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Abstract: Let us begin by considering two book titles: A provocative title, What Is a Statistical Model?
McCullagh (2002) and an alternative title, In a Search for Structure. The Fisher Information. Gromov (2012).
It is the richness in open problems and the links with other research domains that make a research
topic exciting. Information geometry has both properties. Differential information geometry is
the differential geometry of statistical models. The topology of information is the topology of
statistical models. This highlights the importance of both questions raised by Peter McCullagh
and Misha Gromov. The title of this paper looks like a list of key words. However, the aim is to
emphasize the links between those topics. The theory of homology of Koszul-Vinberg algebroids
and their modules (KV homology in short) is a useful key for exploring those links. In Part A
we overview three constructions of the KV homology. The first construction is based on the
pioneering brute formula of the coboundary operator. The second construction is based on the
theory of semi-simplicial objects. The third construction is based on the anomaly functions of abstract
algebras and their abstract modules. We use the KV homology for investigating links between
differential information geometry and differential topology. For instance, “dualistic relation of
Amari” and “Riemannian or symplectic Foliations”; “Koszul geometry” and “linearization of webs”;
“KV homology” and “complexity of models”. Regarding the complexity of a model, the challenge
is to measure how far from being an exponential family is a given model. In Part A we deal with
the classical theory of models. Part B is devoted to answering both questions raised by McCullagh
and B Gromov. A few criticisms and examples are used to support our criticisms and to motivate
a new approach. In a given category an outstanding challenge is to find an invariant which encodes
the points of a moduli space. In Part B we face four challenges. (1) The introduction of a new theory
of statistical models. This re-establishment must answer both questions of McCullagh and Gromov;
(2) The search for an characteristic invariant which encodes the points of the moduli space of
isomorphism class of models; (3) The introduction of the theory of homological statistical models.
This is a pioneering notion. We address its links with Hessian geometry; (4) We emphasize the
links between the classical theory of models, the new theory and Vanishing Theorems in the
theory of homological statistical models. Subsequently, the differential information geometry has
a homological nature. That is another notable feature of our approach. This paper is dedicated to our
friend and colleague Alexander Grothendieck.
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1. Introduction

1.1. The Notation

Throughout the paper we use tha following notation. N is the set of non negative integers, Z is
the ring of integers, R is the field of real numbers, C∞(M) is the associative commutative algebra of
real valued smooth functions in a smooth manifold M. Let ∇ be a Koszul connection in a manifold M,
R∇ is the curvature tensor of ∇. It is defined by

R∇(X, Y) = ∇X∇Y −∇Y∇X −∇[X,Y].

T∇ is the torsion tensor of ∇. It is defined by

T∇(X, Y) = ∇XY−∇YX− [X, Y].

Let X be a smooth vector field in M. LX∇ is the Lie derivative of ∇ in the direction X · ι(X)R∇ is
the inner product by X. To a pair of Koszul connections (∇,∇∗) we assign three differential operators.
They are denoted by D∇∇

∗
, D∇ and D∇.

(A.1) D∇∇
∗

is a first order differential operator. It is defined in the vector bundle Hom(TM, TM).
Its values belong to the vector bundle Hom(TM⊗2, TM).

(A.2) D∇ and D∇ are 2nd order differential operators. They are defined in the vector bundle TM.
Their values belong to the vector bundle Hom(TM⊗2, TM). Let X be a section of TM and let ψ

be a section of T∗M⊗ TM. The differential operators just mentioned are defined by

D∇∇
∗
(ψ) = ∇∗ ◦ ψ− ψ ◦ ∇, (1a)

D∇(X) = LX∇− ι(X)R∇, (1b)

D∇(X) = ∇2(X). (1c)

Part A of this paper is partially devoted to the global analysis of the differential equation

FE(∇∇∗) : D∇∇
∗
(ψ) = O.

The solutions to FE(∇∇∗) are useful for addressing the links between the KV homology,
the differential topology and the information geometry.

The purpose of a forthcoming paper is the study of the differential equations

FE∗(∇) : D∇(X) = 0,

FE∗∗(∇) : D∇(X) = 0.

In the Appendix A to this paper we overview the role played by the solutions to FE∗∗(∇) in
some still open problems.

1.2. Some Explicit Formulas

Let x = (x1, ..., xm) be a system of local coordinate functions of M. In those coordinates the
Christoffel symbols of both ∇ and ∇∗ are denoted by Γij:k and Γ∗ij:k respectively. We use those
coordinate functions for presenting an element ψ ∈ M(∇∇∗) as a matrix [ψij]. Thus by setting
∂i = ∂

∂xi
one has

∇∂i∂j = Γij:k∂k.
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We focus on FE(∇∇∗) and of FE∗∗(∇). They are equivalent to the following system of partial
differential equations

[Sij:k] :
∂ψkj

∂xi
− ∑

1≤`≤m
(Γij:`ψk` − Γ∗i`:kψ` j) = 0,

[Θk
ij(X)] :

∂2Xk

∂xi∂xj
+ ∑

α

[Γk
iα

∂Xα

∂xj
+ Γk

jα
∂Xα

∂xi
− Γα

ij ∂Xk
∂xα

] + ∑
α

[
∂Γk

jα

∂xi
+ ∑

β

[Γβ
jαΓk

iβ − Γβ
ijΓ

k
βα]]Xα = 0.

In Part A we address the links between the following topics DTO, HGE, IGE and ENT. Those topics
are presented as vertices of a square whose centre is denoted by KVH.

(1) DTO stands for Differential TOpology. In DTO, FWE stands for Foliations and WEbs.
(2) HGE stands for Hessian GEometry. Its sources are the geometry of bounded domains,

the topology of bounded domains, the analysis in bounded domains. Among the notable
references are [1–3]. Hessian geometry has significant impacts on thermodynamics, see [4,5],
About the impacts on other related topics the readers are referred to [6–12].

(3) IGE stands for Information GEometry. That is the geometry of statistical models. More generally
its concern is the differential geometry of statistical manifolds. The range of the information
geometry is large [13]. Currently, the interest in information geometry is increasing. This comes
from the links with many major research domains [14–16]. We address some significant aspects
of those links. Non-specialist readers are referred to some fundamental references such as [17,18].
See also [4,19–23]. The information geometry also provides a unifying approach to many problems
in differential geometry, see [21,24,25]. The information geometry has a large scope of applications,
e.g., physics, chemistry, biology and finance.

(4) ENT stands for ENTropy. The notion of entropy appears in many mathematical topics, in Physics,
in thermodynamics and in mechanics. Recent interest in the entropy function arises from its
topological nature [14]. In Part B we introduce the entropy flow of a pair of vector fields.
The Fisher information is then defined as the Hessian of the entropy flow.

(5) KVH stands for KV Homology. The theory of KV homology was developed in [9]. The motivation
was the conjecture of M. Gerstenhaber in the category of locally flat manifolds. In this paper
we emphasize other notable roles played by the theory of KV homology. It is also useful for
discussing a problem raised by John Milnor in [26].

The conjecture of Gerstenhaber is the following claim.

Every restricted theory of deformation generates its proper cohomology theory [27].

Loosely speaking, in a restricted theory of deformation one has the notion of both infinitesimal
deformation and trivial deformation. The challenge is the search for a cochain complex admitting
infinitesimal deformations as cocycles. In the present paper, KVH is useful for emphasizing the links
between the vertices DTO, HGE, IGE and ENT. That is our reason for devoting a section to KVH.

Warning.

We propose to overview the structure of this paper. The readers are advised to read this paper as through it
were a wander around the vertices of the square “DTO-HGE-IGE-ENT”. Thus, depending on his interests and
his concerns a reader could walk several times across the same vertex. For instance the information geometry
appears in many sections, depending on the purpose and on the aims.

1.3. The content of the Paper

This paper is divided into Part A and Part B.
Part A: Sections 1–7.
Section 1 is the Introduction. Section 2 is devoted to algebroids, modules of algebroids and the

theory of KV homology of the Koszul-Vinberg algebroids. To introduce the KV cohomology we have
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adopted three approaches. Each approach is based on its specific machinery. However, the readers will
face three cochain complexes which are pairwise quasi isomorphic. The KV cohomology is present
throughout this paper. At the end of Part B the reader will see that the theory of statistical models is but
a vanishing theorem in the theory of KV hohomology. The first approach is based on the pioneering
fundamental brute formula of the coboundary operator. Historically, the brute formula is the first to
have been constructed [9].

This first approach is used in many sections of this paper. Regarding the theory of deformation
of the Koszul Geometry, the KV cohomology is the solution to the conjecture of Gerstenhaber. In the
theory of modules of KV algebroids the role played by the KV cohomology is practically SIMILAR
to the role played by the Hocshild cohomology in the category of associative alggebroids and their
modules. This last remark holds for the role played by the Chevalley-Eilenberg cohomology in the
category of Lie algebroids and their modules. Nevertheless, our comparison fails in the theory of
Extension of modules over algebroids. In both categories of extensions of modules over associative
algebroids and Lie algebroids the moduli space of equivalence class is encoded by cohomology classes
of degree one. In the category of extensions of KV modules the moduli space is encoded by a spectral
sequence. That was a unexpected feature in [9]. The pioneering coboundary operator of Nijenhuis [28]
may be derived from the total brute coboundary operator introduced in [29].

The second approach is based on the notion of simplecial objects.
The third approach is based on the theory of anomaly functions for abstract algebras and their

abstract modules. The idea has emerged from recent correspondences with one of my former teachers.
The KV anomaly function of a Koszul connection ∇ may be expressed in terms of the ∇-Hessian
operators ∇2, namely

KV∇(X, Y, Z) =< ∇2(Z), (X, Y) > − < ∇2(Z), (Y, X) > .

This approach is a powerful for addressing the relationships between the global analysis,
the differential topology and the information geometry. The approach by the anomaly functions
suggests many conjectures. Among those conjectures is the following.

Conjecture. Every anomaly function of algebras and of modules yields a theory of cohomology of algebras
and modules.

Section 3. This section is devoted to the theory of KV (co)homology of Koszul-Vinberg algebroids.
We focus on cohomological data which are used in the paper.

Section 4. This section is devoted the KV algebroids which are defined by structures of locally
flat manifold. The KV cohomology theory is used for highlighting the impacts on the differential
topology of the information geometry and its methods. We make the most of some relationships
between the KV cohomology and the global analysis of the differential equation FE∗(∇∇∗). We also
sketch the global analysis of the differential equation

FE∗∗(∇).

This leads to the function
LC 3 ∇ → rb(∇) ∈ Z.

We explain how to interpret rb as a distance. (See the Appendix A to this paper ). For instance,
the function rb gives rise to an numerical invariant rb(M) which measures how far from being
an exponential family is a statistical model M. This result is a significant contribution to the information
geometry, see [18,22,24].

Section 5. We are interested in how interact the information geometry, the KV cohomology and
the geometry and Koszul. In particular we relate the notion of hyperbolicity and vanishing theorems
in the KV cohomology.
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Section 6. This section is devoted to the homological version of the geometry of Koszul.
Our approach involves the dualistic relation of Amari. The KV cohomology links the dualistic
relation with the geometry of Koszul.

Section 7. In this section summarize the highlighting features of Part A.

Part B: Sections 8–14.

Section 8. This is the starting section of the second part B. This Part B is devoted to new insights
in the theory of statistical models. On 2002 Peter McCullar raised the provocative question.

What Is a Statistical Model

Across the world (Australia, Canada, Europe, US) the McCullaghs paper became the object of
many criticisms and questions by eminent theoretical and applied statisticians [30].

Part B is aimed at supplying some deficiencies in the current theory of statistical models.
We address some criticisms which support the need of re-establishing the theory of statistical model
for measurable sets. Those criticisms are used for highlight the lack of both Structure and Relations.
Those criticisms also highlight the search of M. Gromov [15]. The need for structures and relations
was the intuition of Peter McCullagh. Loosely speaking there is a lack of Intrinsic Geometry in the
sense of Erlangen. Subsequently the lack of intrinsic geometry yields other things that are lacking.
The problem of the moduli space of models is not studied, although this would be crucial for applied
information geometry, and for applied statistics. That might be a key in reading some the controversy
about [30].

Section 9. In this section we address the problem of moduli space of statistical models. The problem
of moduli space in a category is a major question in Mathematic. It is generally a difficult
problem that involves finding a characteristic invariant which encodes the point of the moduli space.
Such an invariant is a crucial step toward the geometry and the topology of a moduli space.
Among other needs, the problem of encoding the moduli space of models has motivated our need of
a new approach, that is to say the need of a theory having nice mathematical structure and relations.
In this Part B the problem of the moduli space is solved. To summarize the theorem describing the
moduli spaces of statistical models we need the following notation.

A gauge structure in a manifold M is a pair (M,∇) where ∇ is a Koszul connection in M.
The category of gauge structures in M is denoted by LC(M). We are concerned with the vector bundle
T∗⊗2M of bi-linear forms in the tangent bundle TM. The sheaf of sections of T∗⊗2M is denoted
by BL(M).

The category of m-dimensional statistical models (to be defined) of a measurable (Ξ, Ω) is denoted
by GMm(Ξ, Ω). The category of random functors

LC(M)× Ξ→ BL(M)

is denoted by F (LC,BL)(M). One of the interesting breakthrough in this Part.B is the following
solution to the problem of moduli.

Theorem 1. There exists a functor

GMm(Ξ, Ω) 3M→ qM ∈ BL(M) (2)

which determines a model M up to isomorphism.
Let p be the probability density of a model M. The mathematical expectation of qM(∇) is defined by

E(qM(∇)) =
∫

Ξ
pqM(∇). (3)

The quantity E(qM)(∇) does not depend on the Koszul connection ∇. It is called the Fisher information of M.
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This theorem emphasizes the Search for structure [16].
Section 10. This section is devoted to introduce the category of homological statistical models.

This may be interpreted as a variant of the topology of the information. Another approach is to be
found in Baudot-Bennequin [31].

The current theory (as in [17]) is called the classical (or local) theory. This means that a statistical
model as in [17,18] is derived from the localization of a homological model. Loosely speaking such a
model expresses a local vanishing theorem in the theory of homological statistical models.

Section 11. This section is devoted to discussing the links between the geometry of Koszul and
the theory of homological statistical models. Those investigations lead to this notable feature.

The Geometry of Koszul, the homological statistical models and the classical information geometry
locally look alike.

Section 12. Through Section 9 the framework is the category of equivariant locally trivial fibration.
This assumption is weakened in Section 12. We recall the relationships between the Cech cohomology
and the theory of locally trivial fiber bundle. We extend the scope of applications of the methods of the
information geometry. Those extensions produce some interesting results. Here is an instance.

Theorem 2. Let M be an oriented compact real analytic manifold and let Cω(M2) be the space of real valued
analytic functions in M2. There exists a non trivial map of Cω(M2) in the family of (positive) stratified
Riemannian foliation in M.

Sections 13. This Section 13 is a variant of Section 7.
Section 14 is an appendix we have mentioned. It is devoted to overview a few new

significant results. Those results are derived from the global analysis of the differential operators{
D∇, D∇,∇ ∈ LC(M)

}
.

The solutions to a few open problems are announced.

2. Algebroids, Moduls of Algebroids, Anomaly Functions

The purpose of this section is to introduce basic notions in the algebraic topology of locally
flat manifolds.

2.1. The Algebroids and Modules

Given a smooth fiber bundle
B→ M

the set of smooth sections of B is denoted by Γ(B).

Definition 1. An (abstract) real algebra is a real vector space A endowed with a bilinear map

A×A → A

Definition 2. An (abstract) real two-sided module of an (abstract) algebra A is a real vector space W with two
bilinear mappings

A×W →W,

W ×A →W

Warning.
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Here algebra means a multiplication a · b without any rule of calculations. So the product a · b · c is
meaningless.

Throughout this paper, the smooth manifolds we deal with are connected and paracompact. In a smooth
manifold M all geometrical objects we are interested in are smooth as well.

The vector space of smooth vector fields in a manifold M is denoted by X (M). It is a left module of the
associative commutative algebra C∞(M).

Consider a real vector bundle
E → M.

The real vector space of sections of E is denoted by Γ(E).

Definition 3. A real algebroid over a smooth manifold M is a real vector bundle whose vector space of sections
is a real algebra.

So the vector space of sections of a real algebroid E is endowed with a R-bilinear map

Γ(E)× Γ(E) 3 (s, s∗)→ s · s∗ ∈ Γ(E)

To simplify the multiplication of two sections is denoted s · s∗.

Definition 4. A two-sided module of an algebroid E is a vector bundle

V → M

whose vector space of sections is a two-sided module of the algebra Γ(E).

Let s be section E and let v be a section of V . Both left action s on v and the right action of s on v
are denoted by s · v and v · s.

Definition 5. An anchored vector bundle over M is a pair

(E , b)

formed by a real vector bundle E and a vector bundle homomorphism

E 3 e→ b(e) ∈ TM.

The homomorphism b is called the anchor map.

2.2. Anomaly Functions of Algebroids and of Modules

Let V be a two-sided module of an algebroid (E , b).

Definition 6. An anomaly function of an algebroid E is a 3-linear map AE of Γ(E)3 in Γ(E) whose values
AE (s1, s2, s3) belong to spanR[(si·sj)·sk, si·(sj·sk); i, j, k ∈ [1, 2, 3]]. An anomaly function of an E -module V is
a 3-linear map AEV of Γ(E)2× Γ(V) in Γ(V) whose values AEV (s, s∗, v) belong to spanR[(s·s∗)·v, s·(s∗·v)∀s,
s∗ ∈ Γ(E), ∀v ∈ Γ(V)].

In this paper we are interested in some anomaly functions which have strong geometrical impacts.
They are defined below.
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Definition 7. Let E be an algebroid and let s, s∗, s∗∗ ∈ Γ(E).
(1) The associator anomaly function of E is defined by

Ass(s, s∗, s∗∗) = (s · s∗) · s∗∗ − s · (s∗ · s∗∗).

(2) The Koszul-Vinberg anomaly function of E is defined by

KV(s, s∗, s∗∗) = Ass(s, s∗, s∗∗)− Ass(s∗, s, s∗∗).

(3) The Jacobi anomaly functions of E are defined by

J(s, s∗, s∗∗) = (s · s∗) · s∗∗ + (s∗ · s∗∗) · s + (s∗∗ · s) · s∗.

Definition 8. Let v be a section of a two-sided E -module V .
(1) The associator anomaly function of a left module V is defined as

Ass(s, s∗, v) = (s · s∗) · v− s · (s∗ · v).

(2) The KV anomaly functions of a two sided module V are defined as

KV(s, s∗, v) = Ass(s, s∗, v)− Ass(s∗, s, v),

KV(s, v, s∗) = (s · v) · s∗ − s · (v · s∗)− (v · s) · s∗ + v · (s · s∗).

Definition 9. We keep the notation used above. Let s, s∗ be sections of E , let v be a section of V and f ∈ C∞(M).
(1) The Leibniz anomaly function of an anchored algebroid E is defined by

L(s, f , s∗) = s · ( f s∗)− d f (b(s))s∗ − f s · s∗.

(2) The Leibniz anomaly function of the E -module V is defined by

L(s, f , v) = s · ( f v)− d f (b(s))v− f s · v.

A category of algebroids and modules of algebroids is defined by its anomaly functions.
The anomaly functions are also used for introducing theories of homology of algebroids.

Some categories of anchored algebroids play important roles in the differential geometry.

Definition 10. (A1): A Lie algebroid is an anchored algebroid (E , b) satisfying the identities

s · s∗ = 0,

L(s, f , s∗) = 0.

(B1): A KV algebroid is an anchored algebroid (E , b) satisfying the identities

KV(s, s∗, s ∗ ∗) = 0,

L(s, f , s∗) = 0.

(B2): A vector bundle V is a module of Lie algebroid (E , b) if it satisfies the identities

L(s, f , v) = 0,

(s · s∗) · v− s · (s ∗ ·v) + s ∗ ·(s · v) = 0.
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A vector bundle V is a two-sided KV module of a Koszul-Vinberg algebroid (E , b) if it satisfies the identities

L(s, f , v) = 0,

KV(s, s∗, v) = 0,

KV(s, v, s∗) = 0.

Warning.

Consider a vector V space as the trivial vector bundle

V ×O→ 0.

Then we get
Γ(V × 0) = V.

Therefore an algebra is an anchored algebroid over a point; its anchor map of is the zero map. Therefore,
the Leibniz anomaly of an algebra is nothing but the bilinearity of the multiplication. So the notion of KV algebra
and KV module is clear.

3. The Theory of Cohomology of KV Algebroids and Their Modules

This section is devoted to the cohomology of KV algebroids and KV modules of KV algebroids.
KV stands for Koszul-Vinberg. We shall introduce three approaches to the theory of KV cohomology.
Each approach has its particular advantage. So, depending on the needs or on the concerns one or other
approach may be convenient. The three approaches are called “Version brute formula”, “Version semi
simplicial objects”, “Version anomaly functions”. The same graded vector space is common to the
three constructions. They differ in their coboundary operators. However, three constructions lead to
cohomology complexes which are pairwise quasi isomorphic.

Each construction leads to two cochain complexes. Those complexes are called the KV complex and
total KV complex. They are denoted by C∗KV and C∗τ. In final we obtain six cohomological complexes.

3.1. The Theory of KV Cohomology—Version the Brute Formula of the Coboundary Operator

The geometric framework is the category of real KV algebraoids and their two sided modules.
However our machineries only make use of R-multi-linear calculations in the vector spaces of sections
of vector bundles. Without any damage we replace the categories of KV algebroids and modules of KV
algebroids by the categories of KV algebras and abstract modules of KV algebras.

3.1.1. The Cochain Complex CKV .

Let W be a two-sided module of a KV algebra A.

Definition 11. The vector subspace J(W) ⊂W is defined by

(a · b) ·w− a · (b ·w) = 0 ∀a, b ∈ A

We consider the Z-graded vector space

CKV(A, W) = ∑
q

Cq
KV(A, W).
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The homogeneous vector sub-spaces are defined by

Cq
KV(A, W) = 0 ∀q < 0,

C0
KV(A, W) = J(W),

Cq
KV(A, W) = HomR(A⊗q, W) ∀q > 0.

Before pursuing we fix the following notation.
Let

ξ = a1⊗ ...⊗ aq+1 ∈ A⊗q+1

and let a ∈ A,
∂iξ = a1⊗ ...âi...⊗ aq+1,

∂2
i,k+1ξ = ∂i(∂k+1ξ),

a.ξ =
q+1

∑
1

a1⊗ ...aj−1⊗ a.aj ⊗ aj+1...aq+1.

We are going to define the coboundary operator

δKV : Cq(A, W)→ Cq+1(A, W).

The coboundary operator is a linear map. It is defined by

[δKV(w)](a) = −a ·w + w · a ∀w ∈ J(W), (4a)

[δKV f ](ξ) =
q

∑
1
(−1)i[ai · f (∂iξ)− f (ai · ∂iξ) + ( f (∂2

i,q+1ξ ⊗ ai)) · aq+1]∀ f ∈ Cq
KV(A, W),

∀ξ ∈ A⊗q+1. (4b)

The operator δKV satisfies the identity

δ2
KV f = 0 ∀ f ∈ CKV(A, W).

Therefore the pair (C∗KV(A, W), δKV) is a cochain complex. Its cohomology space is denoted by

HKV(A, W) = ∑
q

Hq
KV(A, W).

The conjecture of Gerstenhaber: Comments.

A KV algebra A is a two-sided module of itself. An infinitesimal deformations of A is a 1-cocycle of
CKV(A,A) [9]. By the conjecture of Gerstenhaber the cohomology complex CKV(A,A) is generated by the
theory of deformations in the category of KV algebras.

The theory of deformation of KV algebras is the algebraic version of the theory of deformation of locally flat
manifolds [2]. Therefore, the complex CKV(A,a) is the solution to the conjecture of Muray Gerstenhaber in the
category of locally flat manifolds [27].

Features.

(1) The 2nd cohomology space H2
KV(A,A) is the space of non trivial deformations of A.

The definition of KV algebra of a locally flat manifold will be given in the next section.
Following [2] every hyperbolic locally flat manifold has non trivial deformations. Thus, if A is the KV algebra of
a hyperbolic locally flat manifold then

H2
KV(A,A) 6= 0.
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(2) Let W be a two-sided module of a KV algebra A. We consider W as a trivial KV algebra, viz

w ·w∗ = 0 ∀w, w∗ ∈W.

