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Abstract: Nanofluids can afford excellent thermal performance and have a major role in energy
conservation aspect. In this paper, a sensitivity analysis has been performed by using response
surface methodology to calculate the effects of nanoparticles on the entropy generation. For this
purpose, the laminar forced convection of Al2O3-water nanofluid flow inside a channel is considered.
The total entropy generation rates consist of the entropy generation rates due to heat transfer and
friction loss are calculated by using velocity and temperature gradients. The continuity, momentum
and energy equations have been solved numerically using a finite volume method. The sensitivity of
the entropy generation rate to different parameters such as the solid volume fraction, the particle
diameter, and the Reynolds number is studied in detail. Series of simulations were performed for
a range of solid volume fraction 0 ď φ ď 0.05, particle diameter 30 nm ď dp ď 90 nm, and the
Reynolds number 200 ď Re ď 800. The results showed that the total entropy generation is more
sensitive to the Reynolds number rather than the nanoparticles diameter or solid volume fraction.
Also, the magnitude of total entropy generation, which increases with increase in the Reynolds
number, is much higher for the pure fluid rather than the nanofluid.

Keywords: sensitivity analysis; response surface methodology; entropy generation; Al2O3-water
nanofluid; finite volume method

1. Introduction

The study of the heat transfer inside a channel has received many attentions due to its numerous
applications in energy related engineering problems such as cooling devices in automotive, aerospace
industries, heat exchanger systems, heat sinks for electronic components, oil and gas flow in reservoirs,
chemical processing, hydrocarbon processing, polymers, pharmaceuticals, food and beverage, chimney
stacks, cooling towers, etc. The efficiency improvement of this problem is very critical to save the
energy and improve the performance. The selection of working fluid is a key issue to improve the
thermal performance of flow in a channel. Suspensions of particles with high thermal conductivity
in base fluids are one of the innovative techniques to increase the heat transfer rate in channel flows.
Many researchers used the conservation laws to simulate the nanofluid flow inside a channel [1,2].
Beside such analysis, an exergy analysis is crucial from the viewpoint of energy management to design
an optimum system with low lost work. First, a comprehensive literature review on the papers in this
field is necessary to classify these researches.

Some researchers studied the effects of nanoparticles on the heat transfer rate in internal flows [3].
Santra et al. [1] investigated the laminar flow of CuO-water nanofluid through two isothermally heated
parallel plates. They found that there is a significant growth in heat transfer with increase in solid
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volume fraction of nanoparticles for any Reynolds number. Raisi et al. [2] performed a numerical
study on forced convection laminar nanofluid flow inside a microchannel for both slip and no-slip
boundary conditions. They observed that the solid volume fraction of nanoparticles has a negligible
influence on the heat transfer rate at low values of the Reynolds number. In another research,
Heyhat et al. [4] performed an experimental work on the laminar convective heat transfer of nanofluid
flow in a horizontal tube. They used Al2O3 nanoparticles with water as the base fluid. Their results
revealed that the increase in heat transfer coefficient by adding the nanoparticles to the base fluid is
about 32% at φ = 2% (φ is solid volume fraction of nanoparticles). Beside this advantage, they observed
an increase in pressure loss for the nanofluid in comparison to the pure water.

Some researchers performed the exergy analysis for nanofluid flow. Mahian et al. [5] performed
a review of entropy generation in nanofluid flow. They reported that adding nanoparticles to the
base fluid could be very fruitful in decreasing the entropy generation. Note that this is depended
on the channel size, type of flow regime (i.e., laminar or turbulent) and solid volume fraction of
nanoparticles. Malvandi et al. [6] investigated analytically the entropy generation of steady nanofluids
flow around a flat plate. They used different types of nanoparticles include Cu, Al2O3 and TiO2.
Their results indicated that adding the Cu nanoparticles to the base fluid (water) generates more
entropy in comparison to the other nanoparticles. This was due to the high density of Cu particles.
Khaleduzzaman et al. [7] performed an exergy analysis on water-alumina nanofluid for an electronic
liquid cooling system. They found that the friction factor increased with the rise of the solid volume
fractions of nanoparticles. In another research, Khairul et al. [8] performed an exergy analysis on
the metal oxide nanofluid flow in a corrugated plate heat exchanger. They observed an increase in
the friction factor, pressure drop and pumping power with increase in particle volume fraction and
volume flow rate of nanofluids.

Some researchers performed exergy analysis for flow inside a channel or microchannel [9,10].
Mah et al. [11] investigated analytically the effects of viscous dissipation on the entropy generation
in laminar fully developed flow of Al2O3-water nanofluid in circular microchannels. They observed
that the viscous dissipation has a negligible effect on the entropy generation due to the fluid friction
irreversibility. Hajialigol et al. [12] investigated the exergy characteristics of nanofluid flow in a 3-D
microchannel under a magnetic field. They found that the contribution of thermal entropy generation
in the total is prominent in comparison to the frictional and magnetic one. OzgunKorukcu [13]
performed an exergy analysis for the laminar and steady flow across a square obstacle placed in the
channel with strong blockage.

