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Abstract: Whole-body 123I-Metaiodobenzylguanidine (mIBG) scintigraphy is used as primary image
modality to visualize neuroblastoma tumours and metastases because it is the most sensitive and
specific radioactive tracer in staging the disease and evaluating the response to treatment. However,
especially in paediatric neuroblastoma, information from mIBG scans is difficult to extract because
of acquisition difficulties that produce low definition images, with poor contours, resolution and
contrast. These problems limit physician assessment. Current oncological guidelines are based on
qualitative observer-dependant analysis. This makes comparing results taken at different moments
of therapy, or in different institutions, difficult. In this paper, we present a computerized method that
processes an image and calculates a quantitative measurement considered as its entropy, suitable for
the identification of abnormal uptake regions, for which there is enough suspicion that they may
be a tumour or metastatic site. This measurement can also be compared with future scintigraphies
of the same patient. Over 46 scintigraphies of 22 anonymous patients were tested; the procedure
identified 96.7% of regions of abnormal uptake and it showed a low overall false negative rate of 3.3%.
This method provides assistance to physicians in diagnosing tumours and also allows the monitoring
of patients’ evolution.

Keywords: information extraction; entropy as measurement; computer science; quantitative
assessment

1. Introduction

In the management of neuroblastoma, 123I-Metaiodobenzylguanidine (mIBG) scintigraphy
remains the most specific and sensible imaging modality of staging and response to therapy
evaluation [1]. A scintigraphic image is a representation of the radioactive distribution inside the
body. Peaks of higher intensity than expected are the main variable analyzed by radiologists when
identifying the uptake regions [2].

Analyzing an image to detect shapes is a classic problem in literature [3]. However, existing
techniques cannot be applied to the images used in this article, since generally they have intrinsic
problems of low resolution, low contrast and low definition, asides from noise as an important factor in
its deterioration [4,5]. The proposed method performs a preprocessing of the image, extracting numeric
values, which highlights the zones with a high probability of containing a tumour or metastasis [6].
Furthermore, these measurements are considered as its entropy, and allow following the evolution
of the patient over time [7]. The quantitative measurement adds more descriptive information on
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tumours, which may be included in models of nonlinear dynamics of cancer recurrence to study the
correlation between uptake and tumour relapse.

Dual-modality imaging combines functional measurements from radionuclide images with
accurate anatomical information from computerized tomography. This can help the clinician
to differentiate disease from normal uptake, improving diagnosis [8,9]. However, viability of
dual-modality images is not always possible in children [10]. It also depends on the availability
of a multiple head camera. Other authors believe that 123I-mIBG single photon emission computed
tomography (SPECT) does not increase the number of lesions detected in comparison with only a
planar image [11]. This is due to the difficulties of acquisition in children. Anatomic imaging modalities
have also proven to be of limited value for more sophisticated questions and dilemmas arising during
cancer patient management [12].

As a consequence, one of the current goals of the International Neuroblastoma Risk Group
is to develop guidelines for standardized comparisons of 123I-mIBG scans, minimizing subjective
assessments [13]. In order to evaluate the prognostic effects and quantify efficacy of therapy, a
number of semi-quantitative scores have emerged [14–19] and have been shown to be essential
for the evaluation and quantification of response to the treatment [12,20,21].

All these scoring methods divide the skeleton into anatomical sectors, then give each sector an
individual score for the number of lesion sites and intensity of uptake. Intensity is usually scored as
doubtful, definite, obvious or strong based upon the observer assessment in comparing to liver or
other soft tissues. They have shown a good correlation with outcome although intensity measurements
show low concordance between different observers because disappearance or decrease of intensity of
a lesion is subjective.

The objective of our study is to assist physicians in the application of the scoring method
recommended by the International Society of Paediatric Oncology Europe Neuroblastoma (SIOPEN)
for neuroblastoma management [22,23] which is setting the standards for acquiring, reading and
scoring the paediatric 123I-mIBG scans across Europe.

In this paper, we introduce a computerized procedure which uses a whole-body 123I-mIBG
scintigraphy from which we extract adequate information in order to identify abnormal uptake regions.
Our approach is based on the ratio between the specific uptake from tumours and the non-specific
constant uptake threshold of the rest of tissues at the SIOPEN body sector where a tumour is located.
This may assist physicians in the evaluation of planar images because it provides a quantitative
measurement of each uptake region (an entropy value).