Let EXTKV(A, W) be the set of equivalence classes of short exact sequences of KV algebras

0→W → B → A→ 0.

An interpretation of the 2nd cohomology space of CKV(A, W) is the identification

H2
KV(A, W) = EXTKV(A, W).

Let W, W∗ be two-sided modules of A. Let EXTA(W∗, W) be the set of equivalence classes of exact short
sequences of two-sided A-modules

0→W → T→W∗ → 0.

In both the category of associative algebras and the category of Lie algebras we have

HH1(A, HomR(W∗, W)) = EXTA(W∗, W),

H1
CE(A, HomR(W∗, W)) = EXTA(W∗, W).

Here HH(A,−) stands for Hochschild cohomology of an associative algebra A and HCE(A,−) stands for
cohomology of Chevalley-Eilenberg of a Lie algebra A.

Unfortunately in the category of KV modules of KV algebras this interpretation of the first cohomology
space fails. Loosely speaking in the category of KV algebras the set H1(A, Hom(W∗, W)) is not canonically
isomorphic to set EXTA(W∗, W) [9].

3.1.2. The Total Cochain Complex Cτ.

The purpose is the total complex

Cτ(A, W) = ∑
q

Cq
τ(A, W).

Its homogeneous vector subspaces are defined by

Cq
τ(A, W) = 0 ∀q < 0,

C0
τ(A, W) = W,

Cq
τ(A, W) = HomR(A⊗q, W) ∀q > 0.

The total coboundary operator is a linear map

Cq
τ(A, W)→ Cq+1

τ (A, W).

That operator is defined by
(1) : [δτw](a) = −a ·w + wa ∀(a, w) ∈ A×W,
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(2) : [δτ f ](ξ) =
q+1

∑
1
(−1)i[ai · f (∂iξ)− f (ai · ∂iξ) + ( f (∂2

i,q+1ξ ⊗ ai)) · aq+1] ∀ f ∈ Cq
τ(A, W).

The pair
(C∗τ(A, W), δτ)

is a cochain complex, viz
δ2

τ = 0.

The derived cohomology space is denoted by

Hτ(A, W) = ∑
q

Hq
τ(A, W).

It is called the W-valued total KV cohomology of A.

3.2. The Theory of KV Cohomology—Version: the Semi-Simplicial Objects

Let V be a two-sided module of a KV algebra A. Our aim is the construction of semi simplicial
A-modules whose derived cochain complex is quasi isomorphic to the KV cochin complex CKV(A, V).

3.2.1. Extension

We start by considering the vector space

B = A⊕R.

Its elements are denoted by (s + λ). We endow B with the multiplication which is defined by

(s + λ) · (s∗ + λ∗) = s · s∗ + λs∗ + λ∗s + λλ∗.

With the multiplication we just defined, B is a real KV algebra. In other words we have

KV(X1, X2, X3) = 0.

Here
Xj = sj + λj.

In the A-module V we have a structure of left B-module which is defined by

(s + λ)·v = s·v + λv ∀(s + λ) ∈ B, ∀v ∈ V.

3.2.2. Construction

Let B̃ be the vector space spanned by A × R. Its elements are finite linear combinations of
(s, λ), s ∈ A×R.

The tensor algebra of B̃ is denoted by T(B̃). It has a Z-grading. its homogeneous vector sub-spaces
are defined by

Tq(B̃) = B̃⊗q.

A monomial element is denoted by

ξ = x1⊗ x2⊗ ...⊗ xq.

Here
xj = (sj, λj) ∈ A×R.
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The KV algebra A is a two-sided ideal of the KV algebra B. Thereby, the vector space B̃ is
canonically a left module of A.

We define the natural two-sided action of R in B̃ by setting

λ · (s∗, λ∗) = (λs, λλ∗),

(s∗, λ∗) · λ = (λs∗, λ∗λ).

Thereby every vector subspace Tq(B̃) is a left KV module of B. Here the left action of B in Tq(B̃)
is defined

(s + λ) · ξ = s · ξ + λξ.

Before continuing we recall the (extended) action of A in tensor space Tq(B̃),

s · (x1⊗ x2⊗ ...⊗ xq) =
q

∑
j=1

x1⊗ x2...⊗ s · xj ⊗ ...⊗ xq.

We recall a notation which has been used in the last subsections,

∂jξ = x1⊗ x2⊗ ...x̂j...⊗ xq.

The symbol x̂j means that xj is missing. Let 1 ∈ R be the unit element, then 1̃ stands for (0, 1) ∈ B̃.
We are going to construct semi simplicial modules of B.

3.2.3. Notation-Definitions

Implicitly we use set isomorphism

B̃ 3 x = (s, λ)→ X∗ = s + λ ∈ B.

Then ∀ξ ∈ Tq(B̃) one has
1̃∗ · ξ = ξ·

We go back to the Z-graded B-module

T∗(B̃) = ∑
q

Tq(B̃).

Definition 12. Let j, q be two positive integers with j < q, let

ξ = x1⊗ x2...⊗ xq.

The linear maps
dj : Tq(B̃)→ Tq−1(B̃)

and
Sj : Tq(B̃)→ Tq+1(B̃)

are defined by
djξ = X∗j · ∂jξ,

Sjξ = ej(1̃)ξ

The right member of the last equality has the following meaning

ej(1̃)ξ = x1⊗ x2...⊗ xj−1⊗ 1̃⊗ xj...⊗ xq
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Structure. The maps dj and Sj satisfy the following identities

didj = dj−1di i f i ≤ j, (5a)

SiSj = Sj+1Si i f i < j, (5b)

(Sj−1di − diSj)(ξ) = ej−1(xi)∂iξ i f 1 < i < j, (5c)

(di+1Sj − Sjdi)(ξ) = ej(xi)∂iξ i f j + 1 < i ≤ q, (5d)

di(Si(ξ)) = ξ i f i = j. (5e)

Definition 13. The system
{

Tq(B), di, Si
}

is called the canonical semi simplicial module of B.

3.2.4. The KV Chain Complex

From the canonical simplicial B-module we derive the chain complex C∗(B). it has a Z-grading
which is defined by

Cq(B) = 0 i f q < 0, (6a)

C0(B) = R, (6b)

Cq(B) = Tq(B̃) i f q > 0. (6c)

Now one defines the ( linear) boundary operator

d : Cq(B)→ Cq−1(B)

by setting
d(C0(B)) = 0,

d(C1(B)) = 0,

dξ =
q

∑
1
(−1)jdjξ i f q > 1.

By the virtue of (5a) we have
d2 = 0.

3.2.5. The V-Valued KV Homology

We keep the notation used in the preceding sub-subsection. So the vector spaces A, B and V are
the same as in the preceding subsubsection.

We consider the Z-graded vector space

C∗(B, V) = ⊕qCq(B, V).

Its homogeneous sub-spaces are defined by

Cq(B, V) = 0 i f q < 0,

C0(B, V) = V,

Cq(B, V) = Tq(B̃)⊗V i f q > 0.

Every homogeneous vector subspace Cq(B, V) is a left module of the KV algebra B. The left action
is defined by

s · (ξ ⊗ v) = s · ξ ⊗ v + ξ ⊗ s · v.
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Let j and q be two positive integers such that j < q.
Let ξ = x1⊗ x2...⊗ xq. To define the linear map

dj : Cq(B, V)→ Cq−1(B, V)

we put
dj(ξ ⊗ v) = X∗j · (∂jξ ⊗ v).

Henceforth one defines the boundary operator

d : Cq(B, V)→ Cq−1(B, V)

by setting

d =
q

∑
1
(−1)jdj.

So we obtain a chain complex whose homology space of degree q is denoted by Hq(B, V).

Definition 14. The graded vector space

H∗(B, V) = ∑
q

Hq(B, V)

is called the total homology of B with coefficients in V.

3.2.6. Two Cochain Complexes

We are going to define two cochain complexes. They are denoted by CKV(B, V) and by
Cτ(B, V) respectively.

We recall that the vector subspace J(V) ⊂ V is defined by

(s · s∗) · v− s · (s ∗ ·v) = 0 ∀s s∗ ∈ B.

Let us set
C0

KV(B, V) = J(V),

C0
τ(B, V) = V,

Cq(B, V) = HomR(Tq(B̃) ∀q ≥ 1.

Let (j, q) be a pair of non negative integers such that j < q. We are going to define the linear map

dj : Cq(B, V)→ Cq+1(B, V).

Given f ∈ Cq(B, V) and
ξ = x1⊗ ...⊗ xq+1

we put
dj f (ξ) = X∗j · f (∂jξ)− f (djξ).

The family of linear mappings dj has property S · 1, viz

djdi = didj−1 ∀i, j with i < j.
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We use these data for constructing two cochain complexes. They are denoted by (C∗KV, dKV) and
by (C∗τ, dτ) respectively. The underlying graded vector spaces are defined by

CKV = J(V)⊕ ∑
q>0

Cq(B, V),

Cτ = V⊕ ∑
q>0

Cq(B, V).

Their coboundary operators are defined by

(dKVv)(s) = −s · v,

(dτw)(s) = −sw,

dKV( f ) =
q

∑
1
(−1)jdj( f ) i f q > 0,

dτ( f ) =
q+1

∑
1
(−1)jdj( f ) i f q > 0.

The simplicial formula (5a) yields the identities

d2
KV = 0,

d2
τ = 0.

The cohomology space
HKV(B, V) = ∑

q
Hq

KV(B, V)

is called the V-valued KV cohomology of B.
The cohomology space

Hτ(B, V) = ∑
q

Hq
τ(B, V)

is called the V-valued total KV cohomology of B.
The algebra A is a two-sided ideal of the KV algebra B. Mutatis mutandis our construction gives

the cohomology spaces HKV(A, V) and Hτ(A, V). They are called the V-valued KV cohomology and
the V-valued total KV cohomology of A.

Comments.

Though the spectral sequences are not the purpose of this paper we recall that the pair (A ⊂ B) gives rise
to a spectral sequences Eij

r [32–34]. The term Eij
0 is nothing other than HKV(A, V) [29]. In other words one has

Hq
KV(A, V) = ∑

0≤j≤q
Ej,q−j

0 .

3.2.7. Residual Cohomology

Before pursuing we introduce the notion of residual cohomology. It will be used in the section be
devoted the homological statistical models.

The machinery we are going to introduce is similar to the machinery of Eilenberg [35]. In particular
we introduce the residual cohomology. Our construction leads to an exact cohomology sequence
which links the residual cohomology with the equivariant cohomology. We restrict the attention to the
category of left modules of KV algebroids. We keep our previous notation.
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We recall that for every positive integer q > 0 the vector space Cq(B, V) is a left module of B.
The left action of s ∈ B is defined by

(s · f )(ξ) = s · f (ξ)− f (s · ξ).

Definition 15. A cochain f ∈ Cq(B, V) is called a left invariant cochain if

s · f = 0 ∀s ∈ B ∀s.

A straightforward consequence of this definition is that a left invariant cochain is a cocycle of
both C∗KV and C∗τ. The vector subspace of left invariant q-cochains of B is denoted by Hq

e (B, V). It is
easy to see that

Zq
τ(B, V)∩ Zq

KV(B, V) = Hq
e (B, V),

Zq
τ(A, V)∩ Zq

KV(A, V) = Hq
e (A, V).

Definition 16. A KV cochain of degree q whose coboundary is left invariant invariant is called a residual
KV cocycles.

(1) The vector subspace of residual KV cocycles of degree q is denoted by Zq
KVres.

(2) The vector subspace of residual coboundaries of degree q is defined by Bq
KVres = Hq

e (B, V)+ dKV(C
q−1
KV (B, V)).

The residual KV cohomology space of degree q is the quotient vector space.

(3) Hq
KVres(B, V) =

Zq
KVres

Bq
KVres

.

(4) By replacing the KV complex by the total KV complex one defines the vector space of residual total
cocycles Zq

τres and the space of residual total coboundaries Bq
τres. Therefore we get the residual total KV

cohomology space

Hq
τres(A, V) =

Zq
τres

Bq
τ,res

The definitions above lead to the cohomological exact sequences which is similar to those
constructed by Eilenberg machinery [35]. We are going to pay a special attention to two cohomology
exact sequences.

(1) At one side the operator dKV yields a canonical linear map

Hq
KVres(B, V)→ Hq+1

e (B, V).

(2) At another side every KV cocycle is a residual cocycle and every KV coboundary is a residual
coboundary as well. Then one has a canonical linear map

Hq
KV(B, V)→ Hq

KVres(A, V).

Those canonical linear mappings yield the following exact sequences

→ Hq−1
KVres(B, V)→ Hq

e (B, V)→ Hq
KV(B, V)→ Hq

KVres(B, V)→

→ Hq−1
τres (B, V)→ Hq

e (B, V)→ Hq
τ(B, V)→ Hq

τres(B, V)→
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Some Comments.

(c.1): We replace the KV B by A. Then we obtain the exact sequences

→ Hq−1
KVres(A, V)→ Hq

e (A, V)→ Hq
KV(A, V)→ Hq

KVres(A, V)→

→ Hq−1
τres (A, V)→ Hq

e (A, V)→ Hq
τ(A, V)→ Hq

τres(A, V)→

(c.2): The KV cohomology difers from the total cohomology. Loosely speaking their intersecttion is the
equivariant cohomology H∗e (B, V) their difference is the residual cohomology. The domain of their
efficiency are different as well. Here are two illustrations.

Example 1.

In the introduction we have stated a conjecture of M. Gerstenhaber, namely Every Restricted Theory
of Deformation Generates Its Proper Theory of Cohomology.

From the viewpoint of this conjecture, the KV cohomology is the completion a long
history [2,9,28]. Besides Koszul and Nijenhuis, other pioneering authors are Vinberg, Richardson,
Gerstenhaber, Matsushima, Vey.

The challenge was the search for a theory of cohomology which might be generated by the theory
of deformation of locally flat manifolds [8]. The expected theory is the now known KV theory of KV
cohomolgy [9].

Example 2.

The total cohomology is close to both the pioneering Nijenhuis work [28,36]. In [29] we have
constructed a spectral sequence which relates to [28,36].

From another viewpoint, the total KV cohomology is useful for exploring the relationships
between the information geometry and the theory of Riemannian foliations. This purpose will be
addressed in the next sections.

3.3. The Theory of KV Cohomology—Version the Anomaly Functions

This subsection is devoted to use the KV anomaly functions for introducing the theory of
cohomology of KV algebroids and their modules.

This viewpoint leads to an unifying framework for introducing the theory of cohomology of
abstract algebras and their abstract two-sided modules. Here are a few examples of cohomology theory
which are based on the anomaly functions.
Example 1. The theory of Hochschild cohomology of associative algebras is based on the associator
anomaly function.
Example 2. The theory of Chevalley-Eilenberg-Koszul cohomology of Lie algebras is based on the Jacobi
anomaly function.
Example 3. The theory of cohomology of Leibniz algebras is based on the Jacobi anomaly function
as well.

3.3.1. The General Challenge CH(D)

We consider data
D = [(A, AA), (V, AAV), Hom(T(A), V)].

Here

(1) V is an (abstract) two sided module of an (abstract) algebra A.
(2) AA and AAV are fixed anomaly functions of A and of V respectively.
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(3) Hom(T(A), V) stands for the Z-graded vector space

Hom(T(A), V) = ⊕qHomR(A⊗q, V).

Let AD be the category of (abstract) algebras and (abstract) modules whose structures are defined
by the pair (AA, AAV). So the rules of calculations in the category A are defined by the identities

AA(a, b, c) = 0,

AAV(a, b, v) = 0.

The challenge is the search of a particular family of linear maps

Hom(A⊗q, V) 3 f → dq( f ) ∈ Hom(A⊗q+1, V).

Such a particular family dq must satisfy a condition that we call the property ∆.

Property ∆

∀ξ = a1⊗ a2...⊗ aq+2 ∈ Aq+2, ∀ f ∈ Hom(A⊗q, V) the quantity [dq+1(dq( f ))](ξ) depends linearly on
the values of the anomaly functions {

AA(ai, aj, ak), AAV(ai, aj, v)
}

Let us assume that a family dq is a solution to CH(D). Then the category AD admits a theory of
cohomology with coefficients in modules.

The next is devoted to this challenge in the category of KV algebras and KV modules.
The geometry version is the category of KV algebroids and KV modules of KV algebroids.

3.3.2. Challenge CH(D) for KV Algebras

Let W be a two-sided module of an abstract algebra A. We assume that the following bilinear
mappings are non trivial applications

A×W 3 (X, w)→ X ·w ∈W,

W ×A 3 (w, X)→ w ·X ∈W.

Let f ∈ Hom(A⊗q, W). We consider a monomial ξ ∈ A⊗q+1, so

ξ = X1⊗ ...⊗Xq+1 ∈ A⊗q+1.

Our construction is divided into many STEPS.

Step 1.

Let (i < j) be a pair of positive integers with 1 ≤ i < j ≤ q. The linear the map

S[i,j]( f ) ∈ Hom(Aq+1, V).

S[ij] is defined by

S[i,j]( f )(X1⊗ ...⊗Xq+1) = (−1)j[Xj · f (X1⊗ ...⊗Xi ⊗ ...X̂j ⊗Xj+1...⊗Xq+1)

+( f (X1⊗ ...⊗Xi ⊗ ...X̂j ⊗ ... ˆXq+1⊗Xj) ·Xq+1

−ω( f ) f (X1⊗ ...⊗Xj ·Xi ⊗ ...X̂j ⊗ ...⊗Xq+1)]
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+(−1)i[Xi · f (X1⊗ ...X̂i ⊗ ...⊗Xj ⊗ .⊗Xq+1)

+( f (X1⊗ ...X̂i ⊗ ...⊗Xj ⊗ ... ˆXq+1⊗Xi)) ·Xq+1

−ω( f ) f (X1⊗ ...X̂i ⊗ ...⊗Xi ·Xj ⊗ ...⊗Xq+1)].

In the right side member of S[i,j]( f )(ξ) the coefficient ω( f ) is the degree of f , viz ω( f ) = q for all
f ∈ Hom(Aq, W).

Step 2.

For every pair (i, q + 1) with 1 ≤ i ≤ q we define the map S[i,q+1]( f ) by

S[i,q+1]( f )(X1⊗ ...⊗Xq+1) = (−1)i[Xi · f (X1⊗ ...X̂i ⊗ ...⊗Xq+1)

+( f (X1⊗ ...X̂i ⊗ ... ˆXq+1⊗Xi)) ·Xq+1

−ω( f ) f (X1⊗ ...X̂i ⊗ ...Xi ·Xq+1)].

Step 3.

Let g ∈ Hom(A⊗q+1, W) and let

ξ = X1⊗ ...⊗Xq+2 ∈ A⊗q+2.

Let i, j, k be three positive integers such that i < j < q+ 2; k ≤ q+ 2. We have already introduced
the notation

∂kξ = X1⊗ ...X̂k ⊗ ...⊗Xq+2,

∂2
k,q+2ξ = X1⊗ ...X̂k ⊗ ...⊗ ...X̂q+2.

We define Sk
[i,j](g) ∈ Hom(A⊗q+2, W) by setting

Sk
[i,j](g)(ξ) = (−1)i+k[Xk · g(∂kξ) + (g(∂2

k,q+2ξ ⊗Xk)) ·Xq+2

+ω(g)g(X1⊗ ...⊗Xk ·Xi ⊗ ...X̂k ⊗ ...⊗Xq+2)]

+(−1)j+k[Xk · g(∂kξ) + (g(∂2
k,q+2ξ)⊗Xk) ·Xq+2

+ω(g)g(X1⊗ ...⊗Xk ·Xj ⊗ ...X̂k ⊗ ...⊗Xq+2)].

Given a triple (i, j, k) with i < j < k < q + 2 we put

S[i,j,k](g)(ξ) = Sk
[i,j](g)(ξ) + Sj

[i,k](g)(ξ) + Si
[j,k](g)(ξ).

The proof of the following statement is based on direct calculations.

Lemma 1.
(∗ ∗ ∗∗) : ∑

[i<j]
S[i,j](g)(ξ) = ∑

[i<j<k]
S[i,j,k](g)(ξ)

Let f ∈ Hom(Aq, W). In both the left side and the right side of the equality (∗ ∗ ∗∗) we replace g
by ∑i<j S[i,j]( f ). Then we obtain a linear mapping

Hom(Aq, W) 3 f → E∗∗∗∗( f ) ∈ Hom(Aq+2, W).
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Our aim is to evaluate ξ of E∗∗∗∗( f ) at ξ ∈ A⊗q+2. Here

ξ = X1⊗ ...⊗Xq+2.

To calculate [E∗∗∗∗( f )](ξ) we take into account both STEP1 and STEP2. Then we obtain

[E∗∗∗∗( f )](ξ) = ∑
[i<j<q+2;1≤k≤q+2]

[E∗∗∗∗[ijk] ( f )](ξ).

At the right side member

[E∗∗∗∗[ijk] ( f )](ξ) = (−1)i+j[KV(Xi, Xj, f (X1⊗ ...X̂i ⊗ ..X̂j ⊗ ...Xk ⊗ ...⊗Xq+2))

+KV(Xi, f (X1⊗ ...X̂i...X̂j ⊗ ...⊗Xq+1⊗Xj), Xq+2)

+KV(Xj, f (X1⊗ ...X̂i...X̂j ⊗ ...⊗Xq+1⊗Xi), Xq+2)

+ω( f )(ω( f ) + 1) f (X1⊗ ...X̂i...X̂j ⊗ ...⊗ KV(Xi, Xj, Xk)⊗ ...⊗Xq+2)].

Step 4.

We are in position to face CH(D).

Definition 17. Let f ∈ Hom(A⊗q, W) and ξ = X1 ⊗ ...⊗ Xq+1 ∈ A⊗q+1. We take into account Step 1,
Step 2 and Step 3. Therefore, we define the linear map

Hom(A⊗q, W) 3 f → ∂ f ∈ Hom(A⊗q+1, W)

by putting
[∂ f ](ξ) = ∑

1≤i<j≤q+1
S[i,j]( f )(ξ)

The following lemma is a straightforward consequence of the machinery in STEP3.

Lemma 2.
∂2 f (ξ) = ∑

[i<j<q+2];1≤k≤q+2
[E∗∗∗∗[ijk] ( f )](ξ)

Lemma 2 tells us that ∂2 f (ξ) depends linearly on the values of the KV anomaly functions.
The challenge CH(D) is won in the category of KV algebras and their two-sided KV modules.
We replace the category of KV algebras and their two-sided modules by the category of KV

algebroids and their bi-modules. Then we win the geometry version of CH(D.
We use Lemma 2 for introducing a theory of KV homology of KV algebras and their

two-sided modules.

3.3.3. The KV Cohomology

Let W be a two sided KV module of a KV algebra A. We consider the graded vector space

CKV = ⊕qCq
KV.

The homogeneous subspaces are defined by Cq
KV = 0 if q is a negative integer, C0

KV = J(W),
Cq

KV = Hom(A⊗q, W) if q is a positive integer.
We define the linear map

Cq
KV 3 f → ∂KV f ∈ Cq + 1KV
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by setting

∂KV(w)(X) = −X · w + w · X i f w ∈ J(W), (7a)

∂KV f = ∑
[i<j]

S[i,j]( f ) i f q > 0. (7b)

By Lemma 2 we obtain the following statement

Theorem 3. For every two sided KV module W of a KV algebra A the pair (C∗KV , ∂KV) is a cochain complex.

3.3.4. The Total Cohomology

Let W be a two-sided module of a KV algebra A. Our concern is the Z-graded vector space

Cτ = W +⊕q>0Cq(A, W).

For our present purpose the maps Sij are not subject the requirement as in Step 2.
We define the coboundary operator ∂τ by setting

∂τw(X) = −X · w + w · X ∀winW,

∂τ f (ξ) = ∑
1≤i<j≤q+1

S[i,j]( f )(ξ) ∀q > 0.

The quantity (∂2
τ f (ξ) depends linearly on the KV anomaly functions of the pair (A, W). Thus the

pair (C∗τ , ∂τ) is a cochain complex. Its cohomology is called the W-valued total KV cohomology of A.
We denote it by H∗τ (A, W).