Sensitivity analysis applies in engineering problems to determine how different values of an independent
variable affect a desired output. This technique is very useful when attempting to determine the impact
of several influence parameters on outputs of a problem. Some researchers used this analysis in different
thermal engineering problems. Rashidi et al. [14] used the sensitivity analysis for porous solar heat
exchangers by response surface methodology. In another research, Rashidi et al. [15,16] performed the
optimization and sensitivity analyses for convective heat transfer of water-alumina nanofluid flow
over equilateral triangular cylinder with different orientations. They selected the solid volume fraction
of nanoparticles, Reynolds number, and orientation of the obstacle as the input parameters. Also, the
drag coefficient and Nusselt number were as output variables. They reported that the Nusselt number
and drag coefficient are more sensitive to orientation of the obstacle in comparison to the Reynolds
number and solid volume fractions of nanoparticles.

As mentioned earlier, the exergy analysis is necessary for nanofluid flows and can help to engineer
when designing the heat transfer equipment. Beside this analysis, it is very important to determine
the key parameters in entropy generation for such systems. Such study provides better assessment
in design process. The literature review shows that such study is scarce. The main objective of the
present study is to determine the sensitivity of the entropy generation to changes of different nanofluid
parameters such as solid volume fraction, particle diameter and Reynolds number.
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2. Problem Statement and Computational Model

The geometry configuration and coordinate system for this study are presented in Figure 1. In this
research, the Al2O3-water nanofluid flow between two parallel plates with half width D and length L
with inlet uniform velocity (U8) and temperature (T8) is considered. The plates are maintained at
a constant temperature (Tw).
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where Ceff, keff, ρeff and μeff are effective specific heat, conductivity, density and viscosity, respectively.  

Figure 1. The computational domain and coordinate system.

The following assumptions are made:

(1) The flow is considered to be two-dimensional, laminar, steady and incompressible.

The simulation results are presented for the range of solid volume fraction 0 ď φ ď 0.05, particle
diameter 30 nmď dpď 90 nm, and Reynolds number 200ď Reď 800. Note that there are many reasons for
selecting this range of the Reynolds number in this problem. Some important reasons are listed as follows:
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where Ceff, keff, ρeff and μeff are effective specific heat, conductivity, density and viscosity, respectively.  

This range of Reynolds numbers is significant for designing many devices such as micro devices
and compact heat exchangers, which are two important applications of this geometrical (channel).
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where Ceff, keff, ρeff and μeff are effective specific heat, conductivity, density and viscosity, respectively.  

Higher Reynolds numbers are beyond the limit where two dimensional simulations can be
performed [17].
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(2) Bottom half of the channel is considered in simulation due to the symmetrical shape.

Governing equations for simulation of this problem are continuity, momentum and energy
equations. For a two-dimensional flow, these equations can be written as:

‚ Conservation of mass equation:
Bu
Bx
`
Bv
By
“ 0 (1)

‚ Momentum equation in x and y directions [18]:

ρe f f

„

u
Bu
B x
` v

Bu
B y



“ ´
Bp
Bx
` µe f f

„

B2u
B x2 `

B2u
B y2



(2)

ρe f f

„

u
Bv
B x
` v

Bv
B y



“ ´
Bp
By
` µe f f

„

B2v
B x2 `

B2v
B y2



(3)

‚ Energy equation [18]:

ρe f f Ce f f

„

u
BT
B x
` v

BT
B y



“ ke f f

„

B2T
B x2 `

B2T
B y2



(4)

where Ce f f , ke f f , ρe f f and µe f f are effective specific heat, conductivity, density and viscosity, respectively.
‚ The effective density is given by [19]:

ρe f f “ p1´ φqρ f ` φρp (5)

where φ is the solid volume fraction and subscripts f and p indicate fluid and particle, respectively.
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‚ The effective specific heat is measured by using the following equation [20]:

Ce f f “
p1´ φqρ f C f ` φρpCp

ρe f f
(6)

‚ The effective dynamic viscosity is defined in following form [21]:

µe f f “ µ f `
ρpVBdp

2

72Nδ
(7)

where N is a non-dimensional function of the nanoparticle diameter, fluid viscosity and solid
volume fractions. This function is defined by [21,22]:

N “ µ f
´1 “`n1dp` n2

˘

φ`
`

n3dp` n4
˘‰

n1 “ ´0.000001113
kg

m2s
, n2 “ ´0.000002771

kg
ms

n3 “ 0.00000009
kg

m2s
, n4 “ ´0.000000393

kg
ms

(8)

where δ and VB are the distance between nanoparticles and Brownian velocity of the nanoparticles,
respectively. These parameters are defined by [21]:

VB “
1
dp

d

18KBT
πρpdp

(9)

δ “ 3

c

π

6φ
dp (10)

where dp and KB are nanoparticle diameter (= 30 nm) and Boltzmann constant (= 1.38 ˆ 10´23 J¨K´1),
respectively.

‚ Finally, the effective thermal conductivity is calculated by [23]:

ke f f

k f
“ 1` 64.7ˆ φ0.7460

ˆd f

dp

˙0.3690
˜

kp

k f

¸0.7476

ˆPr0.9955ˆRe1.2321 (11)

where d f is molecular diameter of the water (= 0.3 nm). The Prandtl and Reynolds numbers in
this equation are calculated by:

Pr “
µ

ρ f α f
(12)

Re “
ρ f KBT

3πµ2lBF
(13)

where lBF is the mean free path of water (= 0.17 nm) and µ is calculated by [18]:

µ “ 2.414ˆ 10´5ˆ 10
247.8

T´140 (14)

Generally, the local volumetric entropy generation rate with the convective heat transfer and
viscous effects can be calculated by [24]:

S3

g “
ke f f

T2

«

ˆ

BT
Bx

˙2
`

ˆ

BT
By

˙2
ff

`
µe f f

T

#

2

«

ˆ

Bu
Bx

˙2
`

ˆ

Bv
By

˙2
ff

`

„ˆ

Bu
By

˙

`

ˆ

Bv
Bx

˙2
+

(15)
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The dimensionless local volumetric entropy generation rate is calculated by:

Ng “
S3

g D2

k f
(16)

The dimensionless total entropy generation rate per unit depth is obtained by:

Nt “
1
A

»

–

ż

A

pNgqdA

fi

fl (17)

Following boundary conditions are applied in this problem:

‚ At the inlet of the channel, a uniform flow is assumed. This boundary is defined by:

u “ U8, v “ 0, T “ T8 (18)

‚ At the channel wall, no slip and constant temperature boundary conditions are imposed. These
boundaries are:

u “ 0, v “ 0, T “ Tw (19)

‚ Zero gradient boundary conditions are used at the outlet of the channel [25]. These boundaries
are given by:

Bu
Bx
“ 0,

Bv
Bx
“ 0,

BT
Bx
“ 0 (20)

‚ Symmetry conditions are assumed at the centerline. These boundaries are given by:

v “ 0,
Bu
By
“ 0,

BT
By
“ 0 (21)

To solve numerically the governing equations, pressure base finite volume approach is used.
Staggered grid arrangement is applied to store the velocity and pressure components at cell faces
and cell center, respectively. The coupling between pressure and velocity is modeled by SIMPLE
algorithm [26]. The discretization of the convective and diffusion terms are performed respectively by
the third-order accurate QUICK (Quadratic Upstream Interpolation for Convective Kinematics) and
Green-Gauss methods.

For all the simulations in this research, it is assumed that the solutions were converged when the
summation of residuals were lower than 10´7.

Typical grid used along the computational domain is shown in Figure 2. As shown in this figure,
a square two-dimensional mesh is selected for this study. This mesh is refined around the channel wall
that the velocity and temperature gradients vary rapidly. The grid independence study is performed
with respect to the average Nusselt number at fixed Reynolds number of 200, particle diameter of
30 nm and solid volume fraction of 1%. Four different mesh sizes were generated. The results of grid
independence test have been presented in Table 1. As shown in this Table, the difference in the Nusselt
number between cases 3 and 4 is 0.3%. Therefore, the grid of case 3 is used for the rest of simulations.
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Table 1. Effect of grid size on Nusselt number at φ = 0.01, dp = 30 nm and Re = 200.

No. Grid Size Nusselt Number Percentage Difference

1 150 ˆ 20 6.057 1.6
2 300 ˆ 40 6.154 1.1
3 600 ˆ 80 6.222 0.3
4 1200 ˆ 160 6.241 –

The accuracy of the numerical solution is validated by comparison the results with the available
experimental data obtained by Heyhat et al. [4] as shown in Figure 3. Their experiment was performed
for laminar Al2O3-water nanofluid flow inside a horizontal circular duct with a constant surface
temperature. Numerical and experimental results are presented for Nusselt number ratio at the solid
volume fraction φ = 0.01 and nanoparticle diameter dp = 40 nm. The Nusselt number ratio is defined
as the ratio of the Nusselt number for the nanofluid to that of pure water. As shown in Figure 3, the
numerical results are in agreement with the experimental data. The relative error is about 7%, which is
within the error of the experimental data that was reported, as ˘6% [4].
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Response surface methodology is discussed as follows.
Generally, 19 degrees of freedom and 20 runs corresponding to three levels of variables are needed

for response surface methodology. Reynolds number (A), particle diameter (B) and solid volume
fraction (C) are selected as the input variables in this research. These variables with their levels (i.e.,
low (´1), central (0) and high (+1) levels) are presented in Table 2.

Table 2. Parameters with their symbol and level.

Parameters Symbol Level

´1 0 1

Re A 200 500 800
dp (nm) B 30 60 90

φ C 0.01 0.03 0.05

Response surface methodology presents some relationships between the several input variables
and one or more response variables. The Reynolds number, particle diameter and solid volume fraction
are used as input variables and the dimensionless total entropy generation rate is selected as a response
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parameter in this study. Box and Wilson [27] first presented this method. They suggested applying
a second-degree polynomial model to apply a sequence of designed experiments for obtaining the
optimal responses. This model can be summarized in the following mathematical relationship [28]:

Res “ α0 ` α1A` α2B` α3C` α11A2 ` α22B2 ` α33C2 ` α12AB` α13AC` α23BC (22)

This equation includes 3 linear terms (A, B and C), 3 squared terms (A2, B2 and C2), 3 two-factor
interaction terms (AB, AC and BC) and 1 intercept term. Also, Res is the dimensionless total entropy
generation rate and is calculated by coded values [29].

The Central Composite Face centered design (CCF) with 2a + 2a + b experiments is employed to
specify the response results. a = 3 and b = 6 are the number of factors and the number of center points,
respectively. As a result, 20 experiments with the Reynolds number (A), the particle diameter (B) and
the solid volume fraction (C) as the independent coded variables are needed for this problem. A series
of these experiments for nanofluid flow inside the channel are presented at Table 3.

Table 3. Central composite design and response results for nanofluid flow inside the channel.

