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Abstract: The secrecy capacity of an extended communication model of wiretap channelII is
determined. In this channel model, the source message is encoded into a digital sequence of length N
and transmitted to the legitimate receiver through a discrete memoryless channel (DMC). There exists
an eavesdropper who is able to observe arbitrary µ = Nα digital symbols from the transmitter
through a second DMC, where 0 ≤ α ≤ 1 is a constant real number. A pair of an encoder and
a decoder is designed to let the receiver be able to recover the source message with a vanishing
decoding error probability and keep the eavesdropper ignorant of the message. This communication
model includes a variety of wiretap channels as special cases. The coding scheme is based on that
designed by Ozarow and Wyner for the classic wiretap channel II.
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1. Introduction

The concept of the wiretap channel was first introduced by Wyner. In his celebrated paper [1],
Wyner considered a communication model, where the transmitter communicated with the legitimate
receiver through a discrete memoryless channel (DMC). Meanwhile, there existed an eavesdropper
observing the digital sequence from the receiver through a second DMC. The goal was to design
a pair of an encoder and a decoder such that the receiver was able to recover the source message
perfectly, while the eavesdropper was ignorant of the message. That communication model is actually
a degraded discrete memoryless wiretap channel.

After that, the communication models of wiretap channels have been studied from various aspects.
Csiszár and Körner [2] considered a more general wiretap channel where the wiretap channel did not
need to be a degraded version of the main channel, and common messages were also considered there.
Other communication models of wiretap channels include wiretap channels with side information [3–8],
compound wiretap channels [9–12] and arbitrarily-varying wiretap channels [13].

Ozarow and Wyner studied another kind of wiretap channel called the wiretap channel II [14].
The source message W was encoded into digital bits XN and transmitted to the legitimate receiver via
a binary noiseless channel. An eavesdropper could observe arbitrary µ = Nα digital bits from the
receiver, where 0 < α < 1 is a constant real number not dependent on N.

Some extensions of the wiretap channel have been studied in recent years.
Cai and Yeung extended the wiretap channel II into the network scenario [15,16]. In that network

model, the source message of length K was transmitted to the legitimate users through a network,
and the eavesdropper was able to wiretap on at most µ < K edges. Cai and Yeung suggested using
a linear “secret-sharing” method to provide security in the network. Instead of sending K message
symbols, the source node sent µ random symbols and K− µ message symbols. Additionally, the code
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itself underwent a certain linear transformation. Cai and Yeung gave sufficient conditions for this
transformation to guarantee security. They showed that as long as the field size is sufficiently large,
a secure transformation existed. Some related work on wiretap networks was given in [17–20].

An extension of wiretap channel II was considered recently in [21,22]. The source message
was encoded into the digital sequence XN and transmitted to the legitimate receiver via a DMC.
The eavesdropper could observe any µ = Nα digital bits of XN from the transmitter. A pair of
inner-outer bounds was given in [21], while the secrecy capacity with respect to the semantic secrecy
criterion was established in [22]. The coding scheme in [21] was based on that developed by Ozarow
and Wyner in [14], while the scheme in [22] was by Wyner’s soft covering lemma. He et al. considered
another extension of wiretap channel II in [23]. In that model, the eavesdropper observed arbitrary
µ = Nα digital bits of the main channel output YN from the receiver. The capacity with respect to the
strong secrecy criterion was established there. The proof of the coding theorem was based on Csiszár’s
almost independent coloring scheme. Some other work on wiretap channel II can be found in [24–26].

This paper considers a more general extension of wiretap channel II, where the eavesdropper
observes arbitrary µ digital bits from the transmitter via a second DMC. The capacity with respect to
the weak secrecy criteria is established. The coding scheme is based on that developed by Ozarow and
Wyner in [14]. It is obvious that this communication model includes the general discrete memoryless
wiretap channels, the wiretap channel II and the communication models discussed in [21–23] as special
cases. Nevertheless, we should notice that the secrecy criteria considered in [22,23] are strictly stronger
than those considered in this paper; see Figure 1.

Stronger 

Semantic secrecy criterion considered in [22] 

Strong secrecy criterion considered in [23, 24] 

Weak secrecy criterion 

Figure 1. Comparison of different secrecy criteria.

The remainder of this paper is organized as follows. The formal statement and the main results
are given in Section 2. The secrecy capacity is formulated in Theorem 1, whose proof is discussed in
Section 4. Section 5 provides a binary example of this model. Section 6 gives a final conclusion of
this paper.

2. Notation and Problem Statements

Throughout the paper, N is the set of positive integers and [1 : N] = {1, 2, ..., N} for any N ∈ N.
Iµ = Iµ(N) = {I ⊆ [1 : N] : |I| = µ} represents the collection of subsets of [1 : N] with size µ.

Random variables, sample values and alphabets (sets) are denoted by capital letters, lower case
letters and calligraphic letters, respectively. A similar convention is applied to random vectors and
their sample values. For example, XN represents a random N-vector (X1, X2, ..., XN), and xN is a
specific vector of XN in X N . X N is the N-th Cartesian power of X .

Let ‘?’ be a “dummy” letter. For any index set I ⊆ [1 : N] and finite alphabet X not containing
the “dummy” letter ‘?’, denote:

X N
I = {(x1, x2, ..., xN) : xi ∈ X if i ∈ I , and xi =? otherwise}.

For any given random vector XN = (X1, X2, ..., XN) and index set I ⊆ [1 : N],
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• XN
I = (X′1, X′2, ..., X′N) is a “projection” of XN onto I with X′n = Xn for n ∈ I , and

X′n =? otherwise.
• XI = (Xi, i ∈ I) is a subvector of XN .

The random vector XN
I takes the value from X N

I , while the random vector XI takes the value
from X |I|.

Example 1. Supposing that N = 5, the index set I = {1, 3, 5} and the random vector
XN = (X1, X2, X3, X4, X5), we have XN

I = (X1, ?, X3, ?, X5) and XI = (X1, X3, X5).

The communication model in this paper, which is shown in Figure 2, is composed of an encoder,
the main channel, the wiretap channel and a decoder. The definitions of these parts are from Definition 1
to Definition 4, respectively. The definition of achievability is in Definition 5.

En  QM(y
N |xN)  

QW(z
N |xN) WTC-II 

W XN  YN  

ZN  
 

ZN  

Transmitter 
Receiver 

Eavesdropper 

Main channel 

Wiretap channel 

W 

Encoder Decoder 

Figure 2. Communication model of wiretap channel II with noise.

Definition 1. (Encoder) The source message W is uniformly distributed on the message setW = [1 : M].
The (stochastic) encoder is specified by a matrix of conditional probability En(xN |w) for the channel input
xN ∈ X N and message w ∈ W .