3.3.5. The Residual Cohomology, Some Exact Sequences, Related Topics, DTO-HEG-IGE-ENT

In the next sections we will see that the links between the information geometry and the differential
topology involve the real valued total KV cohomology of KV algebroids. Many relevant relationships
are based on the exact sequences

→ Hq−1
KVres(A,R)→ Hq

e (A,R)→ Hq
KV(A,R)→ Hq

KVres(A,R)→

→ Hq−1
τres (A,R)→ Hq

e (A,R)→ Hq
τ(A,R)→ Hq

τres(A,R)→

Now we are provided with cohomological tools which will be used in the next sections.
We plan to perform KV cohomological methods for studying some links between the vertices of

the square “DTO, IGE, ENT HGE” as in Figure 1. We recall basic notions.

DTO IGE

ENTHGE

KVH

Figure 1. Federation.

DTO stands for Differential TOpology.
The purposes: Riemannian foliations and Riemannian webs. Symplectic foliations and symplectic webs.

Linearization of webs.
Our aims: We use cohomological methods for constructing Riemannian foliations, Riemannian webs,

linearizable webs.
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Nowadays, there does not exist any criterion for deciding whether a manifold supports those
differential topological objects. Our aim is to discuss sufficient conditions for a manifold admitting
those structures. Our approach leads to notable results. The key tools are the KV cohomology and the
dualistic relation of Amari. Both the KV cohomology and the dualistic relation product remarkable
split exact sequences. Notable results are based on those exact sequences. HGE stands for Hessian

GEometry.
The purposes: Hessian structures, geometry of Koszul, hyperbolicity, cohomological vanishing theorems.

Our aims: The geometry of Koszul is a cohomological vanishing theorem. Statistical geometry and vanishing
theorem, the solution to a hold question of Alexander K Guts (announced).

Theorem 3 as in [2] may be rephrased in the framework of the theory of KV homology. For a compact
locally flat manifold (M,∇) being hyperbolic it is necessary and sufficient that C2

KV(A, C∞(M)) contains a
positive definite EXACT cocycle. To be hyperbolic is a geometrical-topological property of the developing
map of locally flat manifolds. To be hyperbolicitic means that the image of the developing is a convex
domain not containing any straight line. This formulation is far from being a homological statement.
So the Hessian GEOmetry is a link between the theory of KV homology and the Riemannian
Riemannian geometry.

The geometry of Koszul, the geometry of homogeneous bounded domains and related topics
have been studied by Vinberg, Piatecci-Shapiro and many other mathematicians [3]. The geometry
of Siegel domains belongs to that galaxy [7,12]. Almost all of those studies are closely related to the
Hessian geometry.

Among the open problems in the Hessian geometry are two questions we are concerned with.
The first is to know whether the metric tensor g of a Riemannian manifold is a Hessian metric.
Alexander K. Guts raised this question in a mail (to me) forty years ago. The second question is
to know whether a locally flat manifold admits a Hessian tensor metric. The solutions to those
two problems are announced in the Appendix A to this paper.

IGE stands for Information GEometry.
The purposes: The differential geometry of statistical models, the complexity of statistical models,

ramifications of the information geometry.
Our aims: We revisit the classical theory of statistical models, requests of McCullagh and Gromov. A search

of a characteristic invariant. The moduli space of models. The homological nature of the information geometry.

The information geometry is the differential geometry in statistical models for measurable sets.
In both the theoretical statistics and the applied statistics the exponential families and their
generalizations are optimal statistical models. There are many references, e.g., [17,18,22,37]. Here
Murray-Rice 1.15 means Murray-Rice Chapter 1, Section 15. A major problem is to know whether a
given statistical model is isomorphic to an exponential model. That is what we call the complexity
problem of statistical models. This challenge is a still open problem. It explicitly arises from the
purposes which are discussed in [22] here, see also [30]. In the appendix to this paper we present a
recently discovered invariant which measures how far from being an exponential family is a given
model. That invariant is useful for exploring the differential topology of statistical models. That is
particularly important when models are singular, viz models whose Fisher information is not inversible.

ENT stands for ENTropy.

Pierre Baudot and Daniel Bennequin recently discovered that the entropy function has a homological
nature [31]. We recall that in 2002 Peter McCullagh raised a fundamental geometric-topological question
in the theory of information: What Is a Statistical Model? [30] A few years after Misha Gromov raised
a similar request: The Search of Structure. Fisher Information [15,16].
Those two titles are two formulations of the same need.

The paper of McCullagh became the subject of controversy. It gave rise to questions, discussions,
criticisms, see [30].
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In Part B of this paper we will be addressing this fundamental problem. A reading of the
McCullagh paper would be useful for drawing a comparison between our approach and [15,16,30].

4. The KV Topology of Locally Flat Manifolds

4.1. The Total Cohomology and Riemannian Foliations

In this section we focus on the KV algebroids which are defined by structures of locally flat manifolds.
To facilitate a continuous reading of this paper we recall fundamental notions which are needed.

Definition 18. A locally flat manifold is a pair (M, D). Here D is a torsion free Koszul connection whose
curvature tensor RD vanishes identically.

The pair (M, D) defines a Koszul-Vinberg algebroid

A = (TM, D, 1)

The anchor map is the identity map of TM. The multiplication of sections is defined by D, viz

X ·Y = DXY

forall X, Y ∈ X (M).
The KV algebra of (M, D) is the algebra

A := (X (M), D).

The cotangent bundle T∗M is a left module of the KV algebroid (TM, D, 1). For every
(X, Y, θ) ∈ X (M)×X (M)× Γ(T∗M) the differential 1-form X · θ is defined by

[X · θ](Y) = [d(θ(Y))](X)− θ(X ·Y).

In the right hand member of the equality above d(θ(Y)) is the exterior derivative of the real valued
function θ(Y).

Let S2(T∗M) be the vector bundle of symmetric bi-linear forms in M.
The vector space of sections of S2(T∗M) is denoted by S2(M), viz

S2(M) = Γ(S2(T∗M)).

The vector space S2(M) is a left module of the KV algebra A. The left action of A in S2(M) is
defined by

(X · g)(Y, Z) = [dg(Y, Z)](X)− g(X ·Y, Z)− g(Y, X · Z).

We put
Ω1(M) = Γ(T∗M).

The T∗M-valued cohomology of the KV algebroid (TM, D, 1) is but the cohomology of A with
coefficients in Ω1(M). The KV cohomology and the total cohomology are denoted by

H∗KV(A, Ω1(M)),

H∗τ(A, Ω1(M)).
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Warning.

We observe that elements of S2(M) may be regarded as 1-cochains of A with coefficients in its left module
Ω1(M). By [29] we have

Z2
τ(A, C∞(M)) = SA2 (M). (8)

At another side we have the cohomolgy exact sequence

→ H1
KVres(A, V)→ H2

KVe(A, V)→ H2
KV(A, V)→ H2

KVres(A, V)→ (9)

By Equations (8) and (9) we obtain the inclusion maps

SA2 (M) ⊂ Z1
KV(A, Ω1(M)) ⊂ Z2

KV(A,R).

Mutatis mutandis one also has

SA2 (M) ⊂ Z1
τ(A, Ω1(M)∩ Z2

τ(A,R).

Remark 1 (Important Remarks). We give some subtle consequences of (1).

(R.1) Every exact total 2-cocycle ω ∈ C2
τ(A,R) is a skew symmetric bilinear form. Viz one has the identity

ω(X, X) = 0 ∀X ∈ A.

(R.2) Every symmetric KV 2-cocycle g ∈ Z2
KV(A,R) is locally an exact KV cocycle, viz in a neighbourhood of

every point there exists a local section θ ∈ Ω1(M) such that

g = δKVθ.

(R.3) Every symmetric total 2-cocycle is a left invariant cochain, viz

Z2
τ(A,R)∩ S2(M) = SA2 (M).

By (R.1) and (R.3) we obtain the inclusion map

SA2 (M) ⊂ H2
τ(A,R).

Let H2
dR(M) be the second cohomology space of the de Rham complex of M. The following theorem is useful

for relating the total KV cohomology and the differential topology.

Theorem 4. [29] There exists a canonical linear injection of H2
dR(M) in H2

τ(A,R) such that

H2
τ(A,R) = H2

dR(M)⊕SA2 (M)

The theorem above highlights a fruitful link between the total KV cohomology and the differential
topology. We are particularly interested in D-geodesic Riemannian foliations in a locally flat
manifold (M, D).
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Warning.

Throughout this paper a Riemannian metric tensor in a manifold M is a non-degenerate symmetric bilinear
form in M.

A positive metric tensor is a positive definite metric tensor.
In the next we use the following definition of Riemannian foliation and symplectic foliation.

Definition 19. A Riemannian foliation is an element g ∈ S2(M) which has the following properties

(1.1) rank(g) = constant,
(1.2) LXg = 0 ∀X ∈ Γ(Ker(g)). A symplectic foliation is a ( de Rham) closed differential 2-form ω

which satisfies
(2.1) rank(ω) = constant,
(2.2) LXω = 0 ∀X ∈ Γ(Ker(ω)).

Warning.

When g is positive semi-definite our definition is equivalent to the classical definition of Riemannian
foliation [38–40].

The complete integrability of Ker(g) and the conditions to be satisfied by the holonomy of leaves are
equivalent to the Property (2.2).

The set of Riemannian foliations in a manifold M is denoted byRF(M). The last theorem above yields the
inclusion map

H2
τ(A,R)

H2
dR(M)

⊂ RF(M).

We often use the notion of affine coordinates functions in a locally flat manifold. For non specialists we
recall two definitions and the link between them.

Definition 20. An m-dimensional affinely flat manifold is an m-dimensional smooth manifold M admitting
a complete atlas

{
(Uj, φj)

}
whose local coordinate changes coincide with affine transformations of the affine

space Rm.

We denoted an affine atlas by
A =

{
(Uj, φj)

}
.

Definition 21. An affinely flat structure (M,A) and a locally flat structure (M,∇) are compatible if local
coordinate functions of (M,A) are solutions to the Hessian equation

∇2xj = O

Theorem 5. For every positive integer m the relation to be compatible with a locally flat manifold is an
equivalence between the category of m-dimensional affinely flat manifolds and the category of m-dimensional
locally flat manifolds.

4.2. The General Linearization Problem of Webs

In the frameworkRF(M) the inclusion

H2
τ(A,R)

H2
dR(M)

⊂ RF(M)
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may be rewritten as the exact sequence

O→ H2
dR(M)→ H2

τ(A,R)→RF(M).

Let (M,∇) be a locally flat manifold whose KV algebra is denoted by A. Every finite family in
H2

τ(A,R) is a family of∇-geodesic Riemannian foliations.
There does not exist any criterion to know whether a manifold supports Riemannian foliations.

The exact cohomology sequences we have been performing provide us with a cohomological method
for constructing Riemannian foliations in the category of locally flat manifolds. This is an impact of the
theory of KV homology on DTO.

In the next section we will introduce other new ingredients which highlight the impacts on DTO
of the information geometry.

Further we will see that those new machineries from the information geometry have a
homological nature.

Another major problems in the differential topology is the linearization of webs. Among references
are [41–43].

Definition 22. Consider a finite family of distributions Dj ⊂ TM, j := 1, 2, ..., k. Those distributions are in
general position at a point x ∈ M if for every subset J ⊂ {1, 2, ..., k} one has

dim(∑
j∈J
Dj(x)) = min

{
dim(M), ∑

j∈J
dim(Dj(x))

}
.

Definition 23. A k-web in M is a family of completely integrable distributions which are in general position
everywhere in M.

A Comment.

The distributions belonging to a web may have different dimensions. An example of problem is the
symplectic linearization of lagrangian 2-webs.

Let (Dj, j := 1, 2) be a lagrangian 2-web in a 2n-dimensional symplectic manifold (M, ω). The challenge
is the search of special local Darboux coordinate functions

(x, y) = (x1, ..., xn, y1, ..., yn).

Those functions must have three properties
(1): ω(x, y) = Σjdxj ∧ dyj; (2) : The leaves ofD1 are defined by x = constant; (3): The leaves ofD2 are defined
by y = constant.

Definition 24. An affine web in an affine space is a web whose leaves are affine subspaces.

Definition 25. A web in a m-dimensional manifold is linearizable if it is locally diffeomorphic to an affine web
in a m-dimensional affine space.

Example 1. In the symplectic manifold (R2, exydx ∧ dy) one considers the lagrangian 2-web which
is defined by

L1 = {(x, y)|x = constant} ,

L2 = {(x, y)|y = constant} .

This lagrangian 2-web is not symplectic linearizable.
Example 2. We keep (L1,L2) as in example.1. It is symplectic linearizable in (R2, (ex + ey)dx ∧ dy).
The linearization problem for lagrangian 2-webs is closely related to the locally flat geometry [10,44,45].
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Example 3. What about the linearization of the 3-web defined by L1 := {(x = constant, y)} ,
L2 := {(x, y = constant)} , L3 := {e−x(x + y) = constant} , (x, y) ∈ R2.

Up to today the question as to whether it is linearizable is subject to controversies, see [42] and
references therein.

4.3. The Total KV Cohomology and the Differential Topology Continued

We implement the KV cohomology to address some open problems in the differential topology.
For our purpose we recall a few classical notions which are needed.

Definition 26. A metric vector bundle over a manifold M is a vector bundle V endowed with a non-degenerate
inner product < v, v∗ > .

A Koszul connection in a vector bundle V is a bilinear map

Γ(TM)× Γ(V) 3 (X, v)→∇Xv ∈ Γ(V)

which has the properties

∇ f Xv = f∇Xv∀v,∀ f ∈ C∞(M), (10a)

∇X f v = d f (X)v + f∇Xv∀v,∀ f ∈ C∞(M). (10b)

Definition 27. A metric connection in (V ,< −,>) is a Koszul connection∇ which satisfies

d(< v, v∗ >)(X)− < ∇Xv, v∗ > − < v,∇Xv∗ >= 0.

Definition 28. Let (M,D) be a foliation in the usual sense, viz D has constant rank and is in involution.
(1): (M,D) is transversally Riemannian if there exists a g ∈ S2(M) such that

D = Ker(g).

(2): (M,D) is transversally symplectic if there exists a (de Rham) closed differential 2-form ω such that

D = Ker(ω)

A transversally Riemannian foliation and a transversally symplectic foliation are denoted by

(D, g),

(D, ω).

Definition 29. Given a Koszul connection ∇, a transversally Riemannian foliation (D, g) (respectively a
transversally symplectic foliation (D, ω)) is called∇-geodesic if

∇g = 0,

∇ω = 0

The notions of transversally Riemannian foliation and transversally symplectic foliation are
weaker than the notion of Riemannian foliation and symplectic foliation. However if ∇ a torsion
free Koszul connection every∇geodesic transversally Riemannian foliation is a Riemannian foliation.
Every∇-geodesic transversally symplectic foliation is a symplectic foliation.

For the general theory of Riemannian foliations the readers are referred to [39,40,46], see also the
monograph [38] and the references therein.
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We have pointed out that criterions for deciding whether a smooth manifold admits Riemannian
foliations (respectively symplectic foliations ) are missing. Our purpose is to address this existence
problem in the category SLC whose objects are symmetric gauge structures. Such an object is
a pair (M,∇) where ∇ is a torsion free Koszul connection in M. The category of locally flat
structure LF is a subcategory of SLC. The theory of KV homology is useful for discussing geodesic
Riemannian foliations in the category LF . In a locally flat manifold (M, D) we have been dealing with
the decomposition

H2
τ(A,R) = H2

dR(M)⊕SD
2 (M).

Here A is the KV algebra of (M, D).
Let b2(M) be the second Betti number of M. We define the numerical geometric invariant r(D) by

r(D) = dim(H2
τ(A,R))− b2(M).

Formally r(D) is the codimension of H2
dR(M) ⊂ H2

τ(A,R), viz

r(D) = dim(
H2

τ(A,R)
H2

dR(M)
).

We consider the exact sequences

O→ H2
dR(M)→ H2

τ(A,R)→ SA2 (M)→ 0

and
→ H2

τ,e(A,R)→ H2
τ(A,R)→ H2

τ,res(A,R)→ H3
τ,e(R,R)→

From those exact sequences, one deduces the equality

H2
τ(A,R)

H2
dR(M)

=
H2

τ,e(A,R)
H2

dR(M)
.

Thus r(D) is formally the dimension of SA2 (M).
The present approach leads to the following statement

Proposition 1. If r(D) > 0 then M admits non trivial D-geodesic Riemannian foliations.

Proof. Let B be a non zero element of SA2 (M) and let D be the kernel of B.

(1) Suppose that
0 < rank(D) < dim(M)

Therefore, (M, B) is a D-geodesic Riemannian foliation.
(2) Suppose that

rank(D) = O.

Then (M, B) is a Riemannian manifold the Levi-Civita connection of which is D. Therefore, the
proposition holds.

Before proceeding we define three numerical invariants

r(M) = max {r(D)|D ∈ LC(M)} ,

s(M,A) = max
{

rank(B)|B ∈ SA2 (M)
}

,

s(M) = max {s(M,A)|D ∈ LF(M)} .
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The non negative integers r(M) and s(M) are global geometric invariants. They connect the
total KV cohomology to geodesic Riemannian foliations. By this viewpoint the proposition has an
interesting corollary.

Corollary 1. In an m-dimensional manifold M suppose that the following inequalities are satisfied

0 < s(M) < m.

Then the manifold M admits a locally flat structure (M, D∗) which supports a non trivial D∗-geodesic
Riemannian foliation.

The integer s(M) is a local characteristic invariant of some class of 2-webs in Hessian manifolds.
Let (M, D) be a locally flat manifold whose KV algebra is denoted by A. we recall that a Hessian
metric tensor in (M, D) is a inversible cocycle g ∈ Z2

KV(A,R).

Theorem 6. Let (M, D, g) and (M∗, D∗, g∗) be m-dimensional Hessian manifolds. We assume that the
following inequalities hold

0 < s(M, D) = s(M∗, D∗) = s < m.

Then M and M∗ admit linearizable 2-webs which are locally isomorphic.

Proof. The proof is based on methods of the information geometry.
Let A and A∗ be the KV algebras of (M, D) and of (M∗, D∗) respectively. By the hypothesis there

exists a pair of geosic Riemannian foliations

(B, B∗) ∈ SA2 ×SA
∗

2

such that
rank(B) = rank(B∗) = s.

By the dualistic relation both M and M∗ admit locally flat structures (M, D̃) and (M∗, D̃∗)
defined by

g(Y, D̃XZ) = Xg(Y, Z)− g(DXY, Z),

g∗(Y, D̃∗XZ) = Xg∗(y, Z)− g∗(D∗XY, Z).

Their KV algebras are denoted by Ã and Ã∗.

Step a

There exists a 1-cocycle
ψ ∈ Z1

τ(Ã, Ã)

such that
B(X, Y) = g(ψ(X), Y),

Ker(B) = Ker(ψ).

By the definition of D̃ we have

TM = Ker(ψ)⊕ im(ψ).

Further im(ψ) is D̃-geodesic and Ker(B) is D-geodesic. Therefore, the pair

(Ker(ψ), im(ψ))
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is a 2-web in M.
In (M∗, D∗, g∗) we obtain similar 2-web

(Ker(ψ∗), im(ψ∗)).

By the choice of B and B∗ we have

rank(Ker(ψ)) = rank(Ker(ψ∗)) = m− s.

Now we perform the following arguments.
(a): The foliation B is D-geodesic. In a neighbourhood of every point p0 ∈ (M, D) we linearize B

by choosing appropriate local affine coordinate functions

(x, y) = (x1, ..., xm−s, y1, ..., ys).

The leaves of Ker(ψ) are defined by

y = constant.

Thereby those leaves are locally isomorphic to affine sub-spaces.

Step b

The distribution im(ψ) is D̃-geodesic. Therefore, near the same point p0 ∈ (M, D̃) we linearize
im(ψ by choosing appropriate local affine coordiante functions

(x∗, y∗) = (x∗1 , ..., y∗1, ...).

The leaves of im(ψ) are defined by

x∗ = constant.

Thus near p0 the foliation defined by m(ψ) is isomorphic to an linear foliation.

Step c

By both step a and step b we choose a neighbourhood of p0 which is the domain of systems
of appropriate local coordinate functions (x, y) and (x∗, y∗). From those data we pick the local
coordinate functions

(x, y∗) = (x1, ..., xm−s, y∗1, ..., y∗s ).

So we linearize the 2-web (Ker(ψ), im(ψ)) with the local coordinate functions (x, y∗).

(Ker(ψ), im(ψ)).

Thus near the p0 the 2-web (Ker(ψ), im(ψ)) is isomorphic to the linear 2-web (L1, L2) which is
defined in Rm by

Rm = Rm−s ×Rs.

Step d

At a point p∗0 in M∗ we perform the construction as in step a and in steps b and c, then we linearize
(Ker(ψ∗), im(ψ∗)) by choosing appropriate local coordinate functions

(x0, y0∗) = (x0
1, ..., x0

m−s, y0∗
1 , ..., y0∗

s ).
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In final, near the p∗O ∈ M∗ the web (Ker(ψ∗), im(ψ∗)) is diffeomorphic to the affine web whose
leaves are parallel to a decomposition

Rm = Vm−s ×Vs.

Here Vm−s and Vs are vector subspaces of Rm. Their dimensions are m− s and s.

Conclusion.

There exists a unique linear transformation φ of Rm such that

φ(Rm−s × 0) = Vm−s,

φ(0×Rs) = Vs.

Thereby there is a local diffeomorphism Φ of M in M∗ subject to the requirements

Φ(p0) = p∗0,

(x0, y0∗) ◦Φ = (x, y∗).

The differential of Φ is denoted by Φ∗. We express the properties above by

Φ(p0) = p∗0,

Φ∗[Ker(ψ), im(ψ)] = [Ker(ψ∗), im(ψ∗)].

This ends the sketch of proof of Theorem.

In the next we use the following definitions.

Definition 30. A finite family {
BJ, J ⊂ Z

}
⊂ SA2 (M)

is in general position if the distributions
{

Ker(Bj), j ∈ J
}

are in general position.

The following statement is a straight corollary of the theorem we just demonstrated.

Proposition 2. In a locally flat manifold (M, D) with r(D) > 0 every finite family in general position define a
linearizable Riemannian web.

4.4. The KV Cohomology and Differential Topology Continued

We have seen how the total cohomology and linearizable Riemannian webs are related.
More precisely the theory of KV cohomology provides sufficient conditions for a locally flat manifold
admitting linearizable Riemannian webs. That approach is based on the split exact sequence

0→ H2
dR(M)→ H2

τ(A, C∞(M))→ SA2 (M)→ 0.

4.4.1. Kernels of 2-Cocycles and Foliations

Not all locally flat manifolds admit locally flat foliations. The existence of locally flat foliations
is related to the linear holomnomy representation, viz the linear component of the affine holonomy
representation of the fundamental group. Via the developing map the affine holonomy representation
is conjugate to the natural action of the fundamental group in the universal covering. The KV
homology is useful for investigating the existence of locally flat foliations. To simplify we work in the
analytic category. So our purposes include singular foliations.
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For those purposes we focus on an elementary item which has a notable impacts on our request.
Let (M, D) be a locally flat manifold whose KV algebra is denoted by A. Let g ∈ C2(A, C∞(M)).

The left kernel and the right kernel of g are denoted by Ker(g) and K0er(g) respectively.
Ker(g) is defined by

g(X, Y) = 0 ∀Y ∈ A.

K0er(g) is defined by
g(Y, X) = 0 ∀Y ∈ A.

The scalar KV 2-cocycles have elementary relevant properties

(1) The left kernel of every KV 2-cocycle is closed under the Poisson bracket of vector fields.
(2) The right kernel of every KV 2-cocycle is a KV subalgebra of the KV algebra A.

We translate those elementary properties in term of the differential topology

Theorem 7. In an analytic locally flat manifold (M, D)

(1) The arrow
Z2

KV(A, C∞(M)) 3 g→ Ker(g)

maps the set of analytic 2-cocycles in the category of analytic stratified foliations M,
(2) The arrow

Z2
KV(A, C∞(M)) 3 g→ K0er(g)

maps the set of analytic 2-cocycles in the category of stratified locally flat foliations,
(3) If a 2-cocycle g is a symmetric form then Ker(g) is a stratified locally flat transversally Riemannian foliation.

The vector subspace of symmetric 2-cocycles the kernels of which are D-geodesic is denoted
by Z̃2

KV(A). The corresponding cohomology vector subspace is denoted by

H̃2
KV(A) ⊂ H2

KV(A, C∞(M)).

By the exact sequence

O→ H2
dR(M)→ H2

τ(A, C∞(M))→ SA2 (M)→ 0

we have the inclusion map

H2
τ(A, C∞(M))

H2
dR(M)

⊂ H̃2
KV(A) ⊂ RF(M).