Standard
Order

Coded Value Real Value Responses

A B C Re dp φ Nt

1 ´1 ´1 ´1 200 30 0.01 0.014441
2 1 ´1 ´1 800 30 0.01 0.043037
3 ´1 1 ´1 200 90 0.01 0.013952
4 1 1 ´1 800 90 0.01 0.031240
5 ´1 ´1 1 200 30 0.05 0.015356
6 1 ´1 1 800 30 0.05 0.059118
7 ´1 1 1 200 90 0.05 0.014793
8 1 1 1 800 90 0.05 0.038779
9 ´1 0 0 200 60 0.03 0.014956

10 1 0 0 800 60 0.03 0.041098
11 0 ´1 0 500 30 0.03 0.037220
12 0 1 0 500 90 0.03 0.027376
13 0 0 ´1 500 60 0.01 0.026047
14 0 0 1 500 60 0.05 0.033898
15 0 0 0 500 60 0.03 0.031349
16 0 0 0 500 60 0.03 0.031349
17 0 0 0 500 60 0.03 0.031349
18 0 0 0 500 60 0.03 0.031349
19 0 0 0 500 60 0.03 0.031349
20 0 0 0 500 60 0.03 0.031349

Usually, analysis of variance is utilized in response surface methodology (RSM) to benchmark
the degree of model accuracy. This analysis is completed by calculating the adjusted mean squares,
degree of freedom (DOF), sum of squares, F-value and p-value as the statistical estimators. F-value in
this analysis is a measure of variance of data about the mean. The input data shows more accuracy if
the F-values to be greater than the unity. Table 4 shows the results of Analysis of Variance (ANOVA)
analysis. As shown in this table, the F-values are in the range of 1.74 < F-value < 1441.41. This means
that the F-value is ample to overcome the requirements. In addition, the model is validated from
a statistical point of view by calculating the p-values. It is worth mentioning that the model is validated
for the p-values less than 0.05. Table 4 reveals that the model is validated from a statistical point of
view, as all p-values are less than 0.05. Note that according to the variance analysis, the regression is
significant for the p-values less than 0.01.
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Table 4. Analysis of variance.

Source DOF Sum of
Squares Contribution Adj Mean

Squares F-Value p-Value –

Model 9 0.002478 99.46% 0.000275 203.17 <0.0001 Significant
Linear 3 0.002249 90.26% 0.000750 553.16 <0.0001 –

A 1 0.001954 78.40% 0.001954 1441.41 <0.0001 –
B 1 0.000185 7.43% 0.000185 136.62 <0.0001 –
C 1 0.000110 4.43% 0.000110 81.45 <0.0001 –

Square 3 0.000039 1.58% 0.000013 9.68 0.0030 –
AA 1 0.000033 1.34% 0.000023 16.72 0.0020 –
BB 1 0.000004 0.14% 0.000005 3.98 0.0074 –
CC 1 0.000002 0.09% 0.000002 1.74 0.0217 –

Interaction 3 0.000190 7.62% 0.000063 46.68 <0.0001 –
AB 1 0.000121 4.85% 0.000121 89.11 <0.0001 –
AC 1 0.000060 2.40% 0.000060 44.09 <0.0001 –
BC 1 0.000009 0.37% 0.000009 6.85 0.0026 –

Residual Error 10 0.000014 0.54% 0.000001 – – –
Lack-of-Fit 5 0.000014 0.54% 0.000003 – – –
Pure Error 5 0.000000 0.00% 0.000000 – – –

Total 19 0.002492 100% – – – –

Figure 4 presents the residual plots to more benchmark the model accuracy. The normality of
the observations is examined by the normal probability plot for residual distribution. The normal
probability plot is straight line that this means the regression model is well fitted with the observed
values and the model is significant and adequate [29].

Entropy 2016, 18, 52 8 of 16 

 

Table 4. Analysis of variance. 

Source DOF Sum of 
Squares 

Contribution Adj Mean
Squares 

F-Value p-Value – 

Model 9 0.002478 99.46% 0.000275 203.17 <0.0001 Significant 
Linear 3 0.002249 90.26% 0.000750 553.16 <0.0001 – 

A 1 0.001954 78.40% 0.001954 1441.41 <0.0001 – 
B 1 0.000185 7.43% 0.000185 136.62 <0.0001 – 
C 1 0.000110 4.43% 0.000110 81.45 <0.0001 – 

Square 3 0.000039 1.58% 0.000013 9.68 0.0030 – 
AA 1 0.000033 1.34% 0.000023 16.72 0.0020 – 
BB 1 0.000004 0.14% 0.000005 3.98 0.0074 – 
CC 1 0.000002 0.09% 0.000002 1.74 0.0217 – 

Interaction 3 0.000190 7.62% 0.000063 46.68 <0.0001 – 
AB 1 0.000121 4.85% 0.000121 89.11 <0.0001 – 
AC 1 0.000060 2.40% 0.000060 44.09 <0.0001 – 
BC 1 0.000009 0.37% 0.000009 6.85 0.0026 – 

Residual Error 10 0.000014 0.54% 0.000001 – – – 
Lack-of-Fit 5 0.000014 0.54% 0.000003 – – – 
Pure Error 5 0.000000 0.00% 0.000000 – – – 

Total 19 0.002492 100% – – – – 

Figure 4 presents the residual plots to more benchmark the model accuracy. The normality of 
the observations is examined by the normal probability plot for residual distribution. The normal 
probability plot is straight line that this means the regression model is well fitted with the observed 
values and the model is significant and adequate [29]. 