Definition 2. (Main channel) The main channel is a DMC with finite input alphabet X and finite output
alphabet Y , where ? /∈ X ∪ Y . The transition probability is QM(y|x). Let XN and YN denote the input and
output of the main channel, respectively. It follows that for any xN ∈ X N and yN ∈ YN ,

Pr{XN = xN , YN = yN} = Pr{XN = xN}QN
M(yN |xN)

where:

QN
M(yN |xN) =

N

∏
n=1

QM(yn|xn).

Definition 3. (Wiretap channel) The eavesdropper is able to observe arbitrary µ = Nα digital bits from the
transmitter via another DMC, whose transition probability is denoted as QW(z|x) with x ∈ X and z ∈ Z .
The alphabet Z does not contain the “dummy” letter ‘?’ either. The input XN and the output ZN of the wiretap
channel satisfy that:

Pr{XN = xN , ZN = zN} = Pr{XN = xN}QN
W(zN |xN)

with:

QN
W(zN |xN) =

N

∏
n=1

QW(zn|xn).



Entropy 2016, 18, 377 4 of 22

Supposing that the eavesdropper observes digital bits of the wiretap channel output ZN whose indices lie
in the observing index set I , the subsequence obtained by the eavesdropper can then be denoted by Z̃N = ZN

I .
Therefore, the information on the source message (of each bit) exposed to the eavesdropper is denoted by:

∆ = max
I∈Iµ

1
N

I(W; ZN
I ).

Remark 1. Clearly, for given wiretap channel output Z̃N , one can easily determine which subsequence of ZN is
observed by the eavesdropper. More precisely, Z̃N = ZN

I with I = I(Z̃N) = {i : Z̃i 6=?}.

Definition 4. (Decoder) The decoder is a mapping φ : YN 7→ W , with YN as the input and Ŵ = φ(YN) as
the output. The average decoding error probability is defined as Pe = Pr{W 6= Ŵ}.

Definition 5. (Achievability) A non-negative real number R is said to be achievable, if for any ε > 0, there exists
an integer N0, such that one can construct an (N, M) code satisfying:

1
N

log M ≥ R− ε, (1)

Pe ≤ ε (2)

and:
∆ < ε, (3)

where N > N0. The capacity, or the maximal achievable transmission rate, of the communication model is
denoted by Cs.

Remark 2. Notice that the capacities defined in this paper are under the condition of negligible average decoding
error probability, but one can construct the coding schemes for the negligible maximal decoding error probability
through the standard techniques. See Appendix A for details.

3. Main Result

Theorem 1. The capacity of the communication model described in Figure 2 is:

Cs = max
PU ·PX|U :U→X→YZ

[I(U; Y)− αI(U; Z)],

where U is an auxiliary random variable distributed on U with |U | ≤ |X |.

The converse half of Theorem 1 can be established quite similarly to the method of establishing
the converse of Theorem 2 in [22], and hence, we omit it here. The direct part of Theorem 1 is given
in Section 4.

Corollary 1. When α = 1, the communication model is transformed into a general discrete memoryless wiretap
channel, whose capacity is formulated by:

Cs = max
PU ·PX|U :U→X→YZ

[I(U; Y)− I(U; Z)].
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The result coincides with that of Corollary 2 in [2]. In particular, if X → Y → Z forms a Markov chain,
the capacity is further deduced by:

Cs = max
PU ·PX|U :U→X→Y→Z

[I(U; Y)− I(U; Z)]

(a)
= max

PU ·PX|U :U→X→Y→Z
[I(U; Y|Z)]

(b)
= max

PX :X→Y→Z
[I(X; Y|Z)]

(c)
= max

PX :X→Y→Z
[I(X; Y)− I(X; Z)],

where (a) follows because U → Y→ Z forms a Markov chain, (b) follows because the Markov chain U → X→ Y
for a given Z implies that I(U; Y|Z) ≤ I(X; Y|Z) and the equality holds if and only if U = X and (c) follows
because X→ Y→ Z forms a Markov chain.

Corollary 2. When Y = Z, i.e., the eavesdropper observes µ = Nα digital bits from the receiver,
the communication model is transformed into that studied in [23]. In this case, the capacity is formulated by:

Cs = max
PU ·PX|U :U→X→Y

(1− α)I(U; Y) = max
PX

(1− α)I(X; Y),

where the last equality follows because the Markov chain U → X→ Y implies that I(U; Y) ≤ I(X; Y) and the
equality holds if and only if U = X.

Notice that [23] considered the capacity with respect to the strong secrecy criterion, while the
current paper considers that with the weak secrecy criterion. Therefore, Theorem 1 in [23] and
Corollary 2 in the current paper indicate that the capacity with respect to the strong secrecy criterion is
identical to that with the weak secrecy criterion.

Corollary 3. When Z = X, i.e., the eavesdropper observes µ = Nα digital bits from the transmitter,
the communication model is transformed into that studied in [21,22]. In this case, the capacity is formulated by:

Cs = max
PU ·PX|U :U→X→Y

[I(U; Y)− αI(U; X)].

The channel model described in Corollary 3 was first studied in [21], and a pair of inner and outer
bounds was given there. The secrecy capacity with respect to the semantic secrecy criterion, which is
identical to the capacity with the weak criterion given in Corollary 3, was established in [22].

4. Direct Part of Theorem 1

This section proves the direct part of Theorem 1. Let an arbitrary quadruple of random variables
(U∗, X∗, Y∗, Z∗) be given, which satisfy that:

Pr{U∗ = u, X∗ = x, Y∗ = y, Z∗ = z} = PU∗(u)PX∗|U∗(x|u)QM(y|x)QW(z|x) (4)

for (u, x, y, z) ∈ U × X × Y × Z . The goal of this section is to establish that every real number R
satisfying 0 ≤ R < I(U∗; Y∗)− αI(U∗; Z∗) is achievable. In fact, it suffices to prove the achievability of
every R satisfying:

0 ≤ R < I(X∗; Y∗)− αI(X∗; Z∗). (5)

To show this, suppose that every transmission rate R satisfying Equation (5) is achievable. For any
random variable U∗ satisfying Equation (4), the encoder could deliberately increase the noise of the
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communication system by inserting a virtual noisy channel QV at the transmitting port of the system,
such that:

QV(x|u) = PX∗|U∗(x|u).

This would create the virtual communication system depicted in Figure 3, where the transition
matrix of the main channel is:

Q̃M(y|u) = PY∗|U∗(y|u) = ∑
x∈X

QV(x|u)QM(y|x)

and the transition matrix of the wiretap channel is:

Q̃W(z|u) = PZ∗|U∗(y|u) = ∑
x∈X

QV(x|u)QW(y|x).

