplitude Reff and phase ψeff of the modulation are expressed in terms of Ri and φi.
The evaluation of the redundancy, Equation (16), follows straightforwardly from that of SI ,

leading to:

R = −∆SI
ln n

(26)

where ∆SI is given by Equations (24c) and (25).
In Figure 2a,b, the time averaged excess entropy ∆SI and redundancy R are plotted as a function of

the number n of states using expressions Equations (11)–(13). In all cases, ∆SI is negative and R positive,
reflecting the enhancement of predictability induced by the nonequilibrium constraint. Furthermore,
and similarly to Figure 1a, for given noise strength q2, the enhancement is more pronounced in the
range of low frequencies ω and is further amplified when the conditions of stochastic resonance are met.
Interestingly, for given q2 and ω, the enhancement exhibits a clear-cut extremum for a particular value
of the number of states. This unexpected result suggests that to optimize its function our multistable
system, viewed as an information processor, should preferably be endowed with a number of states
(essentially a “variety”) that is neither very small nor too large. Finally in Figure 3, the time evolution
of the full ∆SI in the low frequency range is plotted using expression Equations (11)–(13) and (25).
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Figure 2. Time average excess entropy ∆SI (Equation (25a)) (a) and redundancy R (Equation (26));
(b) as a function of the number n of states present for different values of the ratio ω/k0= 0.01 (full lines),
0.1 (dashed lines) and 1 (dotted lines). Normalization parameter α as in Figure 1.
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Figure 3. Time evolution of the full excess entropy ∆SI (Equation (24c)) in the case of n = 32 coexisting
states with ω/k0 = 0.01, corresponding to the minimum of the full line of Figure 2a.

4.2. Information Entropy Production

Our starting point is Equation (18b). We have shown in the preceding section that the zeroth
order part of σI vanishes, since it corresponds to a state where detailed balance holds. To obtain the
first non-trivial contribution, we need therefore to expand both pi and wij in the forcing amplitude ε.
Actually, since each of the two factors in the expression of σI vanishes for ε = 0, it suffices to take each
of them to O(ε) in order to obtain the dominant, O(ε2) contribution. Substituting Equation (9b) along
with the analogous expressions for wij:

wij = w(0)
ij + δwij (j = i± 1) (27)

where w(0)
ij = k0 and p0 = 1/n, we obtain:

∆σI =
n

2k0
{∑

i
[k0(δpi+1 − δpi) +

1
n
(δwi,i+1 − δwi+1,i)]

2

+ ∑
i
[k0(δpi−1 − δpi) +

1
n
(δwi,i−1 − δwi−1,i)]

2
} (28)

where δpi is given by Equations (11)–(13) and (see Equations (6), (7) and (17)):

δwi,i±1 = ±ε
2
q2 k0π sin ωt (29)

Taking the time average ∆σI over a period of the forcing and denoting for compactness sign
Bi = si, one finally obtains:
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∆σI
ε2/(2k0)

=
16k2

0π2(n−1)
nq4

+ k2
0n( 1

2 (R2
1 + R2

2)− s1s2R1R2 cos(φ2 − φ1))

+
4k2

0π

q2 (s2R2 cos φ2 − s1R1 cos φ1)

+ k2
0n( 1

2 (R2
n−1 + R2

n)− sn−1snRn−1Rn cos(φn−1 − φn))

+
4k2

0π

q2 (sn−1Rn−1 cos φn−1 − snRn cos φn)

+ ∑n−1
i=2 {k

2
0n[ 1

2 (R2
i+1 + R2

i−1 + 2R2
i )− siRi(si+1Ri+1 cos(φi+1 − φi)

+ si−1Ri−1 cos(φi−1 − φi))]

+
4k2

0π

q2 (siRi+1 cos φi+1 − si−1Ri−1 cos φi−1)}

(30)

Figure 4 depicts the dependence of ∆σI , scaled by the factor 2k0(επ/q2)
2, as a function of a number

of states n for different values of the forcing frequency. We observe a trend similar to that of Figure 2a,b:
an enhancement under nonequilibrium conditions near stochastic resonance for an optimal number of
intermediate states and practically no effect of the nonequilibrium constraint for higher frequencies.
Since the time average of dSI/dt in Equation (18a) is necessarily zero, it follows that the information
flux JI (Equation(18c)) will display a similar behavior albeit with an opposite sign, i.e., a pronounced
dip for low frequencies and for an optimal number of states. In a sense, the excess information
produced remains confined within the system at the expense of a negative excess information flux, in
much the same way as in the entropy balance of classical irreversible thermodynamics [10].