(a) (b)

Figure 4. Residual plots (a) Percent; (b) Frequency. 

Table 5 presents the regression coefficients of Equation (22) along with the p-value of each 
coefficient. As mentioned earlier, the p-values less than 0.05 are acceptable otherwise, they should be 
removed. Table 5 shows that A, B, C, A2, AB, AC and BC are significant terms for the response (Nt). 
As a result, the relationship between response and independent variables can be summarized in 
following mathematical relationship: 

2 = 0.03117+0.01398A 0.00430B + 0.00332C 0.00287A
        0.00389AB+0.00273AC 0.00108BC
tN  

 
 (23) 

Finally, the R-squared (R2) and adjusted R-squared (R2-adj) are presented in Table 5 to perform 
more examination of the model accuracy. It can be seen that there is an excellent mathematical 
relationship between the independent variables and response as R-squared and adjusted R-squared 
values are in the vicinity of unity [28]. 

0.0030.0020.0010.000-0.001-0.002-0.003

99

95

90

80

70
60
50
40
30

20

10

5

1

Residual

Pe
rc

en
t

Normal Probability Plot
(response is Nt)

0.0020.0010.000-0.001-0.002

6

5

4

3

2

1

0

Residual

Fr
eq

ue
nc

y

Histogram
(response is Nt)

Figure 4. Residual plots (a) Percent; (b) Frequency.

Table 5 presents the regression coefficients of Equation (22) along with the p-value of each
coefficient. As mentioned earlier, the p-values less than 0.05 are acceptable otherwise, they should
be removed. Table 5 shows that A, B, C, A2, AB, AC and BC are significant terms for the response
(Nt). As a result, the relationship between response and independent variables can be summarized in
following mathematical relationship:

Nt “ 0.03117` 0.01398A´ 0.00430B` 0.00332C´ 0.00287A2

´0.00389AB` 0.00273AC´ 0.00108BC
(23)

Finally, the R-squared (R2) and adjusted R-squared (R2-adj) are presented in Table 5 to perform
more examination of the model accuracy. It can be seen that there is an excellent mathematical
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relationship between the independent variables and response as R-squared and adjusted R-squared
values are in the vicinity of unity [28].

Table 5. Regression analysis for Nt.

Nt

Term Coefficient p-Value

Constant 0.03117 <0.0001
A 0.01398 <0.0001
B ´0.00430 <0.0001
C 0.00332 <0.0001

A2 ´0.00287 0.0020
B2 0.00140 0.0740
C2 ´0.00093 0.2170
AB ´0.00389 <0.0001
AC 0.00273 <0.0001
BC ´0.00108 0.0026
– R2 = 99.46% R2-adj = 98.97%

Sensitivity analysis is a group of techniques that provides a way to show how a response would
be affected by input variables. This analysis can determine the level of response reaction to changes in
the values of specific variables. Therefore, it is very important for engineering designs. This analysis
provides useful guidelines for engineers during the design process. The sensitivity functions for the
response (the total entropy generation rate) are calculated by:

BNt

BA
“ 0.01398´ 0.00574A´ 0.00389B` 0.00273C (24)

BNt

BB
“ ´0.00430´ 0.00389A´ 0.00108C (25)

BNt

BC
“ 0.00332` 0.00273A´ 0.00108B (26)

3. Results and Discussion

The results of CFD and sensitivity analysis are presented in this section. The entropy contours
for pure fluid flow at different values of the Reynolds number are charted in Figure 5a. Note that in
this figure, solid and dash lines refer to the wall and centerline of the channel, respectively. It can be
seen that the total entropy generation increases from near the zero (i.e., 2 ˆ 10´12) at the centerline
to a maximum value (i.e., 7.5 ˆ 10´3) at the channel wall due to the zero temperature and velocity
gradients at the center of the channel, and the comparatively high values of these gradients around
the channel wall. It is worth mentioning that the entropy generation has a peak at the entrance of the
channel (see red lump) and it decreases along the channel. In addition, the total entropy generation
increases with increase in the Reynolds number. Note that the frictional entropy generation becomes
more significant for the higher Reynolds numbers. This augmentation in the total entropy generation
is in the vicinity of 113% for 200 < Re < 800. It is worth mentioning that the entropy generation is
dominated by the heat transfer irreversibility for low values of the Reynolds numbers.

Figure 5b discloses the effects of solid volume fraction of nanoparticle on the entropy generation
contours for nanofluid flow at Re = 500 and dp = 60 nm. Obviously, the entropy generation increases
with increase in the solid volume fraction of nanoparticles. This augmentation in the total entropy
generation is in the vicinity of 30% for 0.01 < φ < 0.05. This is due to the increase of both the viscosity
and thermal conductivity of the nanofluid, which leads to increase in the fluid friction and heat transfer
irreversibilities, respectively.
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The effects of nanoparticles diameters on the entropy generation contours for nanofluid flow
at Re = 500 and φ = 0.03 are examined in Figure 5c. It is indicated that the total entropy generation
decreases as nanoparticle diameter increases. This reduction in the total entropy generation is in the
vicinity of 32% for 30 < dp < 90. Note that the thermal entropy generation decreases with increase in
the nanoparticle diameter [30]. This is due to the increase in heat transfer rate due to the high thermal
conductivity of nanofluids, which is inversely proportional to the nanoparticle diameter at the same
solid volume fraction (see Equation (11)). Note that the particles with smaller diameter have higher
surface area for interaction with the fluid phase. Also, the frictional entropy generation decreases with
increase in nanoparticle diameter. This reduction is due to decrease in the viscosity with increase in the
nanoparticle diameter (see Equation (7)). As a result, the frictional and thermal entropy productions
follow same trend with increase in the nanoparticle diameter.

