# Non-Extensive Entropic Distance Based on Diffusion: Restrictions on Parameters in Entropy Formulae

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- it is positive for any two different distributions;
- it is zero for comparing any distribution with itself;
- it is symmetric.

## 2. Probability Distributions

## 3. Master Equation

## 4. Entropic Distance

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Rényi, A. On Measures of Entropy and Information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1960; University of California Press: Berkeley, CA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Rényi, A. Probability Theory; North Holland: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys.
**1988**, 52, 479–487. [Google Scholar] [CrossRef] - Tsallis, C. Nonextensive statistics: Theoretical, experimental and computational evidences and connections. Braz. J. Phys.
**1999**, 29. [Google Scholar] [CrossRef] - Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Almeida, M.P. Generalized entropies from first principles. Physica A
**2001**, 300, 424–432. [Google Scholar] [CrossRef] - Tempesta, P. Group entropies, correlation laws and zeta functions. Phys. Rev. E
**2015**, 84, 021121. [Google Scholar] [CrossRef] [PubMed] - Hanel, R.; Thurner, S. A comprehensive classification of complex statistical systems and axiomatic derivation of their entropy and distribution functions. Europhys. Lett.
**2011**, 93, 20006. [Google Scholar] [CrossRef] - Hanel, R.; Thurner, S. When do generalised entropies apply? How phase space volume determines entropy. Europhys. Lett.
**2011**, 96, 50003. [Google Scholar] [CrossRef] - Hanel, R.; Thurner, S.; Gell-Mann, M. How multiplicity determines entropy and derivation of the maximum entropy principle for complex systems. Proc. Natl. Acad. Sci. USA
**2014**, 111, 6905–6910. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Hanel, R.; Thurner, S. Generalized (c,d) entropies and aging random walks. Entropy
**2013**, 15, 5324–5337. [Google Scholar] [CrossRef] - Kaniadakis, G. Maximum entropy principle and power-law tailed distributions. Eur. Phys. J. B
**2009**, 70, 3–13. [Google Scholar] [CrossRef] - Kaniadakis, G. Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions. Entropy
**2013**, 15, 3983–4010. [Google Scholar] [CrossRef] - Biró, T.S.; Ván, P. Zeroth law compatibility of non-additive thermodynamics. Phys. Rev. E
**2011**, 83, 061187. [Google Scholar] [CrossRef] [PubMed] - Biró, T.S. Abstract composition rule for relativistic kinetic theory in the thermodynamical limit. Europhys. Lett.
**2008**, 84, 56003. [Google Scholar] [CrossRef] - Beck, C. Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett.
**2001**, 87, 180601. [Google Scholar] [CrossRef] - Beck, C.; Cohen, E.G.D. Superstatistics. Physica A
**2003**, 322, 267–275. [Google Scholar] [CrossRef] - Abe, S.; Beck, C.; Cohen, E.G.D. Superstatistics, thermodynamics and fluctuations. Phys. Rev. E
**2007**, 76, 031102. [Google Scholar] [CrossRef] [PubMed] - Biró, T.S. Is There a Temperature? Springer: New York, NY, USA, 2011. [Google Scholar]
- Ván, P.; Barnaföldi, G.G.; Biró, T.S.; Ürmössy, K. Nonadditive thermostatistics and thermodynamics. J. Phys. Conf. Ser.