It is clear that every real number 0 < R ≤ I(U∗; Y∗)− αI(U∗; Z∗) is achievable for the virtual
system and hence is achievable for the original system.

En  QM(y
N |xN)  

QW(z
N |xN) WTC-II 

W XN  YN  

ZN  
 

ZN  

Transmitter 

Receiver 

Eavesdropper 

Virtual main channel 

Virtual wiretap channel 

W 

Encoder Decoder 

QV(x
N |uN) 

UN  

Figure 3. Adding a virtual channel QV to the communication system.

In the remainder of this section, it will be shown that every transmission rate R satisfying
Equation (5) is achievable. To be precise, for any ε and τ satisfying 0 < ε ≤ τ < I(X∗; Y∗)− αI(X∗; Z∗),
we need to establish that there exists an (N, M) code, such that:

1
N

log M ≥ I(X∗; Y∗)− αI(X∗; Z∗)− τ > 0, (6)

∆ = max
I∈Iµ

1
N

I(W; ZN
I ) < ε, (7)

and:
Pe < ε (8)

when N is sufficiently large.
The coding scheme is based on the scheme developed by Ozarow and Wyner [14] for the classic

wiretap channel II. In that channel model, for each wiretap channel output zN , there exists a collection
of codewords that are “consistent” with it, namely the codewords that could produce the wiretap
channel output zN for some observing index I . Ozarow and Wyner constructed a secure partition, such
that the number of “consistent” codewords, for every wiretap channel output zN , in each sub-code is
less than a constant integer. However, it is not feasible to consider the “consistent” codewords in our
model, where the wiretap channel may be noisy. Instead, we construct a secure partition such that the
number of codewords, jointly typical with the wiretap channel output zN , in each sub-code is less than
a constant integer.
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The proof is organized as follows. Firstly, Section 4.1 gives some definitions on the typicality of
µ-subsequences and lists some basic results. Then, the construction of the encoder and decoder is
introduced in Section 4.2. The key point is to generate a “good” codebook with the desired partition
to ensure secrecy. Thirdly, as the main part of the proof, Section 4.3 shows the existence of a “good”
codebook with the desired partition. For any ε > 0 and τ > 0, the proof that the coding scheme
in Section 4.2 satisfies the requirements of the transmission rate, reliability and security, namely
Formulas (6) to (8), is finally detailed in Section 4.4.

4.1. Typicality

The definitions of letter typicality on a given index set follow from those briefly introduced in [23].
We list them in this subsection for the sake of completeness.

Firstly, the original definitions of letter typicality are given as follows. Please refer to Chapter 1
in [27] for more details.

For any δ ≥ 0, the δ-letter typical set TN
δ (PX) with respect to the probability distribution PX on X

is the set of xN ∈ X N satisfying:

| 1
N

N(a|xN)− PX(a)| ≤ δPX(a) for all a ∈ X ,

where N(a|xN) is the number of positions of xN having the letter a ∈ X .
Similarly, let N(a, b|xN , yN) be the number of times that the pair (a, b) occurs in the sequence of

pairs (x1, y1), (x2, y2), ..., (xN , yN). The jointly typical set TN
δ (PXY), with respect to the joint probability

distribution PXY on X ×Y , is the set of sequence pairs (xN , yN) ∈ X N ×YN satisfying:

| 1
N

N(a, b|xN , yN)− PXY(a, b)| ≤ δPXY(a, b)

for all (a, b) ∈ X ×Y .
For any given xN ∈ X N , the conditionally typical set of xN with respect to the joint mass function

PXY is defined as:
TN

δ (PXY|xN) = {yN ∈ YN : (xN , yN) ∈ TN
δ (PXY)}.

The definitions on the typicality of µ-subsequences on index set I ∈ Iµ and some basic results are
given as follows.

Definition 6. Given a random variable X on X , the letter typical set T̃N
I [X]δ with respect to X on the index

set I ∈ Iµ is the set of xN ∈ X N
I such that xI ∈ Tµ

δ (PX), where xI is the µ-subvector of xN and PX is the
probability mass function of the random variable X.

Example 2. Let X be a random variable on the binary set X = {0, 1}, such that PX(0) = 1− PX(1) = 1
5 .

Set N = 10, δ = 0.1 and I = [1 : 5]. Then:

• the sequence xN = 0111100000 is out of TN
δ (PX) while xN

I = 01111????? belongs to T̃N
I [X]δ;

• the sequence x′N = 1111101110 belongs to TN
δ (PX) while x′NI = 11111????? is out of T̃N

I [X]δ;
• the sequence x′′N = 0111111110 belongs to TN

δ (PX), and x′′NI = 01111????? belongs to T̃N
I [X]δ.

Remark 3. (Theorem 1.1 in [27]) Suppose that X1, X2, ..., XN are N i.i.d. random variables with the same
generic probability distribution as that of X. For any given I ∈ Iµ and δ < mX ,

1. if xN ∈ T̃N
I [X]δ, then

2−µ(1+δ)H(X) ≤ Pr{XN
I = xN} ≤ 2−µ(1−δ)H(X),

2. Pr{XN
I ∈ T̃N

I [X]δ} > 1− ε̃1,
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where:
ε̃1 = ε̃1(µ, δ, mX) = 2|X |e−µδ2mX

and mX = minx∈X :PX(x)>0 PX(x).

Definition 7. Let (X, Y) be a pair of random variables with the joint probability mass function PXY on X ×Y .
The jointly typical set T̃N

I [XY]δ with respect to (X, Y) on the index set I ∈ Iµ is the set of (xN , yN) ∈
X N
I ×YN

I satisfying (xI , yI ) ∈ Tµ
δ (PXY), where xI and yI are the subvectors of xN and yN , respectively.

Definition 8. For any given xN ∈ T̃N
I [X]δ with I ∈ Iµ, the conditionally-typical set of xN on the index set I

is defined as:
T̃N
I [XY|xN ]δ = {yN : (xN , yN) ∈ T̃N

I [XY]δ}.

Remark 4. Let (XN , YN) be a pair of random sequences with the conditional mass function:

Pr{YN = yN |XN = xN} =
N

∏
i=1

PY|X(yi|xi) (9)

for xN ∈ X N and yN ∈ YN . Then, for any index set I ∈ Iµ, xN ∈ T̃N
I [X]δ and yN ∈ T̃N

I [XY|xN ]δ,
it follows that:

2−µ(1+δ)H(Y|X) ≤ Pr{YN
I = yN |XN

I = xN}
≤ 2−µ(1−δ)H(Y|X).

Corollary 4. For any I ∈ Iµ and xN ∈ T̃N
I [X]δ, it follows that |T̃N

I [XY|xN ]δ| < 2Nα(1+δ)H(Y|X).