Figure 5d shows that how the Reynolds number affect on the total entropy generation contours
for nanofluid flow at φ = 0.03 and dp = 60 nm. As indicated in this figure, the total entropy generation
increases with increase in the Reynolds number. This augmentation in the total entropy generation is
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in the vicinity of 175% for 200 < Re < 800. Comparing to that of pure fluid (Figure 4), the magnitude of
total entropy generation, which increases with increase in Reynolds number, is much higher for pure
fluid. This indicates that the exergetic effectiveness of Reynolds number in channel flow decreases
with the addition of nanoparticle to the base fluid.

Figure 6 shows the Bejan number contour for nanofluid flow at φ = 0.05, dp = 30 nm and Re = 800.
The Bejan number is defined as the ratio of heat transfer irreversibility to total irreversibility
(summation of friction and heat transfer irreversibilities). It can be seen that the thermal entropy
generation is dominant at all over the domain except in small region at entrance of the channel as
the Bejan number is about 0.95. This may be due to the develop of flow along the channel that leads

to decrease in friction irreversibility. Note that for fully developed flow v = 0,
Bv
By
“ 0,

Bv
Bx
“ 0 and

Bu
Bx
“ 0. There are same trends for other values of the Reynolds number, the nanoparticles diameter

and the solid volume fraction.
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The predicted total entropy generation rates as a function of the Reynolds number (A), the
nanoparticles diameter (B) and the solid volume fraction of nanoparticle (C) are seen in Figure 7.
The effects of the Reynolds number and the nanoparticles diameter on the total entropy generation
rate for C = 0 (φ = 0.03) are seen in Figure 7a. It is found that the minimum entropy generation occurs
near the low level for the Reynolds number. It is worth mentioning that the change in nanoparticles
diameter has negligible effect on the entropy generation rate for low values of the Reynolds number.
Also, the minimum entropy generation at high values of the Reynolds number occurs near the high
level for the nanoparticles diameter. The effects of the Reynolds number and the solid volume fraction
on the total entropy generation rate for B = 0 (dp = 60 nm) are examined in Figure 7b. It can be seen
that the minimum entropy generation occurs near the low levels of the Reynolds number and solid
volume fraction of nanoparticle. Finally, Figure 7c shows the effects of the nanoparticles diameter and
solid volume fraction of nanoparticle on the total entropy generation rate for A = 0 (Re = 500). It is
indicated that the minimum entropy generation occurs near the high level of nanoparticles diameter
and the low level of solid volume fraction.
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Sensitivity analysis results for different values of the nanoparticles diameter and solid volume fraction
are presented in Table 6 and Figure 8. Note that these are determined by utilizing Equations (24)–(26).
It is worth mentioning that the response increases with increase in the design parameters for positive
values of sensitivity conversely, the negative values of sensitivity reveal that an increase in input
variables leads to decrease in the response. The sensitivities of the total entropy generation rate to
different parameters at Re = 500 (A = 0), different values of nanoparticles diameter dp = 30, 60, and
90 nm (B = ´1, 0 and 1) and the solid volume fraction φ = 0.01, 0.03 and 0.05 (C = ´1, 0 and 1) are
presented in Figure 8. As shown in this figure, the total entropy generation is more sensitive to the
Reynolds number rather than the nanoparticles diameter or solid volume fraction. The sensitivities of
the total entropy generation to the Reynolds number and nanoparticles diameter increase with increase
in the solid volume fraction. Also, the sensitivity of the total entropy generation to the solid volume
fraction is constant at different values of it. Moreover, by comparing the results shown in Figure 8a–c,
we can conclude that the sensitivities of total entropy generation to the Reynolds number and the solid
volume fraction decrease with increase in nanoparticles diameter.

Table 6. Sensitivity analysis of responses, A = 0.

B C
Sensitivity

BNt
BA

BNt
BB

BNt
BC

´1
´1 0.0151 ´0.0032 0.0044
0 0.0179 ´0.0043 0.0044
1 0.0206 ´0.0054 0.0044

0
´1 0.0113 ´0.0032 0.0033
0 0.0140 ´0.0043 0.0033
1 0.0167 ´0.0054 0.0033
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Table 6. Cont.

B C
Sensitivity

BNt
BA

BNt
BB

BNt
BC

1
´1 0.0074 ´0.0032 0.0022
0 0.0101 ´0.0043 0.0022
1 0.0128 ´0.0054 0.0022
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4. Conclusions

Laminar nanofluid flow and convective heat transfer in a channel were investigated numerically.
The numerical solution method was validated by comparing the simulated results with experimental
data for internal flow. An exergy analysis was performed by using velocity and temperature gradients.
Beside this, a sensitivity analysis was arranged by response surface methodology to specify the sensitivity
of the total entropy generation to different parameters such as the Reynolds number, nanoparticles
diameter and solid volume fraction. The main findings of this research are summarized as follows:

‚ The total entropy generation for nanofluid increases with increase in the Reynolds number and
solid volume fraction. These augmentations are in the vicinity of 175% and 30% for 200 < Re < 800
and 0.01 < φ < 0.05, respectively.