5. The Information Geometry, Gauge Homomorphisms and the Differential Topology

We combine the dualistic relation with gauge homomorphisms to relate the total cohomology and
two problems.

(i) The first is the existence problem for Riemannian foliations.
(ii) The second is the linearization of webs.

Those relationships highlight other roles played by the total KV cohomology. Through this section
we use the brute coboundary operator.

5.1. The Dualistic Relation

We are interest in the foliation counterpart of the reduction in statistical models. The statistical
reduction theorem is Theorem 3.5 as in [18]. We recall the notions which are needed.
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Definition 31. A dual pair is a quadruple (M, g, D, D∗) where (M, g) is a Riemannian manifold, D and D∗

are Koszul connections in M which are related to the metric tensor g by

Xg(Y, Z) = g(DXY, Z) + g(Y, D∗XZ) ∀X, Y, Z.

We recall that a Riemannian tensor is a non degenerate symmetric bilinear 2-form.
The dualistic relation between linear connections plays a central role in the information

geometry [17,18,47,48].

Definition 32. Let (M, g) be a Riemannian manifold.

(1) A dual pair (M, g, D, D∗) is called a flat pair if the connection D is flat, viz R∇ = 0.
(2) A flat pair (M, g, D, D∗) is called a dually flat pair if both (M, D) and (M, D∗) are locally flat manifolds.

Given a dual pair (M, D, D∗) let us set A = D−D∗. Here are the relationships between the torsion
tensors TD and TD∗ (respectively the relationship between the curvature tensors RD and RD∗ )

g(RD(X, Y) · Z, T) + g(Z, RD(X, Y) · T) = 0,

g(TD(X, Y), Z)− g(TD∗(X, Y), Z) = g(Y, A(X, Z))− g(X, A(Y, Z)).

Proposition 3. Given a flat pair (M, g, D, D∗), the following assertions are equivalent.

(1) Both D and D∗ are torsion free.
(2) D is torsion free and A is symmetric, viz

A(X, Y) = A(Y, X).

(3) D∗ is torsion free and the metric tensor g a is KV cocycle of the KV algebra A∗ of the locally flat
manifold (M, D∗).

(4) The flat pair (M, g, D, D∗) is a dually flat pair.

Proof. Let us prove that 1 implies (2)
If both TD and TD∗ vanish identically then A is symmetric, viz A(X, Y) = A(Y, X).

Let us prove that (2) implies (3).

Since D is a flat connection, (2) implies that both the torsion tensor and the curvature tensor
of D vanish identically. Then (M, D) is a locally flat manifold whose KV complex is denoted by
(C∗(A,R), δKV). Using the dualistic relation of the pair (M, g, D, D∗) one obtains the identity

δKVg(X, Y, Z) = g(A(X, Y)− A(Y, X), Z) = g(TD∗(X, Y), Z),

therefore (2) implies (3).

Let us prove that (3) implies (4).

The assertion (3) implies that (M, D∗) is a locally flat manifold. Since g is δKV-closed D is
torsion free. Thereby (M, g, D, D∗) is a dually flat pair.

Let us prove that (4) implies (1).

This implication derives directly from the definition of dually flat pair.
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A Comment.

From the proposition just proved arises a relationship between the dually flatness and the KV cohomology.
Indeed let (M, D0) be a fixed locally flat manifold whose KV algebra is denoted by A0. Let C∗KV(A0,R) be

the KV complex of R̃-valued cochains of the KV algebroid (TM, D0, 1). We know that every g ∈ Rie(M) yields
a flat pair (M, g, D0, Dg).

Here Dg is the flat Koszul connection defined by

g(Dg
XY, Z) = Xg(Y, Z)− g(Y, D0

XZ).

Proposition 4. The following assertions are equivalent.

(1) (M, g, D0, Dg) is a dually flat pair.
(2) δ0

KV(g) = 0

The scalar KV cohomology of a fixed locally flat manifold (M, D0) provides a way of constructing
new locally flat structures in M. Indeed let us set

Hes(M, D0) = Z2
KV(A0,R)∩Rie(M).

For every g ∈ Hes(M, D0) there is a unique Dg ∈ LF(M) such that (M, g, D0, Dg) is a
dually flat pair.

So the dualistic relation leads to the map

Hes(M, D0) 3 g→ Dg ∈ LF(M).

We recall that a gauge map in TM is a vector bundle morphism of TM in TM which projects on
the identity map of M. The readers interested in others topological studies involving connections and
gauge transformations are referred to [49].

Given two symmetric cocycles g, g∗ ∈ Hes(M, D0) there is a unique gauge transformation

φ∗ : TM→ TM

such that
g∗(X, Y) = g(φ∗(X), Y).

The following properties are equivalent

φ(D0
XY) = D0

Xφ(Y), (11a)

Dg = Dg∗ . (11b)

We fix a metric tensor g∗ ∈ Hes(M, D0). A gauge transformation φ is called g-symmetric if we have

g(φ(X), Y) = g(X, φ(Y)) ∀(X, Y).

Every g-symmetric gauge transformation φ defines the metric tensor

gφ(X, Y) = g(φ(X), Y).

This gives rise to the flat pair
(M, gφ, D0, Dgφ).

To simplify we set
Dφ = Dgφ .
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We note Sym(g) the subset of g-symmetric gauge transformations φ such that the following
assertions are equivalent

(1) φ ∈ Sym(g).
(2) (M, gφ, D0, Dφ) is a dually flat pair.

The Lie group of D0-preserving gauge transformations of TM is denoted by G0. It is easy to see
that for every φ ∈ Sym(g) the following assertions are equivalent

(1) φ ∈ G0,
(2) gφ ∈ Hes(M, D0).

Henceforth we deal with a fixed g∗ ∈ Hes(M, D0. The triple (M, g∗, D0) leads to the dually flat
pair (M, g, D0, Dg∗). We set

D∗ = Dg∗ .

The tangent bundle TM is regarded as a left KV module of the KV algebroid (TM, D∗, 1).
The KV algebras of (M, D0) and of (M, D∗) are denoted by A0 and by A∗ respectively.

Their coboundary operators are noted δ0 and δ∗ respectively.
We focus on the role played by the total KV cohomology of the algebroid (M, D∗, 1).
Let φ be a g∗-symmetric gauge transformation. Then φ gives rise to the metric tensor gφ which is

defined by
gφ(X, Y) = g∗(φ(X), Y).

Lemma 3. The following assertions are equivalent,

(1) gφ ∈ Hes(M, D0),
(2) φ ∈ Z1

τ(A∗,A∗).

Hint.

Use the following formula
δ0

KVgφ(X, Y, Z) = g∗(δ∗τφ(X, Y), Z).

Following the pioneering definition as in [2] a hyperbolic locally flat manifold is a positive exact Hessian
manifold (M, D, δKVθ). We extend the notion of hyperbolicity by deleting the condition that δKVθ is positive.
Now denote byHyp(M, D0) the set of exact Hessian structures in (M, D0).

A hyperbolic structure is defined by a triple (M, D, θ) where (M, D) is a locally flat manifold and θ is a de
Rham closed differential 1-form such that the symmetric bilinear δKVθ is definite.

The following statement is a straightforward consequence of Lemma 3.

Corollary 2. The following statements are equivalent.

(1) gφ ∈ Hyp(M, D0),
(2) φ ∈ B1τ(A∗,A∗)

Proof of Corollary. By (1) there exists a (de Rham) closed differential 1-form θ such that

gφ(X, Y) = Xθ(Y)− θ(D0
XY).

Let ξ be the unique vector field such that

θ = ιξ g∗.
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Therefore one has
g∗(φ(X), Y) = Xg∗(ξ, Y)− g∗(ξ, D0

XY).

Since the quadruple
(M, g∗, D0, D∗)

is a dually flat pair one has the identity

g∗(φ(X), Y) = g∗(D∗Xξ, Y).

Thus we get the expected conclusion, viz

φ(X) = D∗Xξ.

Conversely let us assume that there exists a vector ξ satisfying the identity

φ(X) = D∗Xξ.

That leads to the identity

g∗(D∗Xξ, Y) = Xg∗(ξ, Y)− g(ξ, D0
XY).

In other words one has
gφ ∈ Hyp(M, D0).

This ends the proof of Corollary 2.

The set of g∗-symmetric gauge transformation is denoted by Σ(g∗).
We have the canonical isomorphism

Σ(g∗) 3 φ→ gφ ∈ Rie(M). (12)

Now we define the sets
Z̃1

τ(A∗,A∗) = Σ(g∗)∩ Z1
τ(A∗A∗),

B̃1
τ(A∗,A∗) = Σ(g∗)∩ B1

τ(A∗,A∗).

Combining Lemma 3 and its corollary with the isomorphism Equation (12). Then we obtain
the identifications

Z̃1
τ(A∗,A∗) = Hes(M, D∗),

B̃1
τ(A∗,A∗) = Hyp(M, D∗).

Reminder.

We recall that a hyperbolic manifold (or a Koszul manifold) is δKV-exact Hessian manifold (M, g, D).
It is easily seen that the set of positive hyperbolic structures in a locally flat manifold (M, D) is a convex

subset ofHes(M, D).
So show the Koszul geometry is a vanishing theorem in the theory of KV homology of KV algebroids.

The theory of homological statistical model (to be introduced in Part B) is another impact on the information
geometry of the KV cohomology.

At the present step we have the relations

Hes(M, D∗)
Hyp(M, D∗)

⊂ H2
KV(A∗,R),
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Z̃1
τ(A∗,A∗)

B̃1
τ(A∗,A∗)

=
Hes(M, D∗)
Hyp(M, D∗)

.

Another outstanding result of Koszul is the non rigidity of compact positive hyperbolic manifolds [2].
The non rigidity means that every open neighborhood of a positive Hyperbolic locally flat manifold (M, D, δKVθ)

contain another positive hyperbolic locally flat structure which is not isomorphic to (M, D). This non rigidity
property may be expressed with the Maurer–Cartan polynomial function PA

MC of (M, D) ( see the local convexity
theorem in [29]. In the next sub-subsection we revisit the notion of dual pair of foliations as in [18].

5.1.1. Statistcal Reductions

The statistical reduction theorem is the following statement.

Theorem 8 ([18]). Let (M, g, D, D∗) be a dually flat pair and let N be a submanifold of M. Assume that N is
either D-geodesic or D∗-geodesic. Then N inherits a structure of dually flat pair which is either (N, gN, D, D∗N)
or (N, gN, DN, D∗)).

The foliation counterpart of the reduction theorem is of great interest in the differential topology of
statistical models see [18]. In the preceding sections we have addressed a cohomological aspect of this
purpose. The matter will be more extensively studied in a forthcoming paper (See the Appendix A).

In mathematical physics a principal connection 1-form is called a gauge field.
In the differential geometry a principal connection 1-form in a bundle of linear frames is called a

linear connection.
In the category of vector bundle Koszul connections are algebroid counterpart of principal

connection 1-forms.
In a tangent bundle TM, depending on concerns and needs Koszul connections may called linear

connections or linear gauges.

Definition 33. Let D, D∗ ∈ LC(M). A vector bundle homomorphism

ψ : TM→ TM

is called a gauge homomorphism of (M, D) in (M, D∗) if for all pairs of vector fields (X, Y) one has

D∗Xψ(Y) = ψ(DXY).

The vector space of gauge homomorphisms of (M, D) in (M, D∗) is denoted by M(D, D∗).
The vector spaceM(D, D∗) is not a C∞(M)-module.

5.1.2. A Uselful Complex

In this subsubsection we fix a dually flat pair (M, g, D, D∗) whose KV algebras are denoted by
A and by A∗. The tangent bundle TM is endowed the structure left module of the anchored KV
algebroids (TM, D, 1) and (TM, D∗, 1). This means that each of the KV algebrasA orA∗ is regarded as
a left module of itself.

We consider the tensor product

C = C∗τ(A∗,A∗)⊗C∗τ(A,R).

We endow C with the Z bi-grading.

Ci,0 = Ci
τ(A∗,A∗)⊗C∞(M),

C0,j = A∗ ⊗Cj
τ(A,R),
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Ci,j = Ci
τ(A∗,A∗)⊗Cj

KV(A,R).

We recall that C∗(A,R) stands for C∗(A, C∞(M)).
For every non negative integer q we set

Cq = Σi+j=qCi,j.

We defines the linear map
δi,j : Ci,j → Ci+1,j ⊕Ci,j+1

by
δi,j = δτ ⊗ 1+ (−1)i ⊗ δτ.

So we obtain a linear map
Cq → Cq+1

Therefore, we consider the bi-graded differential vector space

C := (C∗∗, δ∗∗).

That is a bi-graded cochain complex whose qthcohomology is denoted by Hq(C). The cohomology
inherits the bi-grading

Hq(C) = ∑
[i+j=q]

Hi,j(C).

Here

Hi,j(C) =
Ci,j ∩ [Zi

τ(A∗,A∗)⊗ Zj
τ(A,R)]

im(δi−1,j) + im(δi, j− 1)

In the next subsubsection we shall discuss the impacts of this cohomology.

Remark 2. The pair (C∗∗, δ∗∗) generates a spectral sequence [34]. That spectral sequence is a useful tool for
simultaneously computing both the KV cohomology and the total KV cohomology of KV algebroids. Those
matters are not the purpose of this paper.

5.1.3. The Homological Nature of Gauge Homomorphisms

Giving a dually flat pair (M, g, D, D∗) one considers the linear map

C1,0
τ (A∗,A∗) 3 ψ→ ψ⊗ qψ ∈ C1,2.

Here the symmetric 2-form qψ is defined by

qψ(X, Y) =
1
2
[g(ψ(X), Y) + g(X, ψ(Y))].

To relate the bi-complex (C∗∗, δ∗∗) and the space of gauge homomorphisms we use the
following statement.

Theorem 9. Given a gauge morphism
ψ : TM→ TM

the following statements are equivalent

(1) ψ ∈M(D, D∗),
(2) δ1,2(ψ⊗ qψ) = 0
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Proof. (1) implies (2).
Suppose that ψ ∈M(D, D∗). Then we have

D∗Xψ(Y) = ψ(DXY) ∀(X, Y).

Since both D and D∗ are torsion free one has the identity

D∗X.ψ(Y)− ψ(D∗XY)−D∗Yψ(X) + ψ(D∗YX) = 0.

Thus ψ is a (1,0)-cocycle of the total KV complex (C∗∗, δ∗∗).
At another side the relation D∗X ◦ ψ = ψ ◦DX leads to the identity

DXqψ = 0.

So qψ is a (0,2)-cocycle of complex (C∗∗, δ∗∗). We conclude that

δ1,2(ψ⊗ qψ) = 0, QED.

(2) implies (1).
We recall the formula

δ1,2(ψ⊗ qψ) = (δτψ)⊗ qψ − ψ⊗ δτqψ.

By this formula
δ1,2(ψ⊗ qψ) ∈ C2,2⊕C1,3

Thus the statement (2) is equivalent to the system

δτψ = 0,

δτqψ = 0.

To continue the proof we perform the following lemma.

Lemma 4 ([29]). For every symmetric cochain B ∈ C0,2, viz

B(X, Y) = B(Y, X)

the following identities are equivalent

δτB = 0, (13a)

∇B = 0, (13b)

By Lemma 4 the bilinear form qψ is D-parallel. Thereby we get the identity

Xqψ(Y, Z)− qψ(DXY, Z)− qψ(Y, DXZ) = 0.

To usefully interpret this identity we involve the dualistic relation

Xg(Y, Z) = g(DXY, Z) + g(Y, D∗XZ).

This expression leads to the identity

g(D∗Xψ(Y)− ψ(DXY), Z) + g(Y, D∗Xψ(Z)− ψ(DXZ)) = 0. (14)
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A highlighting consequence is the identity

D∗Xψ(Y)− ψ(DXY) = D∗Yψ(X)− ψ(DYX). (15)

To every vector field X we assign the linear map

Y→ SX(Y) = D∗XY− ψ(DXY).

Then we rewrite Equations (14) and (15) as

g(SX(Y), Z) + g(Y, SX(Z)) = 0,

SX(Y) = SY(X).

We consider the last identities in the framework of the Sternberg geometry [50,51].
Since the application

(X, Y)→ SX(Y)

is C∞(M)-bi-linear it belongs to the first Kuranishi-Spencer prolongation of the orthogonal Lie
algebra so(g). Thereby SX(Y) vanishes identically. In other words we have

ψ ∈M(D, D∗).

This ends the proof of Theorem

A Comment.

The Sternberg geometry is the algebraic counterpart of the global analysis on manifolds. It has been
introduced by Shlomo Sternberg and Victor Guillemin. It is an algebraic model for transitive differential
geometry [50]. In that approach the Riemannian geometry is a geometry of type one. All of its Kuranishi-Spencer
prolongations are trivial. The unique relevant geometrical invariant of the Riemnnian geometry is the curvature
tensor of the Levi-Civita connection. Except the connection of Levi-Civita the other metric connections have
been of few interest. Really other metric connections may have outstanding impacts on the differential topology.
I shall address this purpose in a forthcoming paper.

5.1.4. The Homological Nature of the Equation FE∇∇
∗

Before proceeding we plan to discuss some homological ingredients which are connected to the
differential equation

FE∇∇
∗

: D∇∇
∗
(ψ) = 0.

Let us consider a dually flat pair (M, g∗, D, D∗) and the KV complex

ψ ∈ C1,0 = C1
τ(A∗,A∗).

Lemma 4 yields the following corollary.

Corollary 3. We keep the notation used the preceding sub-subsection. Given a gauge morphism ψ the following
statements are equivalent.

(1) ψ⊗ qψ is an exact (1,2)-cocyle,
(2) ψ ∈ B1

τ(A∗,A∗).

Proof. Assume that the assertion (2) holds. Then there is ξ ∈ A∗ satisfying the condition

ψ(X) = D∗Xξ.
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Thereby one has
qD∗ξ⊗ ∈ Z2

τ(A,R).

So one gets
D∗ξ ⊗ qD∗ξ = δ0,2[ξ ⊗ qD∗ξ ].

Therefore assumption (2) implies (1).
Conversely assume that (1) holds, viz the (1,2)-cochain ψ⊗ qψ is exact.
There exists

ξ ⊗ α⊕ ψ∗ ⊗ β ∈ C0,2 + C1,1

such that
ψ⊗ qψ = δ0,2(ξ ⊗ α) + δ1, 1(ψ∗ ⊗ β).

Thus for vector fields Z, X, Y we have

ψ(Z)⊗ qψ(X, Y) = δτξ ⊗ α(X, Y) + ξ ⊗ δτα(Z, X, Y) + δτψ∗(Z, X)⊗ β(Y) + ψ∗(Z)⊗ δτβ(X, Y).

Since
ψ⊗ qψ ∈ C1,2 = C1

τ(A∗,A∗)⊗C2
τ(A, C∞(M))

the exactness of ψ⊗ qψ implies
δτα = 0,

α(X, Y) = α(Y, X).

Therefore
ψ(Z)⊗ qψ(X, Y) = δξ(Z)⊗ α(X, Y) + ψ∗(Z)⊗ δτβ(X, Y).

Now we observe that
δτβ(X, Y) + δτβ(Y, X) = 0.

In final we get
ψ(Z)⊗ qψ(X, Y) = δτξ(Z)⊗ α(X, Y).

So we obtain
ψ(Z) = D∗Zξ,

qψ(X, Y) = α(X, Y).

This end the proof of the corollary.

From the mapping
C1,0 3 ψ→ ψ⊗ qψ ∈ C1,2

we deduce the canonical linear map

H1
τ(A∗,A∗) 3 [ψ]→ [ψ⊗ qψ] ∈ H1,2(C).

We define another map
C1,0 → C1,2

by
ψ→ ψ⊗ωψ.

Here the differential 2-form ω is defined by

ωψ(X, Y) =
1
2
[g(ψ(X), Y)− g(X, ψ(Y))].
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This yields a linear map

H1
τ(A∗,A∗) 3 [ψ]→ [ψ⊗ωψ] ∈ H1,2(C).

Now let (M, g,∇,∇∗) be a dually flat pair whose KV algebras are denoted by A and A∗.
We identify the vector space Γ(Hom(TM, TM)) with the space C1

τ(A∗,A∗).
We keep the notation D∇∇

∗
, Cij, δij and qψ. Therefore, we can rephrase Lemma 4 as it follows.

Proposition 5. For every section ψ of Hom(TM, TM) the following assertions are equivalent.

(1) : D∇∇
∗
(ψ) = 0,

(2) : δ12(qψ) = 0

Here is an interesting feature. In a dually flat pair (M, g,∇,∇∗) we combine the double complex{
Cij, δij

}
with the correspondence

ψ→ qψ.

That allow us to replace the differential equation

FE∇∇
∗

: D∇∇
∗
(ψ) = 0

by the homological equation
δ12(ψ) = 0.

That is a relevant impact on the global analysis of combinations of the KV cohomological methods
with methods in the information geometry.

5.1.5. Computational Relations. Riemannian Foliations. Symplectic Foliations: Continued

We continue to relate the vector space of gauge homomorphisms and the differential topology.
The tools we use are the KV cohomology and the Amari dualistic relation.

Let (M, g, D, D∗) be a dual pair. The vector subspace of g-preserving elements ofM(D, D∗) is
denoted byM(g, D, D∗). Thus every ψ ∈M(g, D, D∗) satisfies the identity

g(ψ(X), Y) + g(X, ψ(Y)) = 0.

Now we fix a Koszul connection D0 and we define the map

Rie(M) 3 g→ Dg ∈ LC(M).

by setting
g(Dg

XY, Z) = Xg(Y, Z)− g(Y, D0
XZ).

We define the non negative integers

nx(D0) = dim[
Mx(D0, Dg)

Mx(g, D0, Dg)
],

n(DO) = min
x∈M

dim[
Mx(D0, Dg)

Mx(g, D0, Dg)
].
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Lemma 5. The integer n(D0) does not depend on the choice of g ∈ Rie(M).

An Idea.

We fix a metric tensor g. For every g∗ ∈ Rie(M) there is a unique g-symmetric vector bundle morphism
φ ∈ Σ(g) such that

g∗(X, Y) = g(φ(X), Y).

Therefore, we have
φ−1 ◦M(D0, Dg) =M(g∗, D0, Dg∗),

φ−1M(g, D0, Dg) =M(g∗, D0, Dg∗).

Now one defines the numerical invariant n(M).

Definition 34.
n(M) = max {n(D)|D ∈ SLC(M)} .

Given a Koszul connection ∇ the vector space of ∇-parallel differential 2-forms is denoted
by Ω∇2 (M).

Every dual pair (M, g,∇,∇∗) gives rise to the linear isomorphisms

(1) :
M(∇,∇∗)
M(g,∇,∇∗) 3 [ψ]→ qψ ∈ S∇2 (M),

(2) : M(g,∇,∇∗) 3 ψ→ ωψ ∈ Ω∇2 (M).

The isomorphism (1) derives from the linear map

(1∗) : ψ→ qψ(X, Y) =
1
2
[g(ψ(X), Y) + g(X, ψ(Y))].

The isomorphism (2) is defined by

(2∗) : ψ→ ωψ(X, Y) =
1
2
[g(ψ(X), Y)− g(X, ψ(Y))].

Proposition 6. Let (M, g,∇,∇∗) be a dual pair. The inclusion map

M(g,∇,∇∗)→M(∇,∇∗)

induced the split short exact sequence

(∗ ∗ ∗ ∗ ∗) : 0→ Ω∇2 (M)→M(∇,∇∗)→ S∇2 (M)→ 0.

Reminder.

According our previous notation elements of Ω∇2 (M) are ∇-geodesic symplectic foliations. Those of
S∇2 (M) are∇-geodesic Riemannian foliations. Thus we apply methods of the information geometry to relate the
gauge geometry and the differential topolgy.

Digressions.

Our construction may open to new developments. Here are some unexplored perspectives.

(a) A∇-geodesic symplectic foliation ω ∈ Ω∇ might carry richer structures such as Kahlerian structures.
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(b) Suppose that the manifold M is compact and suppose that g ∈ S∇2 (M) is a positive Riemannian foliation, viz

g(X, X) ≥ 0 ∀X.

Then the theory of Molino may be applied to study g [38]. Therefore, the structure theorem of Molino tells
that g gives rise to a Lie foliation whoses leaves are the adherences leaves of ḡ [39].