Corollary 5. Let Y1, Y2, ..., YN be N i.i.d. random variables with the same probability distribution as that of Y.
For any I ∈ Iµ and xN ∈ T̃N

I [X]δ, it follows that:

Pr{YN ∈ T̃N
I [XY|xN ]δ} < 2−N[αI(X;Y)−2δH(Y)].

Remark 5. (Theorem 1.2 in [27]) Let (XN , YN) be a pair of random sequences satisfying (9). For any index set
I ∈ Iµ, 0 ≤ δ < mXY and xN ∈ T̃N

I [X]δ, it is satisfied that:

Pr{YN
I ∈ T̃N

I [XY|xN ]2δ|XN
I = xN} > 1− ε̃2,

where:
ε̃2 = ε̃2(µ, δ, mXY) = 2|X ||Y|e−µmXY

δ2
1+2δ

and mXY = min(x,y)∈X×Y :PXY(x,y)>0 PXY(x, y).

4.2. Code Construction

Suppose that the triple of random variables (X∗, Y∗, Z∗) is given and fixed.
Codeword generation: The random codebook C = {X∗N(l)}M′

l=1 is an ordered set of M′ i.i.d.
random vectors with mass function Pr{X∗N(l) = xN} = ∏N

i=1 PX∗(xi), where:

M′ = 2N[I(X∗ ;Y∗)−τ−τd ] (10)

for some τd > 0.
Codeword partition: Given a specific sample value C = {xN(l)}M′

l=1 of M′ randomly-generated
codewords, let W ′ be a random variable uniformly distributed on [1 : M′] and XN(C) = xN(W ′) be
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the random sequence uniformly distributed on C. Set R = I(X∗; Y∗)− αI(X∗; Z∗)− τ, and partition
C into:

M = 2NR = 2N[I(X∗ ;Y∗)−αI(X∗ ;Z∗)−τ] (11)

subsets {Cm}M
m=1 with the same cardinality. Let W̃ be the index of sub-code containing XN(C), i.e.,

XN(C) ∈ CW̃ . We need to find a partition of the codebook C satisfying that:

max
I∈Iµ

1
N

I(W̃; ZN
I (C)) < ε, (12)

where ZN(C) is the output of the wiretap channel when taking XN(C) as the input, i.e.,

Pr{XN(C) = xN , ZN(C) = zN} = Pr{XN(C) = xN}
N

∏
i=1

QW(zi|xi).

for xN ∈ X N and zN ∈ ZN . If there is no such desired partition, declare an encoding error.

Remark 6. We call the codebook C an ordered set because each codeword in the codebook is treated as unique,
even if its value may be the same as the other codewords.

Encoder: Suppose that a desired partition {Cm}M
m=1 on a specific codebook C is given. When the

source message W is to be transmitted, the encoder uniformly randomly chooses a codeword from the
sub-code CW and transmits it to the main channel.

In this encoding scheme, each message is related to a unique sub-code, which is sometimes called
a bin. Therefore, we would call this kind of coding scheme the random binning scheme.

Remark 7. For a given codebook C and a desired partition applied to the encoder, let XN and ZN be the input
and output of the wiretap channel respectively, when the source message W is transmitted. It is clear that
(W, XN , ZN) and (W̃, XN(C), ZN(C)) share the same joint distribution.

Decoder: Supposing that the output of the main channel is yN . The decoder tries to find a unique
sequence xN(ŵ, ĵ), such that (xN(ŵ, ĵ), yN) ∈ TN

δ (PX∗Y∗) and decodes ŵ as the estimation of the
transmitted source message. If there is none or there is more than one satisfied xN(ŵ, î), the encoder
chooses a constant w0 as ŵ.

4.3. Proof of the Existence of a “Good” Codebook with a Secure Partition

This subsection proves the existence of a class of “good” codebooks, on which there exist secure
partitions, such that Equation (12) holds, when N is sufficiently large and δ is sufficiently small.
Moreover, those kinds of “good” codebooks can be randomly generated with probability → 1 as
N → ∞. The notation in Section 4.2 will continue to be used in this subsection.

A formal definition of “good” codebooks is given by the following.

Definition 9. A codebook C is called “good” if it is satisfied that:

|T̃(C, I)| > (1− 2ε1)M′ for all I ∈ Iµ (13)

and:
|T̃(C, zN , I)| < 2N(I(X∗ ;Y∗)−αI(X∗ ;Z∗)−τ− τd

2 ) for all I ∈ Iµ and zN ∈ T̃N
I [Z

∗]2δ, (14)

where:
T̃(C, I) = {xN ∈ C : xN

I ∈ T̃N
I [X

∗]δ}



Entropy 2016, 18, 377 10 of 22

is the set of typical codewords on the index set I ,

T̃(C, zN , I) = {xN ∈ C : xN
I ∈ T̃N

I [X
∗Y∗|zN ]2δ}

is the set of codewords jointly typical with zN on the index set I and:

ε1 = ε1(µ, δ, mX∗) = 2|X |e−µδ2mX∗ . (15)

The main results of this subsection are summarized as the following three lemmas. Lemma 1
claims the existence of “good” codebooks; Lemma 2 constructs a special class of partitions on the
“good” codebooks; and Lemma 3 proves that the partitions constructed by Lemma 2 are secure.

Lemma 1. Let C be the random codebook generated by the scheme introduced in Section 4.2. If δ < mX∗ , the
probability of C being “good” is bounded by:

Pr{C is “good”} > 1− ε3 − ε4,

where:
ε3 = exp2[N − (2− log e)ε1M′], (16)

ε4 = exp2[2N + (2−N(τd−4δH(X∗)) log e− 2−
1
2 Nτd)M], (17)

and ε1 is given by Equation (15).

The proof of Lemma 1 is detailed in Appendix B.

Remark 8. It can be verified that ε3, ε4 → 0 as N → ∞, if δ is sufficiently small. Therefore, one can obtain a
“good” codebook with probability→ 1.

Lemma 2. For any given codebook C satisfying Equation (14) with M′ = 2N(I(X∗ ;Y∗)−τ−τd) codewords, there
exists a secure equipartition {Cm}M

m=1 on it, such that:

|T̃(C, I , zN) ∩ Cm| < L (18)

for all 1 ≤ m ≤ M, I ∈ Iµ and zN ∈ TN
I [Y

∗]2δ, if L > 2(R+5)
τd

, where:

R =
1
N

log M = I(X∗; Y∗)− αI(X∗; Z∗)− τ.

The proof of Lemma 2 is discussed in Appendix C.