‚ The total entropy generation decreases with increase in the nanoparticles diameter. This reduction
is in the vicinity of 32% for 30 < dp < 90.

‚ The magnitude of total entropy generation, which increases with increase in the Reynolds number,
is much higher for pure fluid rather than the nanofluid.
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‚ The change in nanoparticles diameter has negligible effect on the entropy generation rate for low
values of the Reynolds number.

‚ The total entropy generation is more sensitive to the Reynolds number rather than the nanoparticles
diameter or solid volume fraction.

‚ The sensitivities of the total entropy generation to the Reynolds number and nanoparticles
diameter increase with increase in the solid volume fraction.

‚ The sensitivities of the total entropy generation to the Reynolds number and the solid volume
fraction decrease with increase in nanoparticles diameter.

Author Contributions: This paper was prepared using the contributions of all the authors. All authors have read
and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

a number of factors (-)
ANOVA analysis of variance (-)
Kb Boltzmann constant (-)
Be Bejan number (-)
b number of center points (-)
C specific heat at constant pressure (J¨kg´1¨K´1)
CCD central composite design (-)
CCF central composite face centered (-)
D half of the channel gap (m)
d f molecular diameter of base fluid (nm)
dp nanoparticle diameter (nm)
DOE design of experiments (-)
h heat transfer coefficient (W¨m´2¨K´1)
k thermal conductivity (W¨m´1¨K´1)
L length of the channel (m)
lBF mean free path of water (-)
Ng dimensionless local volumetric entropy generation rate (-)
Nt dimensionless total entropy generation rate (-)
p pressure (Pa)
Pe Peclet number (ReˆPr)
Pr Prandtl number (ν{α)
Re Reynolds number (ρU8Dµ´1)
Res response (-)
RSM response surface methodology (-)
S3

g entropy generation rate (W¨m´3¨K´1)
T temperature (K)
u, v velocity component in x and y directions, respectively (m¨ s´1)
x, y rectangular coordinates components (m)

Greek Symbols

α thermal diffusivity of fluid (m2¨ s´1)
µ dynamic viscosity (kg¨m´1¨ s´1)
ν kinematic viscosity (m2¨ s´1)
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ρ density of the fluid (kg¨m´3)
φ solid volume fraction (-)
δ distance between particles (nm)
8 free stream (-)

Subscripts/Superscripts

B Brownian (-)
eff effective
f fluid
P particle-pressure (-)
s solid
w wall

References

1. Santra, A.K.; Sen, S.; Chakraborty, N. Study of heat transfer due to laminar flow of copper–water nanofluid
through two isothermally heated parallel plates. Int. J. Therm. Sci. 2009, 48, 391–400. [CrossRef]

2. Radisi, A.; Ghasemi, B.; Aminossadati, S.M. A numerical study on the forced convection of laminar nanofluid
in a microchannel with both slip and no-slip conditions. Numer. Heat Transf. 2011, 59, 114–129.

3. Bianco, V.; Manca, O.; Nardini, S. Performance analysis of turbulent convection heat transfer of Al2O3

water-nanofluid in circular tubes at constant wall temperature. Energy 2014, 77, 403–413. [CrossRef]
4. Heyhat, M.M.; Kowsary, F.; Rashidi, A.M.; Momenpour, M.H.; Amrollahi, A. Experimental investigation of laminar

convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime.
Exp. Therm. Fluid Sci. 2013, 44, 483–489. [CrossRef]

5. Mahian, O.; Kianifar, A.; Kleinstreuer, C.; Al-Nimr, M.A.; Pop, I.; Wongwises, S.; Sahin, A.Z. A review of
entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 2013, 65, 514–532. [CrossRef]

6. Malvandi, A.; Ganji, D.D.; Hedayati, F.; Rad, E.Y. An analytical study on entropy generation of nanofluids
over a flat plate. Alex. Eng. J. 2013, 52, 595–604. [CrossRef]

7. Khaleduzzaman, S.S.; Sohel, M.R.; Saidur, R.; Mahbubu, I.M.; Shahrul, I.M.; Akash, B.A.; Selvaraj, J.
Energy and exergy analysis of alumina–water nanofluid for an electronic liquid cooling system. Int. Commun.
Heat Mass Transf. 2014, 57, 118–127. [CrossRef]

8. Khairul, M.A.; Mahbubul, I.M.; Saidur, R.; Hepbasli, A.; Hossain, A. Heat transfer performance and exergy
analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int. Commun. Heat Mass Transf.
2014, 50, 8–14. [CrossRef]

9. Mahmud, S.; Fraser, R.A. Thermodynamic analysis of flow and heat transfer inside channel with two parallel plates.
Int. J. Heat Mass Transf. 2002, 2, 140–146. [CrossRef]

10. Bianco, V.; Manca, O.; Nardini, S. Second law analysis of Al2O3-Water nanofluid turbulent forced convection
in a circular cross section tube with constant wall temperature. Adv. Mech. Eng. 2013, 5, 920278. [CrossRef]

11. Mah, W.H.; Hung, Y.M.; Guo, N. Entropy generation of viscous dissipative nanofluid flow in microchannels.
Int. J. Heat Mass Transf. 2012, 55, 4169–4182. [CrossRef]