(c) In the principal bundle of first order linear frames of M the analog of a Koszul connection∇ is a principal
connection 1-form ω whose curvature form is denoted by Ω. The curvature form is involved in constructing
characteristic classes of M, (the formalism of Chern-Weill.)

At another side ∇-geodesic Riemannian foliations and ∇-geodesic symplectic foliations are
Lie algebroids. They have their extrinsic algebraic topology. In particular the theory of integrable
systems may be performed in every leaf of ω ∈ Ω∇2 (M). If one considers the α-connections in a
statistical model those new insights may be of interest.

Here is an interpretation of the numerical invaraint n(∇).

Theorem 10. We assume there exists ∇ ∈ SLC(M) whose linear holonomy group H(∇) is neither
an orthogonal subgroup nor a symplectic subgroup. If n(∇) > 0 then the manifold M admits a couple
(Fr,Fs) formed by a∇-geodesic Riemannian foliation Fr and a∇-geodesic symplectic foliation Fs.

Proof. Let g be a Riemannian metric tensor in M. Since

n(∇) ≤ dim(S∇2 (M)(x))

for all x ∈ M there exists ψ ∈M(∇,∇(g) such that

qψ ∈ S∇2 (M) \ {0} ,

ωψ ∈ Ω∇2 (M) \ {0} .

The assumption that the holonomy group H(∇) is neither orthogonal nor symlectic implies

Ker(qψ) 6= 0,

Ker(ωψ) 6= 0.

Both distributions Ker(qψ) and Ker(ωψ) are∇-geodesic. Since∇ is torsion free those distributions
are completely integrable.

For all X ∈ Γ(Ker(qψ)) we have
LXqψ = 0.

Mutatis mutandis for all X ∈ Γ(Ker(ωψ)) we have

LXωψ = 0.

From those properties we conclude
(M, Ker(qψ), qψ) is a ∇-geodesic Riemannian foliation, (M, Ker(ωψ), ωψ) is a ∇-geodesic

symplectic foliation.
The theorem is proved.
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A Useful Comment.

Let (M, D) be a locally flat manifold whose KV algebra is denoted by A. To every dual pair (M, g, D, Dg)

we assign the short split exact sequence

0→ ΩA2 (M)→M(D, Dg)→ SA2 (M)→ 0

which is canonically isomorphic to the short exact sequence

0→M(g, D, Dg)→M(D, Dg)→ SA2 (M)→ 0.

We have already defined the geometric invariant

r(D) = dim(H2
τ(A,R))− b2(M).

We observe that the integer n(D) is a byproduct of methods of the information geometry while r(D) is a
byproduct of homological methods. However the split short exact sequence (****) leads to the equality

n(D) = r(D).

Here is a straight consequence of the theorem we just proved.

Proposition 7. Every odd-dimensional manifold M with n(M) > 0 admits a geodesic symplectic foliation.

The dualistic relation of Amari has another significant impact on the differential topology.

Definition 35. We consider a dual pair (M, g,∇,∇∗). Let ψ ∈M(∇,∇∗).

(1) The g-symmetric part of ψ, ψ+ is defined by

g(ψ+(X), Y) =
1
2
[g(ψ(X), Y) + g(X, ψ(Y))].

(2) The g-skew symmetric part of ψ, ψ− is defined by

g(ψ−(X), Y) =
1
2
[g(ψ(X), Y)− g(X, ψ(Y))].

Theorem 11. Let (M, g,∇,∇∗) be a dual pair where (M, g) is a positive Riemannian manifold. Let ψ ∈M(∇,∇∗).

(1) The g-symmetric part ψ+ is an elementM(∇,∇∗) whose rank is constant.
(2) We have the g-orthogonal decomposition

TM = Ker(ψ+)⊕ im(ψ+).

(3) If both∇ and∇∗ are torsion free then Ker(ψ+) and Im(ψ+) are completely integrable.

A Digression.

We recall that a statistical manifold is a torsion free dual pair (M, g,∇,∇∗). If the vector spaceM(∇,∇∗)
is non-trivial then it plays an outstanding role in the differential topology of M. We define a canonical map of
M(∇,∇∗) in the category of 2-webs by

M(∇,∇∗) 3 ψ→ Ker(ψ+)⊕ im(ψ+).
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Thus one may regard elements ofM(∇,∇∗) as orthogonal 2-webs in M.
We keep our previous notation. The we have

qψ(X, Y) = g(ψ+(X), Y),

ωψ(X, Y) = g(ψ−(X), Y).

Now suppose that (M, g,∇,∇∗) is a dually flat pair whose KV algebras are notedA andA∗. We take into
account the inclusion

M(∇,∇∗) ⊂ Z1
τ(A∗,A∗).

We have a map ofM(∇,∇∗) in the space of de Rham 2-cocyles which is defined by

M(∇,∇∗) 3 ψ→ ωψ.

Assume that the cocycle ψ ∈M(∇,∇∗) is exact. Then there exists ξ ∈ A∗ such that

ψ(X) = ∇∗Xξ ∀X ∈ A.

By the dualistic relation one easily sees that

ωψ = ddR(ιξg).

Therefore one gets a canonical linear map

H1
τ(A∗,A∗) 3 [ψ]→ [ωψ] ∈ H2

dR(M,R).

The next subsubsection is devoted to a few consequences of items we just discussed.

5.1.6. Riemannian Webs—Symplectic Webs in Statistical Manifolds

We introduce Riemannian webs and symplectic webs and we discuss their impacts on the topology
of statistical manifolds. We recall that a Riemannian foliation is a symmetric bilinear form g ∈ S2(M)

with the following properties

(a) rank(g) = constant,
(b) LXg = 0∀X ∈ Γ(Ker(g)).

We put
D = Ker(g).

To avoid confusions the pair (D, g) stands for the Riemannian foliation g.

Definition 36. A Riemannian k-web is a family of k Riemannian foliations in general position (Dj, gj),
j := 1, ..., k. A symplectic k-web is a family of k symplectic foliations in general position (Dj, ωj); j := 1, ..., k).

Let (M, g, D, D∗) be a dually flat pair whose KV algebras are denoted by A and A∗. We recall
the inclusion

M(D, D∗) ⊂ Z1
τ(A∗,A∗).

Consider a statistical manifold (M, g,∇,∇∗). By the classical theorem of Frobenius every
∇-parallel differential system in M is completely integrable.
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In a statistical manifold (M, g,∇,∇∗) we consider a∇-geodesic Riemannian k-web

[g̃j ∈ S∇2 (M); j : 1, ..., k].

The distributions
Dj = Ker(g̃j)

are in general position. We consider the family Ψ+
j ∈ Σ(g) defined by

g(Ψ+
j (X), Y) = g̃j(X, Y).

We get the family of g-orthogonal 2-webs defined by

TM = Ker(Ψ+
j )⊕ im(Ψ+

j ).

Mutatis mutandis we can consider a∇-geodesic symplectic web

[ωj ∈ Ω∇2 (M); j := 1, ..., k].

There is family of g-skew symmetric gauge morphisms Ψ−j defined by

g(Ψ−j (X), Y) = ωj(X, Y).

Since∇ and∇∗ are torsion free Ker(Ψ−j ) and im(Ψ−j ) are completely integrable. Since g is positive
definite we get the 2-web

TM = Ker(Ψ−j )⊕ im(Ψ−j ).

Further every leaf of im(Ψ−j ) is a symplectic manifold.

Definition 37. Let ω ∈ Ω∇2 (M) be a non trivial symplectic foliation in a statistical manifold (M, g,∇,∇∗).
Consider Ψ− ∈M(∇,∇∗) defined by

g(Ψ−(X), Y) = ω(X, Y).

The differential 2-form ω is called simple if the foliation Ker(Ψ−) is simple.

In a statistical manifold (M, g,∇,∇∗) every non trivial symplectic web

[ωj; j := 1, ...] ⊂ Ω∇2 (M)

gives rise to a family of g-orthogonal 2-webs. So in this approach the role played by S∇2 (M) is similar to
the role played by Ω∇2 (M). Our construction of Riemannian webs and symplectic webs in the category
of dually flat pairs holds in the category of statistical manifolds.

At one side, in a dually flat pair (M, g, D, D∗) our approach yields linearizable webs. This property
does not hold in all statistical manifolds.

At another side, in a statistical manifold (M, g,∇,∇∗) a Riemannian web

[g̃j, j ∈ J] ⊂ S∇2 (M)

or symplectic web
[ωj, j ∈ J] ⊂ Ω∇2 (M)

gives rise to families of orthogonal 2-webs. This property does not hold in all dually flat pairs.
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The considerations we just discussed may have remarkable impacts on the topological-geometrical
structure of statistical manifolds.

From our brief discussion we conclude

Theorem 12. Consider a statistical manifold (M, g,∇,∇∗). Every non trivial simple symplectic foliation
ω ∈ Ω∇2 (M) is defined by a Riemannian submersion on a symplectic manifold.

Corollary 4. Every non trivial simple symplectic web [ωj, j ∈ J] ⊂ Ω∇2 (M) is defined by family of Riemannian
submersions on symplectic manifols.

5.2. The Hessian Information Geometry, Continued

In [52] Shima pointed out that the Fisher informations of many classical statistical models are
Hessian metric tensors.

At another side the exponential models (or exponential family) may be considered as optimal
Statistical models.

As already mentioned there does not exists any criterion for knowing whether a given statistical
model is isomorphic to an exponential model [22], [13]

In the category of regular models, viz models whose Fisher information is a Riemannian metric,
it is known that the Fisher information of an exponential model is a Hessian Riemannian metric [18,52].

In this subsection we address the general situation. We give a cohomological characterization of
exponential models. We also introduce a new numerical invariant rb which measures how far from
being an exponential family is a given statistical model. See the Appendix A to this paper.

We recall that the metric tensor g of a Hessian structure (M, D, g) is a 2-cocycle of the KV complex
[C∗KV(A,R), δKV].

To non specialists we go to recall some constructions in the geometry of Koszul [2,52], see also [53].
Let ((M, x∗), D) be a pointed locally flat manifold whose universal covering is denoted by (M̃, D̃).

Here the topological space M̃ is the set of homotopy class of continuous paths

{([0, 1], 0)→ (M, x∗)} .

Its topology is the compact-open topology. Let c be a continuous path with

c(0) = x∗.

For s ∈ [0, 1] the parallel transport of Tx∗M in Tc(s)M is denoted by τs. One defines Q(c) ∈ Tx∗M by

Q(c) =
∫ 1

0
τ−1

s (
dc(s)

ds
)ds.

The tangent vector Q(c) depends only on the homotopy class of the path c. Therefore, Q defines
a local homeomorphism

Q̃ : M̃→ Tx∗M.

Let π1(x∗) be the fundamental group at x∗. Let [γ] ∈ π1(x∗). The natural left action

π1(x∗)× M̃→ M̃

is given by the composition of paths, viz

[γ].[c] = [γ ◦ c].

The parallel transport along a loop γ(t) yields a linear action of π1(x∗) in Tx∗M which is denoted
by f ([γ]).
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Let [γ], [γ∗] ∈ π1(x∗). The composition of paths leads to the formula

Q([γ].[γ∗]) = f ([γ])Q([γ∗]) + Q([γ]).

The last relation shows that the pair ( f , Q) is an affine representation of π1(x∗) in Tx∗M.
This representation is called the holonomy representation of the locally flat manifold (M, D). The group
( f , Q)(π1(x∗)) is called the affine holonomy group of (M, D). Its linear component f (π1(x∗)) is called
the linear holonomy group of (M, D).

Definition 38 ([2]). An m-dimensional locally flat structure (M, D) is called hyperbolic if Q̃(M̃) is a convex
domain not containing any straight line in Tx∗M.

Definition 39. A locally flat manifold (M, D) is complete if the map Q̃ is a diffeomorphism onto Tx∗M.

Among the major open problems in the theory of space groups is the conjecture of Markus.
Conjecure of Markus: a compact locally flat manifold (M, D) whose linear holonomy group is

unimodular is complete.

Before pursuing we recall KV cohomological version of Theorem 3 as in [2].

Theorem 13 ([2]). A necessary condition for a locally flat manifold (M, D) being hyperbolic is that (M, D)

carries a positive Hessian structure whose metric tensor is exact in the KV complex of (M, D). This condition is
sufficient if M is compact.

We have already mentioned a notable consequence of this theorem of Koszul. In the category of
compact locally flat manifolds the subcategory of hyperbolic locally flat structures is the same thing as
the category of positive exact Hessian structures. So The geometry of compact hyperbolic local flat
manifolds is an appropriate vanishing theorem.

In the preceding sections the family of Hessian metrics in a locally flat manifold (M, D) is denoted
byHes(M, D). Therefore,H+es(M) stands for the sub-family of positive Hessian metric tensors. It is
a convex cone inRie(M).

We have already used the KV complex for expressing the dually flatness. More precisely let (M, D)

be a fixed locally flat manifold whose KV algebra is notedA. A dual pair (M, g, D, D(g)) is dually flat if
and only if g ∈ Z2

KV(A,R). Therefore, every dually flat pair (M, g, D, D∗) yields two cohomology classes

[g]D ∈ H2
KV(A,R),

[g]D∗ ∈ H∗KV(A∗,R).

Thereby, we can use methods of the information geometry for rephrasing Theorem 3 as in [2].

Theorem 14. A necessary condition for (M, D) being hyperbolic is the existence a positive dually flat pair
(M, g, D, D∗) such that

[g] = 0 ∈ H2
KV(A,R).

If M is compact this ( vanishing ) condition is sufficient.

About the geometry of Koszul the non specialists are referred to [2,7,8,52] and bibliography
therein [12].

About applications of the geometry of Koszul the readers are refereed to [12,13,54,55].
About relationships between the theory of deformation and the theory of cohomology, the readers

are referred to [9,27,56].
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5.3. The α-Connetions of Chentsov

Still, nowadays, the information geometry deals with models (Θ, P) whose underlying
m-dimensional manifold Θ is an open subset of the euclidean space Rm. Further the Fisher information
g is assumed to be regular, viz (Θ, g) is a Riemannian manifold. In this paper this classical information
geometry is called the local information geometry. This “local nature” will be explained in Part B of
this paper.

At the moment we plan to investigate other topological properties of the local statistical models.
Let (Θ, P) be an m-dimensional local statistical model for a measurable set (Ξ, Ω). The manifold Θ

is a domain in the Euclidean space Rm. The function P is non negative. It is defined in Θ×Ξ. We recall
the requirements P is subject to.

(1) ∀ξ ∈ Ξ the function
Θ 3 θ→ P(θ, ξ)

is smooth.
(2) ∀θ ∈ Θ the triple

(Ξ, Ω, P(θ,−))

is a probability space.
(3) ∀θ, θ∗ ∈ Θ with θ 6= θ∗ there exists ξ ∈ Ξ such that

P(θ, ξ) 6= P(θ′, ξ).

(with the requirement (3) (Θ, P) is called identifiable.)
(4) The differentiation dθ commutes with the integration

∫
Ξ . The Fisher information of a model (Θ, P)

is the symmetric bi-linear form g which is defined by

g(X, Y)(θ) =
∫

Ξ
P(θ, ξ)[[dθlog(P)]⊗2(X, Y)](θ, ξ)dξ.

Here dθ stands for the differentiation with respect to the argument θ ∈ Θ.
(5) The Fisher information is positive definite.

Remark 3. The Fisher information g can be defined using any Koszul connection ∇ according to the
following formula

g(X, Y)(θ) = −
∫

Ξ
P(θ, ξ)[(∇2log(P))(X, Y)](θ, ξ)]dξ.

The right member of the last equality does not depend on the choice of the Koszul connection∇.
From now on, we deal with a generic statistical model. This means that we do not assume the Fisher

information g is definite.
Let θ = (θ1, ..., θm) be a system of Euclidean coordinate functions in Rm. To every real number α is assigned

the torsion free Koszul connection∇α whose Christoffel symbols in the coordinate (θj) are

Γα
ij,k =

∫
Ξ

P(θ, ξ)[(
∂2log(P(θ, ξ))

∂θi∂θj
+

1− α

2
∂log(P(θ, ξ))

∂θi

∂log(P(θ, ξ))

∂θj
)

∂log(p(θ, ξ))

∂θk
]dξ.

This definition agrees with any affine coordinate change. We put ∂i =
∂

∂θi
. We have

∇α
∂i

∂j = ∑
k

Γα
ij,k∂k.
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Now we assume a model (Θ, P) is regular. Then the Christoffel symbols and the Fisher information are
related by the formula

Γα
ij,k = g(∇α

∂i
∂j, ∂k).

Further every quadruple (Θ, g,∇α,∇−α) is a statistical manifold [18,48].
Thus we have a family of splitting short exact sequences

0→ Ω∇
α
(Θ)→M(∇−α,∇α)→ S∇α

2 (Θ)→ 0.

So the machinery we have developed in the preceding sections can be performed to explore the differential
topology of regular local statistical models. For that purpose the crucial tool is the family of vector space

Sα
2 (Θ) = S∇α

2 (Θ).

We consider the abstract trivial bundle

∪α[Sα×{α}]→ R

whose fiber over α ∈ R is Sα(Θ). To every B ∈ Sα(Θ) we assign the unique ψ+ ∈ Σ(g) defined by
g(ψ+α(X), Y) = B(X, Y).

The machinery in the preceding subsection leads to the following proposition.

Proposition 8. We assume (Θ, P) is regular.

(1) Every non zero singular section
R 3 α→ Bα ∈ Sα(Θ)

gives rise the family of (g-orthogonal) 2-web

TΘ = Ker(ψ+α)⊕ im(ψ+α).

Further according to the notation used previously (Bα) is a family of Riemannian foliations as in [39,40].
(2) By replacing Sα(Θ) by Ω∇2 (Θ) every non zero singular section

R 3 α→ ωα ∈ Ω∇2 (Θ)

yields a family of symplectic foliations ωα.

Reminder.

(i) α→ Bα is called a singular section if each Bα is non inversible.
(ii) α→ ωα is called a simple section if each ωα is simple.

We have used some gauge morphisms to construct Riemannian submersions of statistical manifolds over
symplectic manifolds. The notions we just introduced lead to similar situations.

Theorem 15. Let (Θ, P) be a regular statistical model whose Fisher information is denoted by g. Every simple
non zero singular section

R 3 α→ ωα ∈ Ωα(Θ)

defines an α-family of Riemannian submersions of (Θ, g) onto symplectic manifolds.
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Proposition 9. We assume a model (Θ, P) is regular. For every nonzero real number α one has

M(∇α,∇−α)∩M(∇−α,∇α) =M(g,∇−α,∇α) +M(g,∇∗,∇).

The Sketch of Proof. The proof is based on the short exact sequences

0→M(g,∇α,∇−α)→M(∇α,∇−α)→ S∇2 (Θ)→ 0,

0→M(g,∇−α,∇α)→M(∇−α,∇α)→ S−∇2 (Θ)→ 0.

Let us suppose that the conclusion of the the proposition fails. Then there is a nonzero 2-form
B ∈ S∇α

2 (Θ)∩S∇−α

2 (Θ).

(1) If Ker(B) = 0, then both∇α and∇−α coincide with the Levi-Civita connection of B. This implies
α = 0, this contradicts our choice of α.

(2) If Ker(B) 6= 0 then Ker(B) and Ker(B)⊥ are geodesic for both ∇α and ∇−α. Thus the pair
(Ker(B), Ker(B)⊥) defines a g-orthogonal 2-web.

At one side, by the virtue of the reduction theorem as in [18] every leaf F of Ker(B)⊥ inherits a
dual pair (F, gF,∇α

F,∇−α
F ).

At another side, B gives rise to the Riemannian structure (F, B). Furthermore both∇α
F and∇−α

F
are torsion free metric connections in (F, B). Thereby one gets

∇α
F = ∇−α

F

The last equality holds if and only if α = 0. This contradicts our assumption. The proposition
is proved.

The proposition above is a separation criterion for α-connections in the following sense. For every
nonzero real number α the vector subspace S∇α

2 (Θ) is transverse to S∇−α

2 (Θ) in the vector space S2(Θ)

of symmetric forms in Θ.

5.4. The Exponential Models and the Hyperbolicity

A challenge is the search of a criterion for deciding whether a model (Θ, P) is an exponential family.
That is the challenge in [22]. Still, nowadays, this problem is open.

The Fisher information of a regular exponential model is a Hessian Riemannian metric. We are
going to demonstrate that the converse is globally true. Our proof is based on cohomological
arguments.

In the Appendix A to this paper we introduce a new numerical invariant rb(Θ, P) which measures
how far from being an exponential family is a model (Θ, P).

The invariant rb derives from the global analysis of differential operators

Dα = D∇α ,

Dα = D∇
α
.

Now we are going to provide a cohomological characterization of exponential models.
Before pursuing we recall a definition.
Let θj, j := 1, ..., m be a system of Euclidean coordinate functions of Rm.

Definition 40. [18] An m-dimensional statistical model (Θ, P) is called an exponential model for (Ξ, Ω) if
there exist a map

Ξ 3 ξ → [C(ξ), F1(ξ), ..., Fm(ξ)] ∈ Rm+1
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and a smooth function
Θ 3 θ→ ψ(θ) ∈ R

such that

P(θ, ξ) = exp(C(ξ) +
m

∑
1

Fj(ξ)θj−ψ(θ1, ..., θm)).

Theorem 16. Let (Ξ, Ω) be a measurable set and let (Θ, P) be an m-dimensional statistical model for (Ξ, Ω).
The Fisher information of (Θ, P) is denoted by g. The following statements are equivalent.

(1) There exists∇ ∈ LF(Θ) such that
δKVg = 0,

(2) The model (Θ, P) is an exponential model.

Demonstration.

(2)⇒ (1).
We assume that (2) holds. Then we fix a system of affine coordinate functions

θ = (θ1, ..., θm).

By the virtue of (2) we have

P(θ, ξ) = exp(C(ξ) +
m

∑
1

Fj(ξ)θj−ψ(θ)).

Here ψ ∈ C∞(Θ) and (C, F)(ξ) = (C(ξ), F1(ξ), ..., Fm(ξ)) ∈ Rm+1. Therefore, one has

∂2log(P(θ, ξ))

∂θi∂θj
= − ∂2ψ

∂θi∂θj
.

Thereby one can write

−
∫

Ξ
P(θ, ξ)

∂2log(P(θ, ξ))

∂θi∂θj
=

∂2ψ(θ, ξ)

∂θi∂θj
.

This shows that we have
g = δKV(dψ) ∈ B2

KV(A,R).

The implication (2)→ (1) is proved.
(1)⇒ (2).

We use a strategy similar to that used in [52]. However our arguments do not depend on rank(g).
Let∇ ∈ LF(Θ) whose KV algebra is denoted byA. We assume

g ∈ Z2
KV(A, C∞(Θ)).

Thus we have
δKVg = 0.

In (Θ,∇) we fix a system of local affine coordinate functions

{θ1, ..., θm}
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whose domain is a convex open subset U. We write the matrix of Fisher information g in the basis{
∂

∂θj

}
,

namely
g = ∑ gijdθidθj.

Here
gij = g(

∂

∂θi
,

∂

∂θj
).

The assumption
δKVg = 0

is equivalent to the system
∂gij

∂θk
−

∂gkj

∂θi
= 0

for all i, j, k.
We use a notation which is used in [52]. We consider the differential 1-forms

hj = ∑
i

gijdθi.

Every differential 1-form hj is a de Rham cocycle. By the Lemma of Poincaré the convex open set U supports
smooth functions φj, j =: 1, ..., m which have the following property

dφj = hj.

We put
ω = ∑

j
φjdθj.

Then we have
(δKVω)(

∂

∂θi
,

∂

∂θj
) = gij.

Thus the differential 1-form ∑j φjdθj is de Rham closed.
Since U is convex it supports a local smooth function Ψ such that

dΨ = ∑ φjdθj.

So we get

g(
∂

∂θi
,

∂

∂θj
) =

∂2ψ

∂θi∂θj
.

To continue we fix θ0 ∈ U and we consider the function

θ→ a(θ)

which is defined in U by

a(θ) =
∫

Ξ
P(θ0, ξ)[ψ(θ) + log(P(θ, ξ))]dξ.