Lemma 3. For any 0 < δ < mX∗Y∗ and secure partition {Cm}M
m=1 on a “good” codebook C, it follows that:

max
I∈Iµ

1
N

I(W̃; ZN
I (C)) < τd +

2 + log L
N

+ (4δ + 2ε5) log |Z|+ ε5 log |X |, (19)

where:
ε5 = 2ε1 + ε2 (20)

and:
ε2 = ε2(µ, δ, mX∗Z∗) = 2|X ||Z|e−µmX∗Z∗

δ2
1+2δ .

Remark 9. Formula (12) is finally established from the fact that the right-hand side of Equation (19) converges
to zero as τd → 0 and N → ∞.
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Proof of Lemma 3. By a way similar to establishing Equation (22) in [2], for every I ∈ Iµ,
it follows that:

H(W̃|ZN
I (C)) = H(W̃, ZN

I (C))− H(ZN
I (C))

= H(W̃, XN(C), ZN
I (C))− H(XN(C)|W̃, ZN

I (C))− H(ZN
I (C))

= H(W̃, XN(C)) + H(ZN
I (C)|W̃, XN(C))− H(XN(C)|W̃, ZN

I (C))− H(ZN
I (C))

= H(W̃, XN(C)) + H(ZN
I (C)|XN(C))− H(XN(C)|W̃, ZN

I (C))− H(ZN
I (C)),

where the last equality follows because W̃ → XN(C)→ ZN
I (C) forms a Markov chain. Therefore:

I(W̃; ZN
I (C)) = H(W̃)− H(W̃|ZN

I (C))
= H(XN(C)|W̃, ZN

I (C)) + H(ZN
I (C))− H(XN(C)|W̃)− H(ZN

I (C)|XN(C)). (21)

The terms in the rightmost side of Equation (21) are bounded as follows.

• Upper bound of H(XN(C)|W̃, ZN
I (C)). On account of the fact that XN(C) is uniformly distributed

on the “good” codebook C (cf. Equation (13)), it follows that:

Pr{XN
I (C) ∈ T̃N

I [X
∗]δ} > 1− 2ε1

for every I ∈ Iµ. Combining Remark 5 yields:

Pr{(XN
I (C), ZN

I (C)) ∈ T̃N
I [X

∗Z∗]2δ} > 1− ε5

for every I ∈ Iµ, where ε5 is given by Equation (20). Denote:

UI =

{
0 if (XN

I (C), ZN
I (C)) ∈ T̃N

I [X
∗Z∗]2δ,

1 otherwise.

It follows that:
Pr{UI = 1} < ε5 (22)

for every I ∈ Iµ. Moreover, on account of the property of (18), we also have:

H(XN(C)|W̃, ZN
I (C), UI = 0) ≤ logL. (23)

Therefore:

H(XN(C)|W̃, ZN
I (C))

≤ H(XN(C)|W̃, ZN
I (C), UI ) + H(UI )

≤ H(XN(C)|W̃, ZN
I (C), UI = 0) + H(XN(C)|W̃, ZN

I (C), UI = 1)Pr{UI = 1}+ H(UI )
(a)
≤ 1 + log L + H(XN(C)|W̃, ZN

I (C), UI = 1)Pr{UI = 1}
(b)
≤ 1 + log L + Nε5 log |X |,

(24)
where (a) follows from Equation (23) and the fact that UI is binary and (b) follows from
Equation (22).
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• The value of H(ZN
I (C)) is upper bounded as:

H(ZN
I (C))

≤ H(ZN
I (C)|UI ) + H(UI )

≤ H(ZN
I (C)|UI = 0) + H(ZN

I (C)|UI = 1)Pr{UI = 1}+ H(UI )
(a)
≤ 1 + Nα(1 + 2δ)H(Z∗) + H(XN(C)|W̃, ZN

I (C), UI = 1)Pr{UI = 1}
(b)
≤ 1 + Nα(1 + 2δ)H(Z∗) + Nε5 log |Z|,

(25)

where (a) follows the facts that UI is binary and ZN
I (C) ∈ T̃N

I [Z
∗]2δ when UI = 0 and (b) follows

from Equation (22).
• Recalling that when given W̃ = w, the random vector XN(I) is uniformly distributed on Cw,

we have:

H(XN(C)|W̃) = log
M′

M
= N(αI(X∗; Z∗)− τd). (26)

• Lower bound of H(ZN
I (C)|XN(C)). For any xN satisfying that xN

I ∈ T̃N
I [X

∗]2δ, we have:

H(ZN
I (C)|XN(C) = xN) = ∑

i∈I
H(Zi|Xi = xi)

= ∑
x∈X

N(x|xI )H(Z∗|X∗ = x)

≥ ∑
x∈X

Nα(1− 2δ)PX∗(x)H(Z∗|X∗ = x)

= Nα(1− 2δ)H(Z∗|X∗),

where the function N(x|xI ) represents the number of the letter x appearing in the sequence xI ,
and the inequality follows from the definition of T̃N

I [X
∗]2δ. Therefore,

H(ZN
I (C)|XN(C)) ≥ H(ZN

I (C)|XN(C), UI )
≥ H(ZN

I (C)|XN(C), UI = 0)Pr{UI = 0}
≥ Nα(1− 2δ)(1− ε5)H(Z∗|X∗).

(27)

By now, the terms in the rightmost side of Equation (21) have been bounded as expected.
Substituting Equations (24) to (27) into (21) gives Equation (19). The proof of Lemma 3 is
completed.

4.4. Proofs of Equations (6) to (8)

Remark 7 and Lemma 3 yield:

max
I⊆[1:N],|I|=µ

1
N

I(W; ZN
I ) < ε

if the codebook is “good”, which implies Equation (7). By the standard channel coding
scheme (cf., for example, chapter 7.5 [28]), using the random codebook-generating scheme in
Section 4.2, one can obtain a codebook satisfying Equation (8) with probability→ 1 when N → ∞.
Combining Lemma 1, it is established that one can get a codebook achieving both equations of (7) and
(8) with probability→ 1. Equation (6) is obvious from the coding scheme. The proofs are completed.

5. Example

This section studies a concrete example of the communication model depicted in Figure 2 and
formulated in Section 2, where the main channel is a discrete memoryless binary symmetrical channel
(DM-MSC) with the crossover probability 0 ≤ p ≤ 1

2 , and the eavesdropper observes arbitrary µ = Nα
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digital bits from the transmitter through a binary noiseless channel. This indicates that the transition
matrices QM and QW (introduced in Definitions 2 and 3) satisfy that:

QM(y|x) =
{

p if x 6= y,

1− p otherwise

and:

QW(z|x) =
{

0 if x 6= z,

1 otherwise,

where x, y and z all take the value from the binary alphabet X = Y = Z = {0, 1}.
This example is in fact a special case of the model considered in [22]. Corollary 3 gives that the

secrecy capacity of this example is:

Cs = Cs(α, p) = max
U:U→X→Y

[I(U; Y)− αI(U; X)], (28)

where the auxiliary random variable U is sufficient to be binary. However, the formula given in (28)
is inexplicit. In fact, it is an optimization problem. In this section, we will solve this optimization
problem and find the exact random variable U achieving the “max” function. The main result is given
in Proposition 1, whose proof is based on Lemma 4.