The article is structured as follows. Previous related work is detailed in Section 2. In Section 3, we
introduce the method. Experimental results are provided in Section 4, a discussion in Section 5 and the
conclusions drawn appear in Section 6.

2. Related Work

Some computer-aided applications for the automatic assessment of planar scintigraphic images
found in the bibliography have been developed over 99mTc bone scintigraphies, but there is no specific
assessment for 123I-mIBG in neuroblastoma nor for any semi-quantitative scoring method, such as
the one recommended by SIOPEN. In fact, 99mTc and 123I-mIBG are similar scintigraphic procedures;
in both, brightness is the primary tool used for abnormal region identification on an image. In [24],
the local maximum of brightness in bones and its asymmetries are used to detect abnormalities in the
skeleton in 99mTc whole-body bone scintigraphies.

Later in [25], a set of algorithms was proposed for segmentation and lesion grey level
determination. In fact, op.cit. proposes the lesion grey level as an uptake measurement evidence.
They used a set of previous measurements of pixel intensity’s mean and standard deviation at different
body parts to create a grey level of reference.

Images obtained in 99mTc scans are very different from 123I-mIBG due to a combination of
diverse factors, the most important of which is that different radiopharmaceuticals have different
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biodistributions. For instance, previous work on bone segmentation with 99mTc bone scintigrams
in [26,27] based on detecting edges is not applicable as a general rule in paediatric neuroblastoma
123I-mIBG scintigraphies because bones are not always visible. Skeletal uptake is only visible in
neuroblastoma in those patients with bone metastases. Thus, a method that works in planar 123I-mIBG
scintigraphy even when no bones are visible is required.

In children, other facts, such as lower dosage used because of their smaller size and the increased
risk of motion during acquisition, result in lower photon counts and, therefore, the Poisson noise
present in 123I-mIBG scintigraphy is higher.

This highlights that the application of techniques to improve image quality, such as image
enhancement based on histogram with successful application in the detection of lesions in 99mTc
scintigraphies [28] do not seem useful in 123I-mIBG scans in neuroblastoma detection. In [29], although
the Poisson noise level was reduced, physicians preferred non-processed planar images rather than
the processed version due to the blur effect on features and general image degradation.

As a result of the above, the algorithms successfully used in 99mTc are not directly applicable in
123I-mIBG in paediatric neuroblastoma. Nevertheless, the use of pixel intensity’s mean and standard
deviation is useful in 123I-mIBG.

In [4,5] an objective metric U(background) was introduced for measuring the strength of 123I-mIBG
uptake at scans. This metric uses the mean and the standard deviation of the intensity of the
whole-body scan to transform each pixel value into a normalized scale in order to minimize variation
in measurements between different scans.

3. Materials and Methods

3.1. Data Acquisition and Analysis

123I-mIBG scintigraphies were acquired in patient studies of La Fe Hospital by its Nuclear
Medicine Unit, as part of the usual medical treatment following their standardized guidelines,
described in [30], after a slow intravenous injection of 123I-mIBG (Dose: 100 µCi/Kg) and using a
scintillation camera set to a photopeak equal to the principal gamma photon emitted, that is, of 159 KeV.
Each study is composed of two planar images, the anterior and the posterior views of the patient body,
from which a minimum of 250,000 and a maximum of 500,000 photon counts were obtained. The use
of these scintigraphies for this study was approved by the La Fe Hospital’s Biomedical Research
Ethics Committee.

High peaks of intensity (photo counts) are to be observed at the locations of lesions.
These peaks are abnormal because they appear at locations where no physiological uptake is expected.
Post treatment, another scan is performed. Response to treatment is assessed as good if abnormal
peaks of intensity disappear and regions return to the expected light intensity.

Due to the fact that non-specific uptake is different at each part of the body, the SIOPEN
semi-quantitative scoring method [22,23] divides the body into anatomical sectors with 123I-mIBG
uptake comparable behavior [13] (Figure 1).

A region with abnormal uptake is visible because its intensity is higher than the local average at
the sector where it is located. Nevertheless, it is possible for the absolute value of a given tumour’s
intensity to be lower than that of a region in another sector where no intensity peaks are observed.

Therefore, it is impossible to use a single grey level threshold to distinguish between abnormal and
physiological uptake. We define an abnormal uptake region as any region with intensity suspiciously
higher than the local average at its sector. We try to automatically identify only those abnormal ones
that are suspicious enough of being pathological.
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Figure 1. (a) The SIOPEN semi-quantitative scoring method divides the skeleton into 12 anatomic 
segments; (b) View of patient PA2 in time T1; (c) Idem in time T2; (d) Regions excluded: salivary 
glands with uptake always present; at lower limbs, all except bones where metastases are localized. 