12. Hajialigol, W.; Fattahi, A.; Haji-Ahmadi, M.; EbrahimQomi, M.; Kakoli, E. MHD mixed convection and
entropy generation in a 3-D microchannel using Al2O3-water nanofluid. J. Taiwan Inst. Chem. Eng. 2015, 46,
30–42. [CrossRef]

13. Korukcu, M.O. 2D temperature analysis of energy and exergy characteristics of laminar steady flow across
a square cylinder under strong blockage. Entropy 2015, 17, 3124–3151. [CrossRef]

14. Rashidi, S.; Bovand, M.; Esfahani, J.A. Heat transfer enhancement and pressure drop penalty in porous solar
heat exchangers: A sensitivity analysis. Energy Convers. Manag. 2015, 103, 726–738. [CrossRef]

15. Rashidi, S.; Bovand, M.; Esfahani, J.A. Structural optimization of nanofluid flow around an equilateral
triangular obstacle. Energy 2015, 88, 385–398. [CrossRef]

16. Rashidi, S.; Bovand, M.; Esfahani, J.A.; Ahmadi, G. Discrete particle model for convective Al2O3-water
nanofluid around a triangular obstacle. Appl. Therm. Eng. 2016. in press.

http://dx.doi.org/10.1016/j.ijthermalsci.2008.10.004
http://dx.doi.org/10.1016/j.energy.2014.09.025
http://dx.doi.org/10.1016/j.expthermflusci.2012.08.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.06.010
http://dx.doi.org/10.1016/j.aej.2013.09.002
http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.07.015
http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.11.006
http://dx.doi.org/10.1016/S1164-0235(02)00062-6
http://dx.doi.org/10.1155/2013/920278
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.058
http://dx.doi.org/10.1016/j.jtice.2014.09.002
http://dx.doi.org/10.3390/e17053124
http://dx.doi.org/10.1016/j.enconman.2015.07.019
http://dx.doi.org/10.1016/j.energy.2015.05.056


Entropy 2016, 18, 52 16 of 16

17. Breuer, M.; Bernsdorf, J.; Zeiser, T.; Durst, F. Accurate computations of the laminar flow past a square
cylinder based on two different methods: Lattice-Boltzmann and finite-volume. Int. J. Heat Fluid Flow 2000,
21, 186–196. [CrossRef]

18. Valipour, M.S.; Masoodi, R.; Rashidi, S.; Bovand, M.; Mirhosseini, M. A numerical study of convection
around a square porous cylinder using Al2O3-H2O Nanofluid. Therm. Sci. 2014, 18, 1305–1314. [CrossRef]

19. Bovand, M.; Rashidi, S.; Esfahani, J.A. Enhancement of heat transfer by nanofluids and orientations of the
equilateral triangular obstacle. Energy Convers. Manag. 2015, 97, 212–223. [CrossRef]

20. Zhou, S.Q.; Ni, R. Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl. Phys. Lett.
2008, 92, 093–123. [CrossRef]

21. Masoumi, N.; Sohrabi, N.; Behzadmehr, A. A new model for calculating the effective viscosity of nanofluids.
J. Appl. Phys. D 2009, 42, 055501. [CrossRef]

22. Rashidi, S.; Bovand, M.; Esfahani, J.A. Opposition of Magnetohydrodynamic and Al2O3-water nanofluid
flow around a vertex facing triangular obstacle. J. Mol. Liq. 2016, 215, 276–284. [CrossRef]

23. Chon, C.H.; Kihm, K.D.; Lee, S.P.; Choi, S.U. Empirical correlation finding the role of temperature and
particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl. Phys. Lett. 2005, 87, 153107. [CrossRef]

24. Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 1979, 101,
718–729. [CrossRef]

25. Esfahani, J.A.; Shahabi, P.B. Effect of non-uniform heating on entropy generation for the laminar developing
pipe flow of a high Prandtl number fluid. Energy Convers. Manag. 2010, 51, 2087–2097. [CrossRef]

26. Patankar, S. Numerical Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 1980.
27. Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 1951,

13, 1–45.
28. Montgomery, D.C. Design and Analysis of Experiments; Wiley: Hoboken, NJ, USA, 1996.
29. Bovand, M.; Valipour, M.S.; Dincer, K.; Eiamsa-ard, S. Application of Response Surface Methodology to

optimization of a standard Ranque–Hilsch vortex tube refrigerator. Appl. Therm. Eng. 2014, 67, 545–553. [CrossRef]
30. Yarmand, H.; Ahmadi, G.; Gharehkhani, S.; Kazi, S.N.; Safaei, M.R.; Sadat-Alehashem, M.; Mahat, A.B.

Entropy generation during turbulent flow of zirconia-water and other nanofluids in a square cross section
tube with a constant heat flux. Entropy 2014, 16, 6116–6132. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0142-727X(99)00081-8
http://dx.doi.org/10.2298/TSCI121224061V
http://dx.doi.org/10.1016/j.enconman.2015.03.042
http://dx.doi.org/10.1063/1.2890431
http://dx.doi.org/10.1088/0022-3727/42/5/055501
http://dx.doi.org/10.1016/j.molliq.2015.12.034
http://dx.doi.org/10.1063/1.2093936
http://dx.doi.org/10.1115/1.3451063
http://dx.doi.org/10.1016/j.enconman.2010.02.022
http://dx.doi.org/10.1016/j.applthermaleng.2014.03.039
http://dx.doi.org/10.3390/e16116116
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Problem Statement and Computational Model 
	Results and Discussion 
	Conclusions 