Now recall that the integration
∫

Ξ commutes with the differentiation d
dθ . Therefore, ∀i, j ≤ dim(Θ) one has

∂2a
∂θi∂θj

(θ) =
∫

Ξ
P(θ0, ξ)

∂2(ψ+ log(P))
∂θi∂θj

(θ, ξ)dξ.
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The identities above show that
∂2a

∂θi∂θj
(θ0) = 0

for all θ0 ∈ U. Thereby the function
θ→ ψ(θ) + log(P(θ, ξ))

depends affinely on θ1, ..., θm. So there exists aRm+1-valued function

Ξ 3 ξ → (C(ξ), F1(ξ), ..., Fm(ξ)) ∈ Rm+1

such that

ψ(θ) + log(P(θ, ξ)) = C(ξ) +
m

∑
1

Fi(ξ)θi.

In final we get
P(θ, ξ) = exp(C(ξ) +∑ Fi(ξ)θi −ψ(θ))

for all (θ, ξ) ∈ U×Ξ. So (Θ, P) is locally an exponential family.
Since the exponential function is injective this local property of (Θ, P) is a global property, in other

words the model is globally an exponential model. In final assertion (1) implies assertion(2). This ends the
demonstration of the theorem

Some Comments.

(i) It must be noticed that the demonstration above is independent of the rank of the Fisher information g.
Therefore, the theorem holds in singular statistical models.

(ii) In regular statistical models the theorem above leads to the notion of e-m-flatness as in [18].
(iii) When the Fisher information g is semi-definite the dualistic relation is meaningless. However data

(Θ, g,∇,∇∗) may be regarded as data depending on the transversal structure of the distribution Ker(g).
(iv) In the analytic category the Fisher information is a Riemannian foliation. Therefore, both the information

geometry and the topology of information are transversal concepts. This may be called the transversal
geometry and the transversal topology of Fisher-Riemannian foliations.

(v) The theorem above does not solve the question as how far from being an exponential family is a given model.
It only tells us that exponential families are objects of the Hessian geometry.

The framework for addressing the challenge just mentioned is the theory of invariants. That is the
purpose of a forth going work. Some new results are anounced in the Appendix A to this paper.

6. The Similarity Structure and the Hyperbolicity

We consider a dually flat pair (M, g,∇,∇∗). Both (M,∇, g) and (M, g,∇∗) are locally hyperbolic in
the sense of [2]. So they locally support the geometry of Koszul. That is a consequence of the classical
Lemma of Poincare.

Every point of M has an open neighborhood U supporting a local de Rham closed differential 1-forms

ω ∈ C1
KV(A,R)

and
ω∗ ∈ C1

KV(A∗,R)

subject to the following requirements
g|U = δω,

g|U = δ∗ω∗.
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By the virtue of Theorem 3 as in [2], for both (M, g,∇) and (M, g,∇∗) being globally hyperbolic it
is necessary that

[g] = 0 ∈ H2
KV(A,R)

and
[g] = 0 ∈ H2

KV(A∗,R).

Every choice of local differential 1-forms ω and ω∗ gives rise to a unique pair of local similarity
vector fields (H, H∗), viz

∇X H = X,

∇∗X H∗ = X

for all vector fields X. The vector fields H and H∗ are Riemannian gradients of ω∗ and of ω respectively.
This means that those differential 1-forms are defined by

ω = ιHg,

ω∗ = ιH∗g.

Here ιH stands for the inner product by H, viz

ιHg(X) = g(H, X).

This short discussions lead to the following statement

Theorem 17. Let (M, g,∇,∇∗) be a compact dually flat pair whose KV algebras are denoted by A and by A∗.
The following assertions are equivalent

(1) The locally flat manifold (M,∇) is hyperbolic,
(2) the locally flat manifold (M,∇∗) admits a global similarity vector field H∗.

Definition 41. Let∇ ∈ LC(M).

(1) The gauge structure (M,∇) is called a similarity structure if ∇ admits a global similarity vector field
H ∈ X (M).

(2) A dual pair (M, g,∇,∇∗) is a similarity dual pair if either (M,∇) or (M,∇∗) is a similarity structure.

The following proposition is a straightforward consequence of our definition.

Proposition 10. If a gauge structure (M,∇) is flat and is locally a similarity structure, then (M,∇) is a locally
flat manifold

7. Some Highlighting Conclusions

In this Part A our aim has been to address various purposes involving the theory of KV homology.
Doing that we have pointed significant relationships between some major topics in mathematics and
the local information geometry. Those relationships might be sources of new investigations.

We summarize some relevant relationships we have been concerned with.

7.1. The Total KV Cohomology and the Differential Topology

We have addressed the existence problem for a few major objects of the differential topology.
Riemannian foliations and symplectic foliations. Riemannian webs and their linearization problem.
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To those questions we have obtained substantial solutions in the category of locally flat manifolds.
The cohomological methods we have used are based on the split exact short cohomology sequence

0→ H2
dR(M,R)→ H2

τ(A,R)→ SA2 (M)→ 0.

7.2. The KV Cohomology and the Geometry of Koszul

The Hessian Geometry is a byproduct local vanishing Theorems in the theory of KV cohomology.
The geometry of Koszul is a byproduct of global vanishing Theorem in the same sitting.

7.3. The KV Cohomology and the Information Geometry

The category of finite dimensional statistical models for a measurable set (Ξ, Ω) contains the
subcategory of finite dimensional Hessian manifolds. From this viewpoint the Hessian information
geometry is nothing but the exponential information geometry (i.e., the geometry of exponential
families and their genelarizations). The framework for those purposes is closely related to vanishing
Theorems in the theory of KV cohomology.

At another side cotangent bundles of Hessian manifolds are Kaehlerian manifolds. This aspect
has been discussed by many authors, see [52] and the bibliography ibidem.

7.4. The Differential Topology and the Information Geometry

A lot of outstanding links between the differential topology and the information geometry are
based on the dualistic relation of Amari. This approach leads to significant results in the category
of statistical manifolds. In a statistical manifold (M, g,∇,∇∗) we have introduced the splitting short
exact sequence

0→ Ω∇2 (M)→M(∇,∇∗)→ S∇2 (M)→ 0.

Here (i) Ω∇2 (M) is the space of∇-geodesic symplectic foliations in M; (ii) S∇2 (M) is the space of
∇-geodesic Riemannian foliations in M.

The numerical invariant n(∇) has outstanding impacts on the differential topology of M. See our
results on orthogonal 2-webs and on Riemannian submersions on symplectic manifolds.

7.5. The KV Cohomology and the Linearization Problem for Webs

In a locally flat pair (M, g,∇,∇∗) we consider the short exact sequence

O→ Ω∇2 (M)→M(∇,∇∗)→ S∇2 (M)→ O.

The linearization of webs of is a difficult outstanding problem in the differential topology.
Gk[Ω∇2 (M)] stands for the family formed by

[ω1, ..., ωk] ⊂ Ω∇2 (M)

such that
dim[ΣjKer(ωj)] = min[dim(M), Σjdim(Ker(ωj))].

Gk[S∇2 (M)] stands for the family formed by

[B1, ..., Bk] ⊂ S∇2 (M)

such that
dim[ΣjKer(Bj)] = min[dim(M), Σjdim(Ker(Bj))].

(i) Elements of Gp[Ω∇2 (M)] are LINEARIZABLE symplectic k-webs.
(ii) Elements of Gp[S∇2 (M)] are LINEARIZABLE Riemannian k-webs.
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We have introduced the double complex{
C : Cij = Ci

τ(A∗,A∗)⊗Cj
τ(A, C∞(M)), δij

}
.

It gives rise to spectral sequences which may be useful for computing the KV cohomologies
H ∗τ (A∗,A∗) and H ∗KV (A, C∞(M)). That is not the purpose of this paper. However this double
complex is useful for replacing the first order differential equation

D∇∇
∗
(ψ) = 0

by the homological equation
δ1,2qψ = 0.

We have proved the homological nature of the space of gauge homomorphismsM(∇,∇∗). This is
useful for relating the image ofM(∇,∇∗) in H1

τ(A∗,A∗) and the pair H2
dR(M), H1,2(C).

8. B. The Theory of StatisticaL Models

In the introduction of this paper we have recalled the problem raised by Peter McCullagh.
What is a statistical model [30]?
By the way we have recalled a variant request of Misha Gromov.
In a Search for a Structure. The Fisher Information [15,16].
McCullagh and Gromov choose the same framework for addressing their purpose, The theory of

category. This Part B is devoted to the same purpose.
Further the moduli space of isomorphism class of objects of a category C is denoted by [Ca].

In general it is difficult to find an invariant inva which encodes [Ca]. Subsequently to the questions
raised by McCullagh and by Gromov the moduli space of isomorphism class of statistical models
is discussed in this Part B. Nowadays, there exists a well established theory of statistical models.
The classical references are Amari [17], Amari and Nagaoka [18]. Other remarkable references
are Barndorff-Nielsen (Indian Journal of Mathematics 29, Ramanujan Centenary Volume) [21,24],
Kass and Vos [37], Murray-Rice (Chapter 1, Section 15 in [22]). In Part A of this paper we have been
dealing with this current theory. It has been called the local theory. We suggest reading the attempt by
McCullagh to establish a conceptually consistent theory of statistical models [30]. In its time, the paper
of McCullagh had been the object of controversy and questions.

We are aimed at re-establishing the theory of statistical models. Our motivations have emerged
from some criticisms.

The current theory presents some deficiencies that we plan outlining. (i) A weakness of the
current theory is its lacking in geometry; (ii) In the literature on the information geometry many
references define an m-dimensional statistical model as an open subset of an Euclidean space Rm.
Though this definition may be useful for dealing with coordinate functions, it is topologically and
geometrically useless. Let Γ be the group of measurable isomorphisms of a measurable set (Ξ, Ω).
The information geometry of a statistical model M includes the geometry in the sense of Erlangen
program of the pair [M, Γ].

Let M and M∗ be m-dimensional statistical models for the same measurable set (Ξ, Ω).
An isomorphism of M on M∗ looks like an sufficient statistic. The geometries [M, Γ] and [M∗, Γ]
provide the same information. So the impact on the applied information geometry of the theory of
moduli space is notable. Subsequently the search for characteristic invariants presents a challenge.
An invariant is called characteristic if it determine a model up to isomorphism. So a characteristic
invariant encodes the moduli space. That increases the interest in the search of both McCullagh
and Gromov.

The Fisher information of widely used models are Hessian metrics [52]. This observation is
relevant. However the Fisher information is not a characteristic invariant.
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We intend to face the following challenges.
Challenge 1. Revisit the theory of geometric statistical models for measurable sets.
Challenge 2. The Search for a geometric characteristic invariant for statistical models. We recall that
such an invariant will encode the points the moduli space of models. Before continuing we recall
some definitions.

Definition 42. A geometric invariant of a model for (Ξ, Ω) is a datum which is invariant under the action of
the symmetry group Aut(Ξ, Ω).

The framework which is useful for re-establishing the theory of statistical models is the category
of locally trivial fiber bundles.

As we have mentioned the need for introducing a new theory of statistical model emerges from
some criticisms. We recall the definition a statistical model [18,22,24].

Definition 43. An m-dimensional statistical model for a measurable set (Ξ, Ω) is a pair (Θ, P) having the
properties which follow.

(1) The manifold Θ is an open subset of the m-dimensional Euclidean space Rm.
(2) P is a positive real valued function

Θ× Ξ 3 (θ, ξ)→ P(θ, ξ) ∈ R

subject to the requirements which follow.
(3) The function P(θ, ξ) is differentiable with respect to θ ∈ Θ.
(4) For every fixed θ ∈ Θ one set

Pθ = P(θ,−)

then the triple
(Ξ, Ω, Pθ)

is a probability space, viz ∫
Ξ

Pθ(ξ)dξ = 1

Furthermore the operation of differentiation

dθ =
d
dθ

commutes with the operation of integration
∫

Ξ.
(5) (Θ, P) is identifiable, viz for θ, θ∗ ∈ Θ

Pθ = Pθ∗

if and only if
θ = θ∗

(6) The Fisher information

gθ(X, Y) =
∫

Ξ
P(θ, ξ)[dθlog(P(θ, ξ))]⊗2(X, Y)dξ

is positive definite.

Some Criticisms.

The First Critique
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The first critique arises from requirement (5).
From the viewpoint of fiber bundles the requirement (5) is useless. Consider the Cartesian product

E = Θ× Ξ.

That is the same thing as the trivial fiber bundle

E 3 (θ, ξ)→ π(θ, ξ) = θ ∈ Θ.

Therefore Pθ is the restriction to the fiber Eθ of the function P.

The Second Critique

The second critique emerges from the requirement (1).
This requirement (1) is too restrictive. It excludes many interesting compact manifolds such as

flat tori, euclidean sphere, compact Lie groups.

The Third Critique

From the viewpoint of the differential topology the requirement (6) may be damage to the
topology of Θ. When the Fisher information g is singular its kernel is in involution. Thus the
topological-geometrical information that are contained in g are transverse to the distribution Ker(g).
If Ker(g) is completely integrable then topological and geometrical informations which are contained
in g are transversal to the foliation Ker(g). See Part A of this paper. This ends the criticisms.

To motivate for deleting the requirement (1) we construct a compact statistical model which
satisfies all of the requirements except the requirement (1).

Let E be the tangent bundle of the circle S1. E is the trivial line bundle

S1×R 3 (θ, t)→ θ ∈ S1.

We consider the fonctions f , F and P defined by

f (θ, t) = [sin2(
t2θ

1+ t2 ) cos2(
θ

4
)e−t2

+
π

e2 t2],

F(θ) =
∫ +∞

−∞
e− f (θ,t)dt,

P(θ, t) =
e− f (θ,t)

F(θ)
.

The function P(θ, t) has the following properties

(i) (i) : P(θ, t) is smooth,
(ii) P(0, t) = P(2π, t) ∀t ∈ R,
(iii) the d

dθ commutes with
∫
R,

(iv) P(θ, t) ≤ 1 ∀(θ, t) ∈ S1×R,
(v) if 0 < θ, θ∗ < 2π then Pθ = P∗θ if and only if θ = θ∗,

(vi)
∫ +∞
−∞ P(θ, t)dt = 1.

These properties show that there is a one to one correspondence between the circle S1 and a subset
of probability densities in R. Thus S1 is a compact 1-dimensional manifold of probabilities in the
measurable set (R, β(R)). Here β(R) is the family of Borel subsets of R.

So (S1, P) is a compact parametric model for (R, β(R)).
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A Digression.

Let
{
(Θj, Pj), j := 1, 2

}
be statistical models for measurable sets

{
(Ξj, Ωj), j := 1, 2

}
. We put

Θ = Θ1×Θ2,

(Ξ, Ω) = (Ξ1× Ξ2, Ω1×Ω2),

P = P1⊗ P2.

The function P is defined in Θ× Ξ by

P((θ1, θ2), (ξ1, ξ2)) = P1(θ1, ξ1)P2(θ2, ξ2)

The integration on Ξ is defined by∫
Ξ

f ((θ1, θ2), (ξ1, ξ2))d(ξ1, ξ2) =
∫

Ξ1×Ξ2

f ((θ1, θ2), (ξ1, ξ2))dξ1dξ2.

Thus we get ∫
Ξ

P[(θ1, θ2), (ξ1, ξ2)]dξ1dξ2 =
∫

Ξ1×Ξ2

P1(θ1, ξ1)P2(θ2, ξ2)dξ1dξ2 = 1.

So (Θ, P) is a statistical model for [Ξ1× Ξ2, Ω1×Ω2].
One is in position to prove that every Euclidean torus Tm is a statistical model for (Rm, β(Rm)).

Another Construction.

For every positive integer m we consider positive real numbers

α1 < α2 < ... < αm

and the real functions which are defined by

fj(θ, t) = sin2(
t2θ

1+ t2 ) cos2(
θ

4
)e−t2 + αjt2 (θ, t) ∈ E,

Fj(θ) =
∫ +∞

−∞
e− fj(θ,t)dt,

Pj(θ, t) =
e− fj(θ,t)

Fj(θ)
.

Now we consider the tangent bundle of the m-dimensional flat torus TTm,

Tm = S1× S1× ...× S1.

Let
(θ, t) = [(θ1, t1), (θ2, t2), ..., (θm, tm)] ∈ TTm.

We put

F(θ) =
∫
Rm

e−∑m
1 fj(θj,tj)dt1dt2...dtm,

P(θ, t) =
e−∑m

1 fj(θj,tj)

F(θ)
.

The function P(θ, t) satisfies the following requirements



Entropy 2016, 18, 433 65 of 96

(1) If θ 6= θ∗ there exists t∗∗ ∈ Rm such that

P(θ, t∗∗) 6= P(θ∗, t∗∗),

(2) P(θ, t) ≤ 1∀(θ, t) ∈ TTm,
(3)

∫
Rm P(θ, t)dt = 1.

We deduce that the pair (Tm, P) is an m-dimensional manifold of probability densities in the measurable
set (Rm, β(Rm)).

The image of every local chart of Tm is a local statistical model in the classical sense [17,18,22]. This ends
the Digression.

We are motivated for introducing a new theory of statistical models whose localization yields the
current theory. The theory we introduce is an answer to McCullagh and to Gromov.

8.1. The Preliminaries

In this Part B we face three major challenges.
Challenge 1. Taking into account the criticisms we have raised our aim is to introduce a new theory of
statistical model whose localization leads to the classical theory of statistical models.
Challenge 2. The second challenge is the Search for an invariant which encodes the point of the moduli
space of isomorphism class of statistical models.
Challenge 3. We introduce the theory of homological statistical model and we explore the links between
this theory and the challenge 2.
Challenge 4. The fourth challenge is to explore the relationships between “challenge 1, challenge 2,
challenge 3” and “Vanishing Theorems in the theory of KV homology”.

The theory of KV cohomology and the geometry of Koszul play important roles. We introduce
the needed definitions.

Let (Ξ, Ω) be a measurable set. Let Aut(Ξ, Ω) be the group of measurable isomorphisms of Ξ.
Let (M, D) be a locally flat manifold whose KV algebra is denoted by A.

We keep the notation used in Part A of this paper. For instance S2(M) is the vector space of
differentiable symmetric bi-linear forms in M.

Definition 44. A random Hessian metric in (M, D) is a map

M× Ξ 3 (x, ξ)→ Q(x, ξ) ∈ S2[T∗x M],

which has the following properties

(1) for every vector field X the real number Q(x, ξ)[X, X] is non negative, furthermore ∀v ∈ TxM \ {0} ∃ξ ∈ Ξ
such that

Q(x, ξ)(v, v) > 0,

(2) for every ξ ∈ Ξ, the random KV cochain

(X, Y)→ Qξ(X, Y)(x)

with
Qξ(X, Y)(x) = Q(x, ξ)(Xx, Yx)

is a random cocycle of the KV complex [C∗KV(A, C∞(M)), δKV ].
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Let (Ξ, Ω, p) be a probability space. A random Hessian metric Q generates a Hessian structure
(M, gQ, D) whose tensor metric gQ is defined by

gQ(X, Y)(x) =
∫

Ξ
Q(x, ξ)(X, Y)p(ξ)dξ.

The group Aut(Ξ, Ω) of measurable isomorphisms of (Ξ, Ω) is denoted by Γ.

Warning.

When Ξ is a topological space elements of Γ are continuous maps. When Ξ is a differentiable manifold
elements of Γ are differentiable maps. Let P(Ξ) be the Boolean algebra of all subsets of Ξ. The abstract group
Aut(Ξ,P(Ξ)) is a subgroup of the group Isom(Ξ) of isomorphisms of the set Ξ.

Definition 45. A measurable set (Ξ, Ω) is called homogeneous if the natural action of Γ in Ξ is transitive.

Throughout this paper we will be dealing with homogeneous measurable sets. Below we
introduce the framework of the theory of statistical models.

8.2. The Category FB(Γ, Ξ)

8.2.1. The Objects of FB(Γ, Ξ)

Definition 46. An object of the category FB(Ξ, ) is a datum [E , π, M, D] which is composed as it follows.

(1) M is a connected m-dimensional smooth manifold. The map

π : E → M

is a locally trivial fiber bundle whose fibers Ex are isomorphic to the set Ξ.
(2) The pair (M, D) is an m-dimensional locally flat manifold.
(3) There is a group action

Γ× [E ×M]×Rm 3 (γ, [e, x, θ])→ [[(γ · e), γ · x], γ̃ · θ] ∈ [E ×M]×Rm.

That action is subject to the compatibility requirement

π(γ · e) = γ ·π(e) ∀e ∈ E .

(4) Every point x ∈ M has an open neighborhood U which is the domain of a local fiber chart

ΦU × φU : [EU ×U] 3 (ex, x)→ [ΦU(ex), φU(x)] ∈ [Rm × Ξ]×Rm.

The local charts are subject to the following compatibility relation

• (U, φU) is an affine local chart of the locally flat manifold (M, D),
• φU(π(e)) = p1(ΦU(e)).

(5) We set
ΦU(e) = (θU(e), ξU(e)) ∈ Rm × Ξ.

Let (U, Φ× φ) and (U∗, Φ∗ × φ∗) be two local charts with

U ∩U∗ 6= ∅,
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then there exists a unique γUU∗ ∈ Γ such that

[γUU∗ ·Φ](e) = Φ∗(e) ∀e ∈ EU∩U∗ .

Comments. Requirements (3) and (4) mean that

[ΦU(e), φU(π(e)] = [[θU(e), ξU(e)], θU(e)]

Both requirements (4) and (5) yield the following remarks: the following action is differentiable

Γ×M 3 (γ, x)→ γ · x ∈ M,

the following action is an affine action

Γ×Rm 3 (γ, θ)→ γ̃ · θ,

both the left side member and the right side member of (5) have the following meaning.

γUU∗ · [θU(e), ξU(e)] = [θU∗(e), ξU∗(e)].

Consequently (5) implies that for all x ∈ U ∩U∗ one has

γ̃UU∗ · φ(x) = φ∗(x).

Therefore we get
γUU∗ = φ∗ ◦ φ−1.

Suppose that U, U∗ and U∗∗ are domains of local chart with

U ∩U∗ ∩U∗∗ 6= ∅

then
γU∗U∗∗ ◦ γUU∗ = γUU∗∗ .

The requirement (3) means that the fibration π is Γ equivariant.
The Figure 2 expresses the requirement property (3).

E E

MM

γ

γ

π π

Figure 2. Fibration.

We recall that the group Γ acts in both E and M. Figure 2 expresses that the projection π of E on
M is Γ-equivariant.
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8.2.2. The Morphisms of FB(Γ, Ξ)

Let [E , π, M, D] and [E∗, π∗, M∗, D∗] be two objects of FB(Γ, Ξ).
Let Ψ× ψ be a map

[E ×M] 3 (e, x)→ (Ψ(e), ψ(x)) ∈ [E∗ ×M∗].

Definition 47. A pair (Ψ× ψ) is a morphism of the category FB(Γ, Ξ) if the following conditions are satisfied
(m.1): π∗ ◦Ψ = ψ ◦ π,
(m.2): both Ψ and ψ are Γ-equivariant isomorphism, that is to say

Ψ(γ · e) = γ ·Ψ(e),

ψ(γ · x) = γ · ψ(x),

(m.3): ψ is an affine map of (M, D) in (M∗, D∗).

The Figure 3 represents the properties (m.1) and (m.2). We are going to define the category of
statistical model for (Ξ, Ω). The framework is the category FB(Γ, Ξ).

B1A1

C1

A B

C

p1π

p1

φu

Φu∗

Φu

γuu∗

γuu∗

φu∗

Figure 3. Equivariance.

At one side we recall that the group Γ also acts in Rm × Ξ. At another side the localizations are
made coherent thanks to Cech cocycles γUU∗ . Figure 3 tells two informations. Firstly localizations are
Γ-equivariant, secondly thanks to Cech cocycles localizations are coherent.

8.3. The Category GM(Ξ, Ω)

We keep the notation used in the previous subsections. Our purpose is the category of statistical
models GM(Ξ, Ω).

8.3.1. The Objects of GM(Ξ, Ω)

Definition 48. An m-dimensional statistacal model for (Ξ, Ω) is an object of FB(Γ, Ξ), namely

M = [E , π, M, D]

which has the following properties (ρ∗).