5
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!"
# 
/ $

n

_

Figure 4. Information entropy production averaged over the period of the forcing (Equation (30)),
scaled by β = 2k0(επ/q2)2 as a function of the number of states n present and for different values of
the ratio ω/k0 = 0.01 (full line), 0.1 (dashed line) and 1 (dotted line).

4.3. Information Transfer and Kolmogorov–Sinai Entropy

We begin by decomposing pi and Wij in Equation (19) into a reference part and a deviation arising
from the presence of the nonequilibrium constraint:

pi = p(0)i + δpi Wij = W(0)
ij + δWij (31)
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where p(0)i = 1/n and the W(0)
ij ’s have been evaluated in Section 3. Using Equations (7), (8) and (22),

one can establish the following properties:

• δWii vanish for the intermediate states 2 ≤ i ≤ n− 1.
• The contributions of ki,i+1 coming from second order terms in the expansion of Equation ((7a) in

powers of ε do not contribute up to order ε3 to δWi,i±1, which can therefore be limited for our

purposes to its first order in ε part δW(1)
i,i±1.

• δW(1)
i,i±1, δW11 and δWnn satisfy the symmetry relations:

δW(1)
i,i+1 = −δW(1)

i,i−1 = δW

δW11 = −δWnn = −δW
(32)

Substituting into Equation (19) and using the symmetry property δpn = −δp1 along with the
normalization condition ∑n

i=1 δpi = 0, one obtains after some straightforward manipulations:

h = h(0) + [2 ln 3δWδp1 −
4
n
(n− 2

3
)δW2] (33)

with:
δp1 = ε(signB1)R1 sin (ωt + φ1)

δW =
δki,i+1

4k0
= ε 1

4
2π
q2 sin ωt

(34)

Taking the average of Equation (33) over a period of the forcing leads to the following expression
for the mean excess Kolmogorov–Sinai entropy:

∆h = h− h(0) = ε2{ln 3
π

2q2 signB1R1 cos φ1 −
2
n
(n− 2

3
)

π2

4q4 } (35)

In Figure 5, the dependence of ∆h, scaled by a factor α2 = ε24π2/q4, on the number of states is
plotted for various values of the forcing frequency. We find a trend similar to the one in Figures 2–4,
namely an optimal response for frequency values close to conditions of stochastic resonance and
for a particular number of intermediate states. The negative values of ∆h reflect the reduction of
randomness (of which h is a characteristic measure) induced by the nonequilibrium constraint.

-0.4

-0.3

-0.2

0 10 20 30 40 50n

!h /"
2

_

Figure 5. Kolmogorov–Sinai entropy averaged over the period of the forcing (Equation (35)) as a
function of the number of states n present and for different values of the ratio ω/k0 = 0.01 (full line),
0.1 (dashed line) and 1 (dotted line). Normalization parameter α as in Figure 1.



Entropy 2016, 18, 172 13 of 13

5. Conclusions

In this work, a nonlinear system subjected to a nonequilibrium constraint in the form of a periodic
forcing, giving rise to complex behavior in the form of fluctuation-induced transitions between
multiple steady states and of stochastic resonance, was considered. Mapping the dynamics into a
discrete-state Markov process allowed us to view the system as an information processor. Subsequently,
the link between the dynamics and, in particular, the self-organization induced by the nonequilibrium
constraint, on the one side, and quantities of interest in information theory, on the other side, was
addressed. It was shown that the nonequilibrium constraint leaves a clear-cut signature on these
quantities by reducing randomness and by enhancing predictability, which is maximized under
conditions of stochastic resonance. Of special interest is the a priori unexpected existence of an
optimum for a particular number of simultaneously stable states suggesting the existence of optimal
alphabets on which information is to be generated and transmitted.

In summary, it appears that when viewed in a dynamical perspective, generalized entropy-like
quantities as used in information theory can provide useful characterizations of self-organizing systems
led to choose among a multiplicity of possible outcomes. Conversely and in line with the pioneering
work in [3,4], information constitutes in turn one of the basic attributes emerging out of the dynamics
of wide classes of self-organizing systems and conveying to them their specificity.
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