Suppose that the random variables of U, X and Y are all distributed on {0, 1}, and they satisfy that:

Pr{U = 0} = βU , Pr{U = 1} = 1− βU ,
Pr{X = 0|U = 0} = q0, Pr{X = 1|U = 0} = 1− q0,
Pr{X = 0|U = 1} = q1, Pr{X = 1|U = 1} = 1− q1,

Pr{X = 0} = βX = βU · q0 + (1− βU) · q1

and Pr{X = 1} = 1− βX ,

for some 0 ≤ βU , q0, q1 ≤ 1. Formula (28) can then be rewritten as:

Cs(α, p) = max
0≤βU ,q0,q1≤1

[h(βX ∗ p)− αh(βX)− βU(h(q0 ∗ p)− αh(q0))− (1− βU)(h(q1 ∗ p)− αh(q1))],

where:
h(a) = −a log a− (1− a) log(1− a)

and:
a ∗ b = a + b− 2ab

for 0 ≤ a, b ≤ 1. Denoting:
g(β) = h(β ∗ p)− αh(β)

and:
C(βU , q0, q1) = g(βUq0 + (1− βU)q1)− βU g(q0)− (1− βU)g(q1)

for 1 ≤ β ≤ 1, the function Cs(α, p) can then be further represented as:

Cs(α, p) = max
0≤βU ,q0,q1≤1

[g(βX)− βU g(q0)− (1− βU)g(q1)]

= max
0≤βU ,q0,q1≤1

[g(βUq0 + (1− βU)q1)− βU g(q0)− (1− βU)g(q1)]

= max
0≤βU ,q0,q1≤1

C(βU , q0, q1).

To determine the value of Cs(α, p), some properties of the function g are given in the
following lemma.
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Lemma 4. For any given 1 ≤ α, p ≤ 1, it follows that:

1. g(β) is symmetrical around β = 1
2 .

2. when α ≥ (1− 2p)2, the function g is convex over [0, 1], and β = 1
2 is the unique minimal point.

3. when 0 ≤ α < (1− 2p)2, there exists a unique minimal point β∗ < 1
2 on the interval [0, 1

2 ], and hence,
1− β∗ is the unique minimal point over the interval [ 1

2 , 1]; moreover, β = 1
2 is the unique maximal point

over the interval [β∗, 1− β∗], and the function is convex over the intervals of [0, β∗] and [1− β∗, 1].

The proof of Lemma 4 is given in Appendix D. Figure 4 shows some examples on the function g,
which cover both cases of α ≥ (1− 2p)2 and α < (1− 2p)2.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

α=1

α=0.9

α=0.8

α=0.7

α=0.64

(a)

0 0.2 0.4 0.6 0.8 1
0.36

0.38

0.4

0.42

0.44

0.46

0.48

g(
β)

β

 

 
α=0.64
α=0.62
α=0.6
α=0.58

(b)

Figure 4. Relationship between the function g and β with p = 0.1. (a) α ≥ (1− 2p)2; (b) α < (1− 2p)2.
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On account of Lemma 4, we conclude that:

Proposition 1. The secrecy capacity can be represented as:

CS = 1− α− g(β∗), (29)

where β∗ is the unique minimal point of the function g over the interval [0, 1
2 ]. Moreover, Cs is positive if and

only if α < (1− 2p)2.

Proof. When α ≥ (1− 2p)2, the function g is convex over the interval [0, 1]. Therefore:

C(βU , q0, q1) ≤ 0

for all βU , q0 and q1. This indicates that Cs = 0. It remains to determine the capacity for the
case of α < (1 − 2p)2. The inference is divided into two parts. The first part shows that the
inequalities β∗ ≤ βX ≤ 1− β∗ hold for all βU , q0 and q1 satisfying C(βU , q0, q1) > 0. The second part
establishes Equation (29).

The first part is proven by contradiction. Suppose that βX /∈ [β∗, 1− β∗]. We can assume that
0 < βX < β∗ without loss of generality. In this case, it must follows that q0 ≤ βX ≤ β∗ or q1 ≤ βX ≤ β∗

since βX = βUq0 + (1 − βU)q1 is the convex combination of q0 and q1. We further suppose that
q0 < βX < β∗. If it is also true that q1 < β∗, then it follows immediately that C(βU , q0, q1) ≤ 0 on
account of the fact that the function g is convex over the interval [0, β∗]. On the other hand, if q1 > β∗,
we let β∗U satisfy that:

β∗Uq0 + (1− β∗U)β∗ = βX .

Then, it follows clearly that β∗U ≤ βU , and hence:

C(βU , q0, q1) = g(βUq0 + (1− βU)q1)− βU g(q0)− (1− βU)g(q1)

= g(β∗Uq0 + (1− β∗U)q
∗)− βU g(q0)− (1− βU)g(q1)

(a)
≤ g(β∗Uq0 + (1− β∗U)q

∗)− β∗U g(q0)− (1− β∗U)g(β∗)
(b)
≤ 0,

where (a) follows because β∗ is the minimal point of g and β∗U < βU and (b) follows because g is
convex over the interval [0, β∗]. This contradicts the assumption that C(βU , q0, q1) > 0.

To prove the second part, consider that when β∗ < βX < 1− β∗, we have:

C(βU , q0, q1) = g(βX)− βU g(q0)− (1− βU)g(q1) ≤ g(
1
2
)− g(β∗),

where the inequality holds because 1
2 is the maximal point over the interval [β∗, 1− β∗] and β∗ is the

minimal point over the interval [0, 1]. The formula above indicates that Cs ≤ g( 1
2 )− g(β∗) = 1− α− β∗.

The equality holds if q0 = β∗, q1 = 1− β∗ and βU = βX = 1
2 ; see Figure 5.

The proof of Proposition 1 is completed.



Entropy 2016, 18, 377 16 of 22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

g(
β)

β

C
s
=g(1/2)−g(β*)

β
X
=1/2

1−β*β*

Figure 5. Parameters achieving the secrecy capacity (α = 0.58, p = 0.1).

It is clear that when p = 0, the communication model discussed in this section is specialized as
wiretap channel II. In that case, the secrecy capacity is obviously a linear function of α. However, when
p > 0, the linearity does not hold. Instead, the secrecy capacity is a convex function of α. See Figure 6.
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Figure 6. Relationship between the secrecy capacity Cs(α, p) and α.