[ρ1]: For every local chart (U, ΦU × φU) the subset

[ΘU × Ξ] = ΦU(EU)



Entropy 2016, 18, 433 69 of 96

supports a non negative real valued function PU subject to the following requirements.
[ρ1.1]: For every fixed ξ ∈ Ξ the function

ΘU 3 θ → PU(θ, ξ)

is differentiable.
[ρ1.2]: For every fixed θ ∈ ΘU the triple

(Ξ, Ω, PU(θ,−))

is a probability space. Further the operation of integration
∫

Ξ commutes with the operation of differentiation
dθ = d

dθ .
[ρ1.3]: Let (U, ΦU × φU , PU) and (U∗, ΦU∗ × φU∗ , PU∗) be as in [ρ1.1] and in [ρ1.2].
If U ∩U∗ 6= ∅ then PU , PU∗ and γUU∗ are related by the formula

PU∗ ◦ γUU∗ = PU .

[ρ1.4]: Let U ⊂ M be an open subset and let γ ∈ Γ. Let us assume that both U and γ ·U are domains of
local charts

(U, ΦU × φU , PU)

and
(γ ·U, Φγ·U × φγ·U , Pγ·U).

We assume that those local charts satisfy ρ1.1, ρ1.2 and ρ1.3. Then the relations

Φγ·U ◦ γ = γ ◦ΦU ,

φγ·U ◦ γ = γ ◦ φU ,

implies the equality
Pγ·U ◦ γ = PU ·

A Comment.

Actually, ([ρ1.3]) has the following meaning:

PU∗ [γ̃UU∗ · θU(e), γUU∗ · ξU(e)] = PU(θU(e), ξU(e))

∀e ∈ EU∩U∗ .
The Figure 4 represents (ρ1.3)

E∗E

E∗E

M M∗

M∗M

π∗

γ

π

γ

Φ

γ

Φ

φ

φ

Figure 4. Moduli.

This ends the comment.
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Definition 49. A datum [U, ΦU × φU , PU , γUU∗ ] as in the last definition is called a local statistical chart
of [E , π, M, D].

Figure 4 is represents what are crucial steps toward the serach of characteristic invariants, viz
invariants encoding the points of the moduli space of statistical models. At the present Figure 4
describes the moduli space of the category FB(Γ, Ξ)

Before dealing with morphisms of the category GM(Ξ, Ω) we introduce a relevant global
geometrical invariant.

8.3.2. The Global Probability Density of a Statistical Model

We consider a COMPLETE (or maximal statistical) atlas of an object [E , π, M, D] (of the category
GM(Ξ, Ω)), namely

AΦ = [Uj, Φj, φj, Pj, γij].

The family Uj is an open covering of M. The pair Ej ×Uj is the domain of the local chart (Φj × φj).
We have

Ej = EUj .

If Ui ∩Uj 6= ∅ then one has

φj(x) = γ̃ji · φi j(x) ∀x ∈ Ui ∩Uj.

In particular A = (Uj, φj) is an affine atlas of the locally flat manifold (M, D). We have

Φj(Ey∗) = φj(y∗)× Ξ ∀y∗ ∈ Uj.

Therefore we set
[Ey∗ , Ωy∗ ] = Φ−1

j [[φj(y∗)× Ξ], Ω].

The atlas AΦ satisfies requirements (ρ1.1), (ρ1.2) and (ρ1.3). In EUj the local function pj is defined by

pj = Pj ◦Φj.

We suppose that
Ui ∩Uj 6= ∅.

By the virtue of of [ρ1.3] one has
pi(e) = pj(e)

for all e ∈ EUi∩Uj .
Thereby there exists a unique function

E 3 e→ p(e) ∈ R

whose restriction to Ej coincides with pj. The restriction to Ex is denoted by px. The triple

(Ex, Ωx, px)

is a probability space.

Definition 50. The function
E 3 e→ p(e) ∈ R

is called the probability density of the model [E , π, M, D].
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Comments.

(i) We take into account the global probability density p. Then an object of the category GM(Ξ, Ω) is denoted by

[E , π, M, D, p].

(ii) The function p is Γ-equivariant. THIS IS THE GEOMETRY in the sense of Erlangen program.
(iii) We have not used any argument depending the dimension of manifolds.

The Figure 5 expresses coherence to local probability densities We are in position to define the morphisms of
the category GM(Ξ, Ω).

B1A1

C1 R

A B

C

φi

π

Φi

γij

γij

φj

Φj

Pi

Pj

p1

p1

Figure 5. Localisation.

Ei E

R

Pi
p

Figure 6. Probability Density.

In Figure 5 one sees that modulo the dynamics of the group Γ in Rm×Ξ all localizations look alike.
Figure 6 show that local probability densities {pi} are but localizations of a global probability density p

8.3.3. The Morphisms of GM(Ξ, Ω)

Definition 51. Let M = [E , π, M, D, p] and M∗ = [E∗, π∗, M∗, D∗, p∗] be two objects of the category
GM(Ξ, Ω). A FB(Γ, Ξ)-morphism

(Ψ× ψ) : [E , π, M, D]→ [E∗, π∗, M∗, D∗]
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is a morphism of [E , π, M, D, p] in [E∗, π∗, M∗, D∗, p∗] if

p∗ ◦Ψ = p·

A Comment.

Let [E , π, M, D] be an object of the category FB(Γ, Ξ). Let G be the group of isomorphisms of [E , π, M, D].
If M is finite dimensional then G is a finite dimensional Lie group. The group G acts in the category M whose
objects are probability densities in [E , π, M, D, ].

Definition 52. The orbit space space

m =
M
G

is called the moduli space of M.

A Comment.

Every trivialization of
M = [E , π, M, D, p]

is a statistical model in the classical sense [18,22]. So we have taken up the challenge 1.

8.3.4. Two Alternative Definitions

We introduce two other presentations of the category GM(Ξ, Ω). Those presentations highlight
the connection with the searches of McCullagh and Gromov. Those presentation is useful in both the
theoretical statistics and the applied statistics [17,18,21,24,55,57,58].

We consider the categoryMSE whose objects are a probability spaces (Ξ, Ω, p).

Definition 53. A morphism of a probability space (Ξ, Ω, p) in another probability space (Ξ∗, Ω∗, p∗) is
a measurable map Ψ of (Ξ, Ω) in (Ξ∗, Ω∗) such that

p = p∗ ◦Ψ·

Remark 4. A morphism as in the last definition has a statistical nature. An isomorphisms of (Ξ, Ω, p) on
(Ξ∗, Ω∗, p∗) is an sufficient statistic. The categoryMSE is useful for introducing two variant descriptions of
the category GM(Ξ, Ω).

Definition 54. We use the previous notation.

(1) A statistical model is a locally trivial fiber bundle over a locally flat manifold

π : E → M.

The fibers of π are probability spaces.
(2) The functor

[E , p]→ [M, D]

is called aMSE -fibration.

The category of MSE -fibrations is denoted by FB(MSE). The morphisms the category
GM(Ξ, Ω) are calledMSE -morphisms.
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Definition 55. A statistical model for a measurable set (Ξ, Ω) is a functor of the category FB(Γ, Ξ) in the
category FB(MSE , namely

[E , π, M, D]→ [E , π, M, D, p]

At the present step it is clear that the information geometry is structured.

8.3.5. Fisher Information in GM(Ξ, Ω)

We consider aMSE -fibration

M := [E , p]→ (M, D).

The Fisher information to be defined is an elementg of Γ(S2(T∗M)).
We recall that everyMSE -fiber Mx, x ∈ M has a structure of probability space

Mx := [Ex, Ωx, px].

Let X, Y be local vector fields which are defined in a open neighbourhood of x ∈ M.

Definition 56. The Fisher information at x is defined by

gx(X, Y) = −
∫
Ex

p(e)[D2log(p(e))](X, Y)d(e)

We recall that the horizontal differentiation commutes with the integration along the
MSE -fibers, viz

dθ ◦
∫

F
=
∫

F
◦ ∂

∂θ
.

So the Fisher information g is well defined. It has the following properties

(1) g is positive semi-definite,
(2) g is an invariant of the Γ-geometry in [E , π, M, D, p].

8.4. Exponential Models

Let [E , π, M, D, p] be an object of GM(Ξ, Ω). We recall that data which are defined in E are called
random data in the base manifold M. The operation of integration along theMSE -fibers is denoted
by
∫

F. Thus a random datum µ is called smooth if its image
∫

F(µ) is smooth.
Conversely every datum θ∗ which is point-wise defined in M is the image of the random datum

θ = θ∗ ◦ π.

So we get

θ∗ =
∫

F
[θ∗ ◦ π].

Thus at every x ∈ M one has

θ∗(x) =
∫
Ex

θ∗(π(e))px(e)de.

A random affine function is a function

E 3 e→ a(e) ∈ R
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subject to the requirement

D2
∫

F
a = 0.

Definition 57. AnMSE -fibration
[E , p]→ [M, D]

is called an exponential model if the following conditions are satisfied.

(1) The base manifold M supports a locally flat structure (M,∇) and a real valued function ψ ∈ C∞(M).
(2) The total space E supports a real valued random function a.
(3) The triple [a,∇, ψ] is subject to the following requirement
(4) ∇2

∫
F(a) = O,

(5) p(e) = exp[a(e)− ψ(π(e))].

Remark 5. At one side Localizations of exact Hessian homological statistical models yield the classical Koszul
Information Geometry [55]. That is but the classical Hessian Information Geometry. At another side the KV
homology learns that the Hessian information Geometry is the same think as the geometry of exponential famillies
see Part A Section 5, Theorem 16.

Reminder.

In the Appendix A to this paper the reader will find a new invariant rb(p) measuring how far from being
an exponential model is anMSE -fibration

[E , p]→ [M, D].

By the virtue of results in Part A, to be an exponential model depends on homological conditions.

8.4.1. The Entropy Flow

We are going to introduce the notion of local entropy flow. Subsequently we will show that the
Fisher information of a model [E , π, M, D, p] is the Hessian of the local entropy flow.

To start we consider aMSE -fibration

[E , p]→ [M, D].

That is another presentation of the statistical model [E , π, M, D, p].
Let [Uj, Φj × φj, γij, Pj] be an atlas of [E , π, M, D, p]. We put

[Θj, Pj] = [Φj(Ej), p ◦Φ−1
j ].

Then every [Θj, Pj] is a local statistical model for (Ξ, Ω).
Le X, Y be two vector fields defined in Uj and let ψX(t) and ψY(s) be their local flows defined

in Uj. Then we set
Φj(e) = [θj(e), ξ j(e)] = [φj(π(e)), ξ j(e)], e ∈ Ej,

ψ̃j(t)[θj(e), ξ j(e)] = ([φjψX(t)φ−1
j ][θj(e)], ξ j(e)),

ψ̃j(s)[θj(e), ξ j(e)] = ([φjψY(s)φ−1j][θj(e)], ξ j(e)).

Definition 58. The local entropy flow of the pair (X, Y) is the function Entj
X,Y defined by

Entj
X,Y(s, t)(π(e)) =

∫
Ξ

{
Pj[ψ̃X(s)(Φ(e))]log[Pj[ψ̃Y(t)(Φj(e))]]

}
dξ(e).
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To pursue we use the compatibility of local charts of the atlas[Uj, Φj × φ,, γij, Pj] . If

Ui ∩Uj 6= ∅

then forall e ∈ EUi∩Uj we have
Φj(e) = γij ·Φi(e),

φj(π(e)) = γij · φi(π(e)).

We recall that ψ̃(t) and ψ̃(s) are defined by

ψ̃j(t) = φjψX(t)φ−1
j ,

ψ̃j(s) = φjψY(s)φ−1
j .

Those reminders are useful for concluding that whenever

Ui ∩Uj 6= ∅

we have
Enti

X,Y(s, t)(π(e)) = Entj
X,Y(s, t)(π(e)).

So the local entropy flow does not depend on local charts.
If both X and Y are complete vector fields then their entropy flow is globally defined. A notable

consequence is the following statement.

Theorem 18. EveryMSE -fibration over a compact manifold M admits a globally defined entropy map

X (M)×X (M) 3 (X, Y)→ EntX,Y ∈ C∞(R2).

8.4.2. The Fisher Information as the Hessian of the Local Entropy Flow

we consider the function

Hj(s, t, ξ) = Pj[ψ̃X(s)(φ(e))]log[Pj[ψ̃j(t)(Φj(e))]].

Direct calculations yield

[
∂2(Hj(s, t))

∂s∂t
][(s, t) = (0, 0)] = Pj[φj(e)](X · log[Pj(Φj(e))])(Y · log[Pj(φj(e))]).

We know that ∂2

∂s∂t commutes with
∫

Ξ. Therby we conclude that

gπ(e)(X, Y) =
∂2Entj(s, t)(π(e))

∂s∂t
[(s, t) = (0, 0)].

Theorem 19. We consider anMSE -firation over a compact manifold

M := [E , p]→ [M, D].

The Fisher information of M is the Hessian of the entropy map.

8.4.3. The Amari-Chentsov Connections in GM(Ξ, Ω)

Let
M = [E , π, M, D, p]
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be an m-dimensional statistical model for a measurable set (Ξ, Ω). To define the family of α-connections
we work in a local chart (ΦU , ΦU).

We set
ΘU = φU(U),

Θ× Ξ = ΦU(EU).

In the base manifold (M, D) the local chart [U, φu) yields a system of local affine coordinate functions

θ = (θ1, ..., θm).

We use the notation as in [18]. Given a real number α we define the α-connection ∇α by its
Christoffel symbols in the local coordinate functions θ. Those Christoffel are denoted by Γα

i j : k.
We proceed as it follows.
Step 1: In the open subset ΘU ⊂ Rm we put

Γ̃α,U
ij:k (θ) =

∫
Ξ

PU(θ, ξ)

{
[
∂2ln(θ, ξ)

∂θi∂θj
+

1+ α

2
∂ln(θ, ξ)

∂θi

∂ln(θ, ξ)

∂θj
]
∂ln(θ, ξ)

∂θk

}
dξ.

This local definition of Γ̃α
ij:k agrees with affine coordinate change in ΘU.

Step 2: In the open subset U Γα,U
ij:k is defined by

Γα,U
ij:k = Γ̃α,U

ij:k ◦ φU.

Since the definition of Γ̃α
ij:k agrees with an affine coordinate change we can use an atlas

A = [Uj, Φj × φj, γij]

for constructing a Koszul connection ∇α(A). Since the construction of ∇α(A) agrees with affine
coordinate change the connection∇α(A) is independent from the choice of A. Every α-connection is
torsion free. So anMSE-fibration

[E , p]→ [M, D]

gives rise to a ma
R 3 α→∇α ∈ SLC(M).

If the Fisher information g is definite then (M, g,∇α,∇−α) is a dual pair [17,48].
By the virtue of the definition of the Fisher information g a local section of section of Ker(g) is

a local vector field X ∈ X (M) such that
X · p = 0.

Therefore, it is easily seen that
LXg = 0.

So if data are analytic then g is a stratified Riemannian foliation.

8.4.4. The Homological Nature of the Probability Density

We consider aMSE-fibration
M := [E , p]→ [M, D].

We recall that a random differential q-form in E is a mapping

E 3 e→ ω(e) ∈ ∧q(T∗π(e))M
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such ∫
F

ω ∈ Ωq(M).

The vector space of random differential q-forms is denoted by Ωq(E).
Let ΦU × φU be a local chart of M. We set

(ΘU, Ξ) = (φU(U), Ξ) = ΦU(EU).

We recal that in ΦU(EU) the partial differentiation ∂
∂θ is called the horizontal differentiation in EU .

Therefore we use the relation ∫
F
◦ ∂

∂θ
=

d
dθ
◦
∫

F

for setting the de Rham complex of random differential forms. Namely

Ω(E) : 0→ R→ Ω0(E)→ ...Ωq(E)→ Ωq+1(E)...→ Ωm(E)→ 0.

The complex Ω(E) is a complex of Γ-modules. Here

Γ = Aut(Ξ, Ω).

Then the cohomology space H ∗ (Γ, Ω(E)) is bigraded,

Hp,q(Γ, Ω(E)) = Hp(Γ, Ωq(E)).

The probability density p is Γ-invariant. It is an element of H0,0(Γ, Ω(E)).

8.4.5. Another Homological Nature of Entropy

One of main purpose of [14] is the homological nature of the entropy. The classical entropy
function of a statistical model [E , π, M, D, p] is defined by

E(π(e)) =
∫
Eπ(e)

p(e∗)log(p(e∗)).

In the complex Ω(E) we perform the machinery of Eilenberg [59]. That yields the exact sequence
(of random cohomology spaces)

→ Hq−1
res (E ,R)→ Hq

e (E ,R)→ Hq
dR(E ,R)→ Hq

res(E ,R)→

We take into account the identities

p(γ · e) = p(e),

γ · (π(e)) = π(γ · e).

Then we have
E(γ ·π(e)) =

∫
Eγ·π(e)

p(γ · e∗)log(p(γ · e∗))

=
∫
Eπ(γ·e)

p(e∗)log(p(e∗))

= E(π(e)).

Thus the entropy E(π(e)) is Γ-equivariant. Therefore, it defines an equivariant cohomology class

[E] ∈ H0
e (M,R).
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This is another topological nature of the entropy. For another viewpoint see [16,31].
Our purpose is to show the theory of statistical models has a homological nature in the

category FB(Γ, Ξ).

Definition 59. A statistical model for a measurable set (Ξ, Ω) is couple (M, [p]) formed by an object of the
category (FB − Γ, Ξ), namely

M = [E , π, M, D]

and a smooth Γ-equivariant random cohomology class

[p] ∈ H0
e (E ,R).

Further the to every fiber p|Ex is a probability density.

A Comment.

Let (U, Φ× φ) be a local chart of [E , π, M, D] and let x∗ ∈ U. We set

ΘU = φ(U),

(Ex∗ , Ωx∗) = Φ−1[{φ(x∗)} × (Ξ, Ω)].

The last definition above says that we obtain the probability space

(Ex∗ , Ωx∗ , [p]).

This property does not depend on the choice of the local chart (U, Φ× φ). Thus we can regard [M, p] as a
special type of homological map

FB(Γ, Ξ) 3M→ [p] ∈ H0
e (E ,R).

9. The Moduli Space of the Statistical Models

We are going to face another major open problem. The challenge is the search for an invariant
which encodes the points of the orbit space

m =
M
G

.

That is what is called the problem of moduli space. This problem of moduli space is a major challenge
in both the differential geometry and the algebraic geometry (see the theory of Teichmuller). The problem
is rather confusedly addressed in [30]. Subsequently it provoked controversies and criticisms.

The Hessian Functor

We consider the category BF whose objects are pairs {M, B} formed by a manifold M equipped
bilinear forms B ∈ Γ(T∗⊗2M).

In Part A we have defined the Hessian differential operator of a Koszul connection∇, namely

D∇ = ∇2.

Those operators are useful for addressing the problem of moduli spaces. For our purpose four
categories are involved,

(1) The category LC whose objects are gauge structures (M,∇),
(2) The category GM whose objects are statistical models for measurable sets,
(3) the category BF whose objects are manifolds equipped bilinear forms,
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(4) the category F(LC,BF) whose objects are functors

GM→ BF .

Definition 60. The Hessian functor is the functor

GM 3M = [E , π, M, D, p]→ qM ∈ F(LC,BL)

Here qM is defined by
qM[∇] = ∇2log(p).

Reminder.

We recall that for vector fields X, Y the bilinear form qM[∇](X, Y) is defined by

qM[∇](X, Y) = X · (Y · log(p))−∇XY · log(p)

The functor qM is called the Hessian functor of the model

M = [E , π, M, D, p].

Our aim is to demonstrate the following claim. Up to isomorphism a statistical model M is defined
by its Hessian functor qM. The functor qM is an significant contribution to the information geometry.

We fix an object of FB(Γ, Ξ), namely [E , π, M, D]. Let P(E) be the convex set of probability
densities in [E , π, M, D]. The multiplicative group of positive real valued functions defined in Ξ is
denoted by RΞ

+. The quotient of P(E) modulo RΞ
+ is denoted by

PRO(E) = P(E)
RΞ
+

.

Lemma 6. For every p ∈ P(E) the image of

M = [E , p],

namely qM depends only on the class [p] ∈ PRO(E)

Proof. We consider
M = [E , π, M, D, p],

M∗ = [E , π, M, D, p∗].

We assume that
qM = qM∗ .

Thus in every local trivialization ΘU × Ξ one has the identity

X(Ylog(
p∗(x, ξ)

p(x, ξ)
)−∇XYlog(

p∗(x, ξ)

p(x, ξ)
)) = 0

forall X, Y ∈ Γ(TΘ), forall∇ ∈ LC(Θ). That identity holds if and only if the function

(x, ξ)→ p∗(x, ξ)

p(x, ξ)

belongs to RΞ
+. This ends the idea.
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A Comment.

The mapping
M→ qM

is a global geometrical invariant in the sense of Erlangen. In other words it is an invariant of the
Γ-geometry in [E , π, M, D, p].

Our aim is to demonstrate that
M→ qM

is a characteristic invariant in the category GM(Ξ, Ω). In other words the isomorphism class of the
model

M = [E , π, (M, D), p]

is encoded by the functor
∇→ qM[∇].

The first step is the following lemma.

Lemma 7. In the same object [E , π, M, D] we consider two statistical models

M1 = [E , π, M, D, p1],

M2 = [E , π, M, D, p2].

The following assertions are equivalent
(1) qM1 = qM2 ,
(2) p1 = p2.

Proof. We work in the domain of a local trivialization of [E , π, M, D]. By the virtue of Lemma 6 above
we know that

qp1 = qp2

if and only if
p1(x, ξ) = λ(ξ)p2(x, ξ)

with λ ∈ RΞ
+. Since both p1 and p2 are Γ-equivariant the function

Ξ 3 ξ → λ(ξ)

is Γ-invariant too. Now we take into account that the natural action of Γ in Ξ is transitive. Therefore the
Γ-equivariant function λ(ξ) is a constant function. Therefore

p1(x, ξ) = λp2(x, ξ)

The operation of integration along a fiber of π yields

λ = 1

This ends the proof.

We consider two m-dimensional statistical models for (Ξ, Ω), namely

Mj = [Ej, πj, Mj, Dj, pj], j := 1, 2.
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To simlplify we use the following notation.

qpj = qMj .

In the category FB(Γ, Ξ) we consider an isomorphism

[E1×M1] ∈ (e, x)→ [Ψ(e), ψ(x)] ∈ E2×M2.

(1) Let ψ∗ be the differential of ψ. For∇ ∈ LC(M1) the image ψ∗(∇) ∈ LC(M2) is defined by

[ψ∗(∇)]X∗Y∗ = ψ∗[∇ψ−1
∗ (X∗)ψ

−1
∗ (Y∗)]

for all vector fields X∗, Y∗ ∈ X (M2).
(2) It is clear that the datum [E1, π, M1, D1, p2 ◦Ψ] is an object of the category GM(X, Ω). Then for

vector fields X, Y in M1 we calculate (at X, Y) the right hand member of the following equality

[qp2◦Ψ(∇)] = ∇
2[log(p2 ◦Ψ)].

Direct calculations yield

∇2[log(p2 ◦Ψ)](X, Y) = X · [Y · log(p2 ◦Ψ)]−∇XY · log(p2 ◦Ψ)

= X · [Y · log(p2) ◦Ψ]−∇XY · [log(p2) ◦Ψ]

= ψ∗(X) · [ψ∗(Y) · log(p2)]− ψ∗(∇XY) · log(p2)

= [ψ∗(∇)2log(p2)](ψ∗(X), ψ∗(Y)).

Thus for all∇ ∈ LC(M1) we have

q[p2◦Ψ](∇) = qp2(ψ∗(∇)).

We summarize the calculations just carried out as it follows

Lemma 8. Keeping the notation we just used namely p2 and Ψ× ψ we have the following equality

q[p2◦Ψ] = qp2 ◦ ψ∗

We are in position to face the problem of moduli space in the category GM(Ξ, Ω).

Theorem 20. We consider two m-dimensional statistical models

Mj = [Ej, πj, Mj, Dj, pj], j := 1, 2.

In the category FB(Γ, Ξ) let Ψ× ψ be an isomorphism of [E1, π1, M1, D1] onto [E2, π2, M2, D2].
The following assertions are equivalent.

(1) qp2 ◦ ψ∗ = qp1 ,

(2) p2 ◦Ψ = p1.

Demonstration.

The demonstration is based on Lemmas 7 and 8.
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According to our construction one has the following functor

qΨ = qp2 ◦ ψ∗.

This functor qΨ is the Hessian functor of the model

MΨ = [E1, π, M1, D1, p2 ◦Ψ].