**2012**, 394, 012002. [Google Scholar] [CrossRef] - Biró, T.S. Ideal gas provides q-entropy. Physica A
**2013**, 392, 3132–3139. [Google Scholar] [CrossRef] - Biró, T.S.; Ván, P.; Barnaföldi, G.G. Quark-gluon plasma connected to finite heat bath. Eur. phys. J. A
**2013**, 49. [Google Scholar] [CrossRef] - Biró, T.S.; Barnaföldi, G.G.; Ván, P. New Entropy Formula with Fluctuating Reservoir. Physica A
**2015**, 417, 215–220. [Google Scholar] [CrossRef] - Biró, T.S.; Ván, P.; Barnaföldi, G.G.; Ürmössy, K. Statistical Power Law due to Reservoir Fluctuations and the Universal Thermostat Independence Principle. Entropy
**2014**, 16, 6497–6514. [Google Scholar] [CrossRef] - Abe, S. A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A
**1997**, 224, 326–330. [Google Scholar] [CrossRef] - Kaniadakis, G. Relativistic entropy and related Boltzmann kinetics. Eur. Phys. J. A
**2009**, 40, 275–287. [Google Scholar] [CrossRef] - Ubriaco, M.R. Entropies based on factional calculus. Phys. Lett. A
**2009**, 373, 2516–2519. [Google Scholar] [CrossRef] - Naudts, J. Deformed exponentials and logarithms in generalized tehrmostatistics. Physica A
**2002**, 316, 323–334. [Google Scholar] [CrossRef] - Naudts, J. Continuity of a class of entropies and relative entropies. Rev. Math. Phys.
**2004**, 16, 809–822. [Google Scholar] [CrossRef] - Naudts, J. Generalized thermostatistics based on deformed exponential and logarithmic functions. Physica A
**2004**, 340, 32–40. [Google Scholar] [CrossRef] - Naudts, J. Generalised Exponential Families and Associated Entropy Functions. Entropy
**2008**, 10, 131–149. [Google Scholar] [CrossRef] - Tsallis, C. Generalized entropy-based criterion for consistent testing. Phys. Rev. E
**1998**, 58. [Google Scholar] [CrossRef] - Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat.
**1951**, 22, 79–86. [Google Scholar] [CrossRef] - Kullback, S. Letter to the Editor: The Kullback–Leibler distance. Am. Stat.
**1987**, 41, 340–341. [Google Scholar] - Van Erven, T.; Harremoës, P. Rényi Divergence and Kullback–Leibler Divergence. IEEE Trans. Inf. Theory
**2014**, 60, 3797–3820. [Google Scholar] [CrossRef] - Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Physica A
**2001**, 296, 405–425. [Google Scholar] [CrossRef] - Borges, E.P.; Raditi, I. A family of nonextensive entropies. Phys. Lett. A
**1998**, 246, 399–402. [Google Scholar] [CrossRef] - Schwämmle, V.; Tsallis, C. Two-parameter generalization of the logarithm and exponenetial functions and the Boltzmann–Gibbs–Shannon entropy. J. Math. Phys.
**2007**, 48, 113301. [Google Scholar] [CrossRef] - Tsallis, C.; Cirto, L.J.L. Black hole thermodynamical entropy. Eur. Phys. J. C
**2013**, 73. [Google Scholar] [CrossRef] - Liu, B.; Goree, J. Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. Phys. Rev. Lett.
**2008**, 100, 055033. [Google Scholar] [CrossRef] [PubMed] - Amour, R.; Tribecke, M. Variable charge dust acoustic solitary waves in a dusty plasma with non-extensive electron velocity distribution. Phys. Plasmas
**2010**, 17, 063702. [Google Scholar] [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Biró, T.S.; Schram, Z.
Non-Extensive Entropic Distance Based on Diffusion: Restrictions on Parameters in Entropy Formulae. *Entropy* **2016**, *18*, 42.
https://doi.org/10.3390/e18020042

**AMA Style**

Biró TS, Schram Z.
Non-Extensive Entropic Distance Based on Diffusion: Restrictions on Parameters in Entropy Formulae. *Entropy*. 2016; 18(2):42.
https://doi.org/10.3390/e18020042

**Chicago/Turabian Style**

Biró, Tamás Sándor, and Zsolt Schram.
2016. "Non-Extensive Entropic Distance Based on Diffusion: Restrictions on Parameters in Entropy Formulae" *Entropy* 18, no. 2: 42.
https://doi.org/10.3390/e18020042