6. Conclusions

The paper considers a communication model of extended wiretap channel II. In this new model,
the source message is sent to the legitimate receiver through a discrete memoryless channel (DMC), and
there exists an eavesdropper who is able to observe the digital sequence from the transmitter through
a second DMC. The coding scheme is based on that developed by Ozarow and Wyner for the classic
wiretap channel II. This communication model includes the general discrete memoryless wiretap
channels, the wiretap channel II and the communication models discussed in [21–23] as special cases.
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Appendix A. Coding Scheme Achieving Vanishing Maximal Decoding Error Probability

The coding scheme introduced in Section 4.2 can achieve the vanishing average decoding error
probability, when the block length N is sufficiently large. This Appendix shows that the vanishing
maximal decoding error probability could also be achieved by the standard techniques.

Appendix A.1. Preliminaries

The proof is based on the following two facts. The proof of Fact A can be found in Chapter 7.5
of [28], while Fact B can be obtained immediately.

Fact A: Let C = xN(m)
M′
m=1 be a deterministic codebook. Suppose that a deterministic coding

scheme is applied to a given point-to-point noisy channel, i.e., the encoder is a bijection between
the codebook and the message set. If the average decoding error probability of the codebook is ε,
then there exists a sub-codebook C̃ of the original codebook C, such that |C̃| = M′/2 and the maximal
decoding error probability of the related deterministic coding scheme is no greater than 2ε.

Fact B: Let C̃ = xN(m)
M′/2
m=1 be a deterministic codebook. Given a point-to-point noisy channel,

suppose that the maximal decoding error probability of the related deterministic coding scheme is 2ε.
Then, for any partition on that codebook, the random binning scheme introduced in Section 4.2 would
achieve a maximal decoding error probability no greater than 2ε.

Appendix A.2. Coding Scheme

With the help of these two facts, the following coding scheme is achieved.
Codebook generation: Let C be a “good” codebook, such that the average decoding error

probability (of the related deterministic coding scheme) is less than ε. Section 4.4 has shown the
existence of this kind of codebook. On account of Fact A, there exists a sub-code C̃ such that the
maximal decoding error probability (of the related deterministic coding scheme) is less than 2ε.
We will use C̃ as the final codebook.

Codebook partition: Set R = I(X∗; Y∗)− αI(X∗; Z∗)− τ, M = 2NR, and find a secure partition
{Cm}M

m=1 on the codebook C̃, such that:

max
I∈Iµ

1
N

I(W̃; ZN
I (C̃)) < ε,

where W̃ and ZN
I (C̃) are similar to the corresponding random variables introduced in Section 4.2.

Encoder and decoder: This is similar to that introduced in Section 4.2.
Analysis of the maximal decoding error probability: It follows from Fact B that the a maximal

decoding error probability of this coding scheme is no greater than 2ε.
Proof on the existence of the secure partition: By the property of the “good” codebook

(see Definition 9), the codebook C̃ satisfies that:

|T̃(C̃, I)| > (1− 4ε1) ·
M′

2
for all I ∈ Iµ

and:
|T̃(C̃, zN , I)| < 2N(I(X∗ ;Y∗)−αI(X∗ ;Z∗)−τ− τd

2 ) for all I ∈ Iµ and zN ∈ T̃N
I [Z

∗]2δ.

On account of Lemma 2, there exists a secure equipartition {Cm}M
m=1 on it, such that:

|T̃(C, I , zN) ∩ Cm| < L
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for all 1 ≤ m ≤ M, I ∈ Iµ and zN ∈ TN
I [Y

∗]2δ, where L is a sufficiently large constant. This partition is
actually secure.

Appendix B. Proof of Lemma 1

According to the definition of a “good” codebook, it follows that:

Pr{C is not “good” } ≤ Pr{max
I∈Iµ

T̃(C, I) > 2ε1M′}

+Pr{max
I∈Iµ

max
zN∈T̃N

I [Z
∗ ]2δ

T̃(C, zN , I) > 2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )}.

(B1)

On account of Lemma 4 in [23], the first term on the right-hand side of Equation (B1) is
bounded by:

Pr{min
I∈Iµ

T̃(C, I) < 2ε1M′} < ε3 = exp2{N − ε1M′}.

Therefore, it suffices to prove that the second term on the right-hand side of Equation (B1) satisfies:

Pr{max
I∈Iµ

max
zN∈T̃N

I [Z
∗ ]2δ

T̃(C, zN , I) > 2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )} < ε4.

To this end, denote:

U(i, zN) =

{
1 if X∗N

I (i) ∈ TN
I [X

∗Z∗|zN ]2δ,

0 otherwise

for every 1 ≤ i ≤ M′ and zN =
⋃
I∈Iµ

TN
I [Y

∗]2δ. Then, on account of the Chernoff bound,
it follows that:

Pr{T̃(C, zN , I) > 2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )}

= Pr{
M′

∑
i=1

U(i, zN) > 2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )}

< exp2(−2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )) · E[exp2(

M′

∑
i=1

U(i, zN))]

< exp2(−2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )) ·

M′

∏
i=1

E[exp2(U(i, zN))]

< exp2(−2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )) ·

M′

∏
i=1

expe(E[U(i, zN)]),

(B2)

where the last inequality follows because 2t ≤ 1 + t ≤ et for 0 ≤ t ≤ 1. Recalling Corollary 5, we have:

E[U(i, zN) < 2−N(αI(X∗ ;Z∗)−4δH(X∗)).

Substituting the formula above to (B2) gives:

Pr{T̃(C, zN , I) > 2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )}

< exp2(−2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )) ·

M′

∏
i=1

expe(E[U(i, zN)])

< exp2(−2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )) · expe(2

−N(αI(X∗ ;Z∗)−4δH(X∗))M′)
= exp2[(2

−N(τd−4δH(X∗)) log e− 2−
1
2 Nτd)2N(I(X∗ ;Y∗)−αI(X∗ ;Z∗)−τ)]

= exp2[(2
−N(τd−4δH(X∗)) log e− 2−

1
2 Nτd)M],
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where M′ and M are given by Equations (10) and (11), respectively. Therefore,

Pr{max
I∈Iµ

max
zN∈T̃N

I [Z
∗ ]2δ

T̃(C, zN , I) > 2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )}

≤ ∑
I∈Iµ

∑
zN∈T̃N

I [Z
∗ ]2δ

Pr{T̃(C, zN , I) > 2N(I(X∗ ;Y∗)−αI(X∗ ;Y∗)−τ− τd
2 )}

≤ ∑
I∈Iµ

∑
zN∈T̃N

I [Z
∗ ]2δ

exp2[(2
−N(τd−4δH(X∗)) log e− 2−

1
2 Nτd)M]

≤ exp2[2N + (2−N(τd−4δH(X∗)) log e− 2−
1
2 Nτd)M]

= ε4.