Further Ψ× ψ is an isomorphism of MΨ onto M2.
Let us prove that assertion (2) implies assertion (1).
By of the definition of morphism of models, the pair Ψ× ψ is an isomorphism of M1 onto M2 if

and only if
p2 ◦Ψ = p1.

Here we set the explicit formulas. Let∇ ∈ LC(M1). For all vector fields X, Y in M2 we have

X · (Y · log(p1))−∇XY · log(p1) = X · (Y · log(p2 ◦Ψ))−∇XY · log(p2 ◦Ψ)

= ψ∗(X) · (ψ∗(Y) · log(p2))− ψ∗(∇XY) · log(p2).

now we observe that
ψ∗(∇XY) = [ψ∗(∇)][ψ∗(X)]ψ∗(Y).

Therefore (2) impies the equality

ψ∗[q[p2]
(ψ∗(∇))] = q[p2◦Ψ](∇) = qp1 .

This shows the implication (2)→ (1).

Let us prove that assertion (1) implies assertion (2).

Now we assume that that (1) holds, viz

q[p2◦Ψ] = qp1 .

Then both M1 and MΨ have the same Hessian functor. By the virtue of Lemma 8 above we
deduce that

p2 ◦Ψ = p1.

This ends the demonstration.

Reminder.

(i) Objects of GM(Γ, Ξ) are quintuplets

M = [E , π, M, D, p].

They are called statistical models for the measurable set (Ξ, Ω).
(ii) Objects of FB(MSE) are functors

[E , p]→ [M, D].

They are calledMSE-fibrations.
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Those categories are canonically equivalent. Further the actions the group G in those categories lead to the
same moduli space

m =
GM(Ξ, Ω)

G
=
FB(MSE)

G
.

We rephrase the theorem on moduli space.

Theorem 21. The functor
[E , p]→ qp ∈ BF(M)

parametrizes the moduli space m.

This ends the challenge 2.

10. The Homological Statistical Models

In this section we introduce the theory of homological statistical models (HSM in short).
We address the links between this theory and the local theory as in [17].

The theory of homological statistical models is useful for strengthening the central role
played by the theory of KV homology in the information geometry and in the topology of the
information [14,16–18,22,30,37,60,61].

We introduce the theory of localization of homological models. We use it to highlight the role
played by local cohomological vanishing theorems as well as the role played by global cohomological
vanishing theorems.

The framework is the category FB(Γ, Ξ).
Let [E , π, M, D] be an m-dimensional object of the category FB(Γ, Ξ), viz m = dim(M). The KV

algebra of (M, D) is denoted by A. The smooth manifold Rm supports a sheaf of KV algebras Ã.
This sheaf is locally isomorphic to A. The vector space C∞(Rm) is a left module of Ã. The affine action
of Γ in Rm is Ã-preserving.

Let (U, ΦU × φU) be a local chart of [E , π, M, D]. We recall that dφU is the differential of φU.
We have

dφU(A) = Ã(φU(U)).

Definition 61. A homological model consists of the following data. The datum [E , π, M, D] is an object of
the category FB(Γ, Ξ). Every x ∈ M has an open neighborhood U which is the domain of a local chart of
[E , π, M, D], namely (ΦU × φU). We set

ΘU × Ξ = ΦU(EU).

Those data are subject to the following requirements.
HSM.1 : Θ× Ξ supports a non negative random symmetric 2-cocycle

ΘU × Ξ 3 (θ, ξ)→ QU(θ, ξ) ∈ Z2
KV(Ã,R).

HSM.2 : Let [U, ΦU × φU, QU] and [U∗, ΦU∗ × φU∗ , QU∗ ] as in HSM.1.
If we assume that

U ∩U∗ 6= ∅

then there exists γUU∗ ∈ Γ such that

HSM.2.1 ΦU∗(e) = γUU∗ ·ΦU(e) ∀e ∈ EU∩U∗ ,

HSM.2.2 QU(ΦU(e)) = γ∗UU∗ · [QU∗(ΦU∗(e))].
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Comments.

The equality
QU(ΦU(e)) = γ∗UU∗ · [QU∗(ΦU∗(e))]

has the following meaning. For v, w ∈ TφU(e)ΘU one has

QU[θ(e), ξ(e)](v, w) = QU∗ [γUU∗ · (θ(e), ξ(e))](d[γUU∗ ] · v, d[γUU∗ ] ·w).

Morphisms of homological models are defined by replacing the probability PU by the random
cocycle QU .

Definition 62. The category of homological statistical models for a measurable set (Ξ, Ω) is denoted by
HSM(Ξ, Ω).

10.1. The Cohomology Mapping of HSM(Ξ, Ω)

We consider an m-dimensional object ofHSM(Ξ, Ω) which is defined by a complete atlas

A = [Uj, Φj × φj, γij, Qj]

The underlying object of the atlas A is denoted by [E , π, M, D]. We set

Θj = φj(Uj) ⊂ Rm.

We are not making any difference between (Uj,A) and (Θj, Ã). We put set

Eij = EUi∩Uj .

If we assume that
Ui ∩Uj 6= ∅

then we have
Φj(e) = γij ·Φi(e), ∀e ∈ Eij

and
Qi(Φi(e)) = γ∗ij ·Qj(Φj(e)) ∀e ∈ Eij.

We put
qj(e) = Qj(Φj(e)) ∀e ∈ Ej.

Here
Ej = EUj .

If
Ui ∩Uj 6= ∅

then we know that
[Φj ◦Φ−1

i ](θi(e), ξi(e)) = γij(θi(e), ξi(e)) ∀e ∈ Eij.

Therefore we get
qi(e) = qj(e) ∀e ∈ Eij.

Therefore qj is the restriction to Ej of a (globally defined) map

E 3 e→ Q(e) ∈ Z2
KV(A,R).
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It is clear that
Qj = Q ◦Φ−1

j .

The action of Γ in E is Q-preserving. Thus a homological statistical model is a quintuplet

[E , π, M, D, Q].

Here Q is a map
E 3 e→ Q(e) ∈ Z2

KV(A,R).

Thus we get random cohomological map

E 3 e→ [Q](e) = [Q(e)] ∈ H2
KV(A,R).

Definition 63. The mapping [Q] is called cohomology mapping of the homological model [E , π, M, D, Q].

10.2. An Interpretation of the Equivariant Class [Q]

We intend to interpret the cohomology class [Q] as an obstruction class.

Definition 64. (1) A homological statistical model whose cohomological map vanishes is called an EXact
Homological Statistical Model, (EXHSM); (2) A homological statistical model whose cocycle is a random Hessian
metric is called a HEssian Homological Statistical Model (HEHSM); (3) An exact Hessian homological statistical
model is called a HYperbolic Homological Statistical Model (HYHSM).

Given a Hessian Homological model

M = [E , π, M, D, Q]

the cohomology map [Q] is the obstruction for M being an Hyperbolicity model.
The following proposition leads to impacts on the differential topology.

Proposition 11. The kernel of an exact homological statistical model is in involution. Further if M and all data
depending on M are analytic then Q is a stratified transversally Riemannian foliation in M.

If [E , π, M, D, Q] is exact then there exists a random differential 1-form θ such that

Q = δKVθ,

viz
Q(X, Y) = X · θ(Y)− θ(DXY) ∀X, Y ∈ X (M).

That useful for seing that Ker(Q) is in involution.

10.3. Local Vanishing Theorems in the CategoryHSM(Ξ, Ω)

Reminder.

The category whose objects are homological statistical models (for (Ξ, Ω)) is denoted byHSM(Ξ, Ω).
Henceforth we fix an auxiliary structure of probability space (Ξ, Ω, p∗).

Definition 65. We are interested in random functions defined in Rm × Ξ.
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(1) A random function f has the property p∗ − EXP if

exp( f (x, ξ)) ≤
∫

Ξ
exp( f (x, ξ))dp∗(ξ) ∀x ∈ Rm.

(2) A random closed differential 1-form θ has the property p∗−EXP if every x ∈ Rm has an open neighbourhood
U satisfying the following conditions, U× Ξ support a random function f subject to two requirements:

• θ = d f ,
• f has the property p∗ − Exp.

(3) An exact homological statistical model [E , π, M, D, Q] has property p∗ − EXP if there exists a random
differential 1-form θ satisfying the following conditions

• θ has the property p∗ − EXP,
• Q = δKVθ.

Localization

Our purpose is to explore the relationships between the theory of homological statistical models
and the theory of local statistical model as in [18,22], Barndorff-Nielsen 1987

Our aim is to show that the current (local) theory is a byproduct of the localization of homological
models. The notion of localization of homological models is but the notion of local vanishing theorem.

Theorem 22. Let [E , π, M, D, Q] be a homological statistical model.

(1) [E , π, M, D, Q] is locally exact.
(2) If the [E , π, M, D, Q] has the property p∗ − EXP then [E , π, M, D, Q] is locally isomorphic to a classical

statistical model (Θ, P) as in [18].

The Sketch of Proof of (1). Let (U, Φ× φ) be a local chart of [E , π, M, Q]. We set

ΘU = φ(U).

We assume that ΘU is an open convex subset of Rm. Θ supports a system of affine
coordinate functions

θ = (θ1, ..., θm).

We have
Q(θ, ξ) = ∑ Qij(θ, ξ)dθidθj.

Since Q(θ, ξ) is a random KV cocycle of Ã we have

δKVQ = 0.

The last equality is equivalent to the following system

∂Qjk

∂θi
− ∂Qik

∂θj
= 0.

We fix ξ ∈ Ξ. For every j the random differential 1-form βj is defined by

βj(θ, ξ) = ∑
i

Qijdθi.

Every βj(θ, ξ) is a cocycle of the de Rham complex of ΘU .
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By the virtue of the Lemma of Poincaré there exists a local function hj(θ, ξ) such that

βj = dhj.

Now the differential 1-form θ̃ is defined by

θ̃ = ∑
j

hj(θ, ξ)dθj.

Direct calculations lead to the following equality

Q = δKV θ̃.

This ends the proof of (1).

The proof of (2). We assume that M = [E , π, M, D, Q] has the property p∗− Exp. We keep the notation
we just used.

The random differential 1-form θ̃ is a (de Rham) cocycle. Therefore Θ× Ξ supports a random
function h(θ, ξ) such that

θ̃ = dh.

So we have the following conclusion

Q(θ(e), ξ(e)) = D2h(θ(e), ξ(e)) ∀e ∈ EU.

Equivalently one gets
∂2h

∂θi∂θj
= Qij.

Since M has the property p ∗ −Exp we choose a function h has the property p∗ − EXP.
The functions F(θ) and P(θ, ξ) are defined by

F(θ) =
∫

Ξ
exp(h(θ, ξ))dp∗(ξ),

PQ(θ, ξ) =
exp(h(θ, ξ))

F(θ)
.

By the virtue of the property p∗ − Exp the function P(θ, ξ) satisfies the following requirements

(i) PQθ, ξ) is differentiable with respect to θ,
(ii) PQ satisfies the following inequalities

0 ≤ PQ(θ, ξ) ≤ 1,

(iii) PQ satifies the following identity ∫
Ξ

PQ(θ, ξ)dξ = 1.

Thus the pair (ΘU, PQ) is a local statistical model for (Ξ, Ω). This ends the proof of (2). The theorem
is demonstrated.

The pair (ΘU, PQ) is called a localization of M.

Definition 66. A localization (ΘU, PQ) is called a Local Vanishing Theorem of [E , π, M, Q].
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Let [E , π, M, D, p] be an object of the category GM(Ξ, Ω). We set

Qp = D2log(p).

Thefore we get the exact homological statistical model

Mp = [E , π, M, D, Qp]

So the notion of vanishing theorem has significant impacts on the information geometry.
To simplify an exact models which having the property p∗ − Exp (for some probabily space) are
is called Exp−models.

Theorem 23. The notation is that used previously.

(1) The category GM(Ξ, Ω) is a subcategory of the category EXHSM(Ξ, Ω).
(2) Ojects of GM(Ξ, Ω) but homological Exp−models.

Reminder: New Insigts.

(1.1) The Information GEometry is the geometry of statistical models.
(1.2) The Information topology is the topology of statistical models.
(2.1) The homological nature of the Information Geometry.
(2.2) What is a statistical model? The answer to the question raised by McCullagh should be: A statistical model

is a Global Vanishing Theorem in the theory of homological models.
(2.3) A local statistical model is a Local Vanishing Theorem in the theory of homological models.

11. The Homological Statistical Models and the Geometry of Koszul

Our purpose is to to relate the category of homological statistical models and the geometry
of Koszul. This relationship is based on the localization of homological statistical models.

Proposition 12. EXPHEHSM(Ξ, Ω) stands for the subcategory whose objects are Hessian Exp-models.

(1) The holomogical map leads to the functor of EXPHEHSM(ß, Ω) in the category of Hessian structures
in (M, D)

[E , π, M, D, Q]→ (M, D, Q̃).

(2) If M is compact then the subcategory of exact Hessian homological Exp-models EXPHYHSM(Ξ, Ω) is
sent in the category of hyperbolic structure in in (M, D).

12. Examples

This section is devoted to a few examples. The construction involves some basic notions of the
differential topology.

Example 1: Dynamics

We consider a triple [M× H, p1, M,∇]. Here (M,∇) is a compact locally flat manifold, (H, dµ) is
an amenable group. There is an effective affine action

H× (M,∇)→ (M,∇).

Let f ∈ C∞(M) and x ∈ M. The function

fx : H→ R
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is defined by
fx(h) = f (h · x).

Let L∞
H(M) be the set of f ∗ ∈ C∞(M) such that

f ∗x ∈ L∞(H),

viz
sup
[h∈H]

| fx(h)| < ∞ ∀x.

Now EXP(L∞
H(M) stands for the set of f ∗ ∈ L∞

H(M) such that

exp( f ∗x (h)) ≤ µ(exp( f ∗x )) ∀x.

The function Pf ∗(x, h) is defined by

Pf ∗(x, h) =
exp( f ∗(x · h))

µ(exp( f ∗x ))
.

The pair (M, Pf ∗) is a probability density in H. Now set

f̃ ∗(x, h) = f ∗(x · h)

Therefore the datum [M× H, p1, M,∇, Pf ∗ ] is a statistical model for (H,P(H)). Here P(M) is the
boolean algebra of subsets of H and p1 is the trivial fibration of M× H over M.

Example 2: Geometry

We focus on an example which plays a significant role in global analysis (and geometry) in some
type of bounded domains [2,3]. This example relates the geometry of Koszul and Souriau Lie groups
thermodynamics [4] and bibliography therein.

Let C ⊂ Rm be a convex cone and let C∗ be its dual. The characteristic function of C is defined by

C 3 v→
∫
C∗

exp(− < v, w∗ >)dw∗.

This gives rise to the following function

C × C∗ 3 (v, v∗)→ P(v, v∗) =
exp(− < v, v∗ >)∫

C∗ exp(− < v, w∗ >)dw∗

So (C, P) is a statistical model for (C∗, dw∗). Here dw∗ is the standard Borel measure.

Stratified Analytic Riemannian Foliations

Reminder.

We recall that a (regular) Riemannian foliation M is a symmetric bilinear form g ∈ S2(M) having the
following properties

(1) rank(g) = constant,
(2) LXg = 0∀X ∈ G(Ker(g)).

From (2) one easily deduces that Ker(g) is in involution. By the virtue of Theorem of Frobenius (1) and (2)
imply that Ker(g) is completely integrable.

In the category of differentiable manifolds, not all involutive singular distributions are completely integrable.
Nevertheless, that is true in the category of analytic manifolds [62].
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This subsection is mainly devoted to examples of stratified Riemannian foliations in analytic manifolds.
For more details about those object the readers are referred to [46,63].

Theorem 24. Let M be an orientable compact analytic manifold. Let Cω(M2) be the space real valued analytic
functions defined in M2. There exists a canonical map of Cω(M×M) in the family of analytic stratified
Riemannian foliations in M.

The Idea of Construction.

Let dv be an analytic volume element in M. In M we fix an analytic torsion free Koszul connection∇.
To a function f ∈ Cω(M2) we assign the function P ∈ Cω(M2)

Pf (x, x∗) =
exp[ f (x, x∗)]∫

M exp[ f (x, x∗∗)]dv(x∗∗)
.

We make the following identification

X (M) = X (M)× 0 ⊂ X (M2).

The analytic bilinear form g f ∈ S2(M) is defined by

[g f (x)](X, Y) = −
∫

M
Pf (x, x∗)[∇2(log(Pf ))(X, Y)](x, x∗)dv(x∗).

The form g f has the following properties.

(a) g f does not depend on the choice of∇,
(b) g f is symmetric and positive semi-definite,
(c) If X is a section of Ker(g f ) then LXg f = 0.

Conclusion.

If
rank(g f ) = constant

then g f is a Riemannian foliation as in [38–40,46].
If rank(g f ) is not constant we apply [62]. Thereby g f is an analytic stratified Riemannian foliation.

Reminder.

The idea of the strafication of g f .

Step 0

The open subset U0 ⊂ M is defined by

x ∈ U0 i f f rank(g f (x)) = max
[x∗∈M]

rank(g f (x∗)).

The closed analytic submanifold F1 ⊂ M is defined by

F1 = M \U0.
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Step 1

In the pair (F1, g f ) the open subset U1 ⊂ F1 is defined by

x ∈ U1 i f f rank(g f (x)) = max
[x∗∈F1]

rank(g f (x∗)).

Step 2

We iterate this construction. Then we have get a filtration of M

... ⊂ Fn ⊂ Fn−1 ⊂ ... ⊂ F1 ⊂ FO = M.

This filtration has the following properties

(1) Fj−1 \ Fj is a analytic submanifold of M.
(2) g f defines a regular Riemannian foliation in (Fj−1 \ Fj, g f ),

Remark 6. The extrinsic geometry of submanifolds is a particular case of the geometry of singular foliation [25].

13. Highlighting Conclusions

13.1. Criticisms

In Part B we have raised some criticisms. We have constructed structures of statistical models
in flat tori. An m-dimensional flat torus is not homeomorphic to an open subset of Rm. The second
criticism is the lack of dynamics. Subsequently, the problem of moduli space is absent from the
classical theory. That deficiency is filled in by the characteristic functor

M = [E , π, M, D, p]→ qM.

The current theory requires a model to be identifiable. From the viewpoint of locally trivial fiber
bundles, that requirement is useless.

13.2. Complexity

In both the theoretical information geometry and the applied information the exponential
models and their generalizations play notable roles. What we call the complexity of a model
[E , π, M, D, p] is its distance from the category of exponential models. Up to today there does
not exist any INVARIANT which measures how far from being an exponential is a given model.
This problem has a homological nature. We have produced a function rb which fills in that lack.
(See the Appendix A below).

13.3. KV Homology and Localization

We have introduced the theory of homological model. Among the notable notions that we have
studied is the localization of homological statistical models. It links the theory of homological models
and the current theory as in [22]. It may be interpreted as a functor from the theory of homological
models to the classical theory of statistical models.

13.4. The Homological Nature of the Information Geometry

GM(Ξ, Ω) and HSM(Ξ, Ω) are introduced in this Part B. The category of local statistical
models for (Ξ, Ω) is denoted by LM(Ξ, Ω). On one side, the right arrows below mean subcategory.
Then we have

LM(Ξ, Ω)→ GM(Ξ, Ω)→HSM(Ξ, Ω).
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On another side, the notion of Vanishing Theorem is useful in linking HSM(Ξ, Ω) with both
GM(Ξ, Ω) and LM(Ξ, Ω).

(1) The Global Vanishing Theorem is the functor

HSM(Ξ, Ω)→ GM(Ξ, Ω).

(2) The Local Vanishing Theorem is the functor

HSM(Ξ, Ω)→ LM(Ξ, Ω).

13.5. Homological Models and Hessian Geometry

In the category HSM(Ξ, Ω) the Hessian functor is the functor from HEHSM(Ξ, Ω) to the
category of randon Hessian manifolds.

Furthermore, every structure of probability space (Ξ, Ω, p∗) gives rise to a canonical functor from
HEHSM(Ξ, Ω) to the category of Hessian manifolds. The canonical functor is defined by

[E , π, M, D, Q]→
∫

F
p∗Q
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Appendix A

Usually the appendix is devoted to overview the notions which are used in a paper. In this appendix
we announce a few outstanding impacts of Hessian differential operators of Koszul connections.

In the introduction a pair of Koszul connections (∇,∇∗) is used for defining three
differential operators

X→ D∇(X) = ιXR∇ − LX∇ ∀X ∈ Γ(TM).

The differential operator D∇ is elliptic and involutive in the sense of the global analysis [50,51,64].
Let J∇ be the sheaf of germ of solutions to the equation

FE∗∗(∇) : D∇(X) = 0.

If∇ torsion free then FE∗∗(∇) is a Lie equation.
The non negative integers rb(∇) and rb(M) are defined by

rb(∇) = min
[x∈M]

{
dim(J∇(x)

}
,

rb(M) = min
[∇∈SLC(M)]

{
dim(M)− rb(∇)

}
.

Here SLC(M) is the convex set of torsion free Koszul connections in M. We set the following
notation: Rie(M) is the set of Riemannian metric tensors in M. LF(M) is the set of locally flat Koszul
connection in M. At one side every g ∈ Rie(M) gives rise to the map

LF(M) 3 ∇ → ∇∗ ∈ LC(M)

which is defined by
g(Y,∇∗XZ) = Xg(Y, Z)− g(∇XY, Z).
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At another side every∇ ∈ LF(M) gives rise to the map

Ri(M) 3 g→∇g ∈ LC(M)

which is defined by
g(Y,∇g

XZ) = Xg(Y, Z)− g(∇XY, Z).

In every Riemannian manifold (M, g) we define the following numerical invariants

rb(M, g) = min
[∇∈LF(M)]

{
dim(M)− rb(∇∗)

}
,

rB(M) = min
[g∈Rie(M)]

{
rb(M, g)

}
.

In every locally flat manifold (M,∇) we define the following numerical invariant

rb(M,∇) = min
[g∈Rie(M)]

{
rb(∇g)

}
The numerical invariants we just defined have notable impacts.

Appendix A.1. The Affinely Flat Geometry

Theorem A1. In a smooth manifold M the following assertions are equivalent

(1) rb(M) = 0,
(2) the manifold M admits locally flat structures.

Appendix A.2. The Hessian Geometry

Theorem A2 (Answer a hold questions of [65]). In a Riemannian manifold (M, g) the following assertions
are equivalent

(1) rb(M, g) = 0,
(2) the Riemannian manifold (M, g) admits Hessian structures (M, g,∇)

A Comment.

Assertion (2) has the following meaning.

(i) (M,∇) is a locally flat manifold.
(ii) every point has an open neighborhood U supporting a system of affine coordinate functions (x1, ..., xm) and a

local smooth function h(x1, ..., xm) such that

g(
∂

∂xi
,

∂

∂xj
) =

∂2h
∂xi∂xj

.

Appendix A.3. The Geometry of Koszul

Theorem A3. In a locally flat manifold (M,∇) whose KV algebra is denoted by A the following assertions
are equivalent

(1) rb(M,∇) = 0,
(2) the KV cohomology space H2

KV(A,R) contains a metric class [g],
(3) the locally flat manifold (M,∇) admits Hessian structures (M,∇, g).
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Appendix A.4. The Information Geometry

Let (Ξ, Ω) be a transitive measurable and let

M = [E , π, M, D, p]

be an object of GM(Ξ, Ω). Let g be the Fisher information of M. Let

{∇α, α ∈ R}

be the family of α-connections of M. We define the following numerical invariant

rb(M) = min
[α∈R]

{
dim(M)− rb(∇α)

}
.

Theorem A4. In M the following assertions are equivalent.

(1) rb(M) = 0,
(2) M is an exponential family.

Corollary A1. Assume that M is regular, viz g is positive definite, then the following assertions are equivalent

(1) rb(M) = 0,
(2) rb(M, g) = 0,

Appendix A.5. The Differential Topology of a Riemannian Manifold

A Riemannian manifold (M, g) , (whose Levi-Civita connection is denoted by∇∗), is called special if

J∇∗ 6= 0

Theorem A5. A special positive Riemannian manifold(M, g) has the following properties

(1) (M, g) admits a geodesic flat Hessian foliation

[F , g|F ,∇∗].

(2) The leaves of F are the orbits of a bi-invariant affine Cartan-Lie group (G̃, ∇̃).
(3) The bi-invariant affine Cartan-Lie group (G̃, ∇̃) is generated by an effective infinitesimal action of a simply

connected bi-invariant affine Lie group (G,∇).
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