The proof is completed.

Appendix C. Proof of Lemma 2

This Appendix proves that for any given “good” codebook C, there exists a secure partition
{Cm}M

m=1 on it such that:
|T̃(C, I , zN) ∩ Cm| < L

for all 1 ≤ m ≤ M, I ∈ Iµ and zN ∈ TN
I [Y

∗]2δ. The proof is quite similar to the proof of Lemma 2
in [14]. Most notation in this Appendix will follow that in [14].

Let F be the set of all possible equipartition on the codebook C. Each element in F is actually a
function f : C 7→ [1 : M] such that:

| f−1(m)| = r =
M′

M
= 2N(αI(X∗ ;Z∗)−τd).

For any f ∈ F , let Ψ( f ) = 0 if the partition produced by f is secure, and Ψ( f ) = 1 otherwise.
Then, it suffices to prove that:

E[Ψ(F)] < 1,

where F is the random variable uniformly distributed on F . To this end, for any 1 ≤ m ≤ M, denote:

Φ( f , m, I , zN) =

{
0 if |T̃(C, I , zN) ∩ f−1(m)| < L,

1 otherwise.

It follows clearly that:

E[Ψ(F)] ≤
M

∑
m=1

∑
I∈Iµ

∑
zN∈TN

I [Y
∗ ]2δ

E[Φ(F, m, I , zN)]. (C1)

In the remainder of the proof, we firstly bound the value of E[Φ(F, m, I , zN)], and then, the value
of E[Ψ(F)] is bounded by Equation (C1).

Upper bound of E[Φ(F, m, I , zN)]. For any I ∈ Iµ and zN ∈ TN
I [Y

∗]2δ, let:

nzN = |T̃(C, I , zN)|.

Then, it follows that:
nzN ≤ n1 = 2N(I(X∗ ;Y∗)−αI(X∗ ;Z∗)−τ− τd

2 ).
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since the codebook C is “good”. Therefore, the probability that there are t codewords of F−1(m)

belonging to T̃(C, I , zN) is given by:

Pr{|T̃(C, I , zN) ∩ F−1(m)| = t} =
(

nzN
t )(

M′−nzN
r−t )

(M′
r )

≤
(n1

t )(
M′
r−t)

(M′
r )

.

By the similar method of bound πt in [14], we have:

(
n1

t

)
·
(M′

r−t)

(M′
r )
≤

nt
1

t!
· r!(M′ − r)!
(r− t)!(M′ − r + 1)!

=
nt

1
t!
·

t

∑
j=1

r− j + 1
M′ − r + j

≤
nt

1
t!
· rt

(M′ − r)t =
(n1r/M′)t

t!(1− r/M′)t .

Observing that n1r
M′ = 2−Nτd/2 and 1− r

M′ >
1
2 , we have:

Pr{|T̃(C, I , zN) ∩ F−1(m)| = t} ≤ 2−Nτdt/2 2t

t!
.

This indicates that:

E[Φ(F, m, I , zN)] =
r

∑
t=L

Pr{|T̃(C, I , zN) ∩ F−1(m)| = t}

≤
r

∑
t=L

2−Nτdt/2 2t

t!

≤
∞

∑
t=L

2−Nτd L/2 2t

t!
= e2 · 2−Nτd L/2.

(C2)

Upper bound of E[Ψ(F]. Substituting Equation (C2) into (C1) gives:

E[Ψ(F)] ≤
M

∑
m=1

∑
I∈Iµ

∑
zN∈TN

I [Y
∗ ]2δ

e2 · 2−Nτd L/2.

Observing that M = 2NR, |Iµ| ≤ 2N and TN
I [Y

∗]2δ ≤ 2Nα for I ∈ Iµ, the formula above can be further
bounded by:

E[Ψ(F)] ≤ e2 · 2N(R+1+α−τd L/2),

which is < 1 if L ≥ 2(R + 6)/τd. This completes the proof of Lemma 2.

Appendix D. Proof of Lemma 4

This Appendix establishes the properties of the function g given in Lemma 4. Property 1 is
obvious. We only give the proof for Properties 2 and 3.

Proof of Property 2. The first and the second derivatives of the function g are:

g′(β) = log e[(1− 2p) ln
1− β ∗ p

β ∗ p
− α ln

1− β

β
]

and:
g′′(β) = log e[α(

1
β
+

1
1− β

)− (1− 2p)2(
1

β ∗ p
+

1
1− β ∗ p

)],

respectively. For any 0 ≤ β ≤ 1
2 , it follows that β ≤ β ∗ p ≤ 1

2 . Therefore, when α ≥ (1− 2p)2, we have:

g′′(β) > 0



Entropy 2016, 18, 377 21 of 22

for 0 ≤ β ≤ 1
2 . Moreover, noticing that:

g′(
1
2
) = 0,

we conclude that:
g′(β) ≤ 0

for 0 ≤ β ≤ 1
2 . This implies that the function g is decreasing and convex over the interval [0, 1

2 ].
On account of the symmetry, it is concluded that g is increasing and convex over the interval [ 1

2 , 1],
and hence, β = 1

2 is the unique minimal point in the interval [0, 1]. One can easily verify that β = 1
2 is

actually a convex point. Thus, the function is convex over the whole interval [0, 1].

Proof of Property 3. We firstly find the solution for the inequality g′′(β) < 0. This inequality
indicates that:

1
β + 1

1−β

1
β∗p + 1

1−β∗p
=

(β ∗ p)(1− β ∗ p)
β(1− β)

<
(1− 2p)2

α
,

or:

β2 − β +
p− p2

(1− 2p2)(1/α− 1)
< 0.

The inequality further indicates that β′′ < β < 1− β′′ for some 0 < β′′ < 1
2 .

Then, we study the property of g′ over the interval [0, 1
2 ]. It is clear that g′ increases on the interval

[0, β′′] and decreases on the interval [β′′, 1
2 ]. Furthermore, since g′( 1

2 ) = 0, it follows that g(β′′) > 0.
Noticing the facts that g′ increases over the interval [0, β′′] and g′(0) < 0, we conclude that there exists
a unique point 0 < β∗ < β′′ such that g′(β∗) = 0, and that point is clearly a unique minimal point over
the interval [0, 1

2 ].
Finally, since β∗ < β′′, it follows that g′′(β) > 0 for β ∈ [0, β∗], and the function is convex over

that interval. The property of g over the interval [ 1
2 , 1] is from the symmetry. It is also clear that β = 1

2
is the unique maximal point over the interval [β∗, 1− β∗].

This completes the proof of this lemma.
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