3.2. Pre-Processing 

At this step we prepare the image for analysis and information extraction. First, we filter the 
image with an Adaptive Wiener Filter and then we make a body division into SIOPEN anatomical 
sectors. 

Noise is an important factor degrading scintigraphic images [29]. An Adaptive Wiener Filter is 
a good candidate for reducing noise; it has been used with success in nuclear medicine images [31–33]. 
In low-detail image areas where noise is more visible, it reduces as much noise as possible but in 
high-detail regions only a small amount of filtering is performed and the image is not blurred [1]. 

Let us denote, by ܫௐ஻ , the filtered anterior (or posterior) view of a whole body 123I-mIBG 
scintigraphy. In both views of every test scintigraphy, patients’ body SIOPEN sectors [22] were 
identified by placing a rectangle to delimiter them: skull, thoracic cage, proximal right upper limb, 
distal right upper limb, proximal left upper limb, distal left upper limb, spine, pelvis, proximal right 
lower limb, distal right lower limb, proximal left lower limb and distal left lower limb. 

Each image of a sector is identified as ܫଵ, ,ଶܫ …   as shown in Figure 1. The number of each	ଵଶܫ
sector is assigned as defined in [22]. We identified the whole trunk, which is fully covered by sectors 
2 and 8 (Figure 1), as ்ܫ. We use this image in order to facilitate detecting the liver and tumours inside 
the trunk. 

As we are interested in evaluating only inside body parts of the image, we create a new image ܫ which is formed by the ܫ௞ and is just the image formed by the pixels of ܫௐ஻ corresponding to the 
SIOPEN Sectors. 

3.3. Peaks Detection 

The image ܫ is a set of points (i, j), whose intensity is a value ݔ௜௝ ∈ [0, 	ܺ௠௔௫]. Tumours have 
neither a predefined shape nor an absolute intensity level in ܫ. Main evidence of tumour existence is 
the peak of intensity at its location due to the specific uptake at the tumour’s tissue. Thus, points (i, j) 
belonging to the tumour are bound to have a value ݔ௜௝ close to the maximum intensity ܺ௠௔௫ in ܫ 
and greater than some unknown thresholds of abnormal intensity	்ܺ௛௥௘௦. ்ܺ௛௥௘௦	 is a different value for each specific body sector k, as each of them presents different 
uptake behaviour. So, points belonging to a tumour located at sector k are bound to have a value ݔ௜௝ 
greater than its local sector threshold of abnormal intensity ்ܺೖ	. 
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Figure 1. (a) The SIOPEN semi-quantitative scoring method divides the skeleton into 12 anatomic
segments; (b) View of patient PA2 in time T1; (c) Idem in time T2; (d) Regions excluded: salivary glands
with uptake always present; at lower limbs, all except bones where metastases are localized.

3.2. Pre-Processing

At this step we prepare the image for analysis and information extraction. First, we filter the image
with an Adaptive Wiener Filter and then we make a body division into SIOPEN anatomical sectors.

Noise is an important factor degrading scintigraphic images [29]. An Adaptive Wiener Filter is a
good candidate for reducing noise; it has been used with success in nuclear medicine images [31–33].
In low-detail image areas where noise is more visible, it reduces as much noise as possible but in
high-detail regions only a small amount of filtering is performed and the image is not blurred [1].

Let us denote, by IWB, the filtered anterior (or posterior) view of a whole body 123I-mIBG
scintigraphy. In both views of every test scintigraphy, patients’ body SIOPEN sectors [22] were
identified by placing a rectangle to delimiter them: skull, thoracic cage, proximal right upper limb,
distal right upper limb, proximal left upper limb, distal left upper limb, spine, pelvis, proximal right
lower limb, distal right lower limb, proximal left lower limb and distal left lower limb.

Each image of a sector is identified as I1, I2, . . . I12 as shown in Figure 1. The number of each
sector is assigned as defined in [22]. We identified the whole trunk, which is fully covered by sectors 2
and 8 (Figure 1), as IT . We use this image in order to facilitate detecting the liver and tumours inside
the trunk.

As we are interested in evaluating only inside body parts of the image, we create a new image
I which is formed by the Ik and is just the image formed by the pixels of IWB corresponding to the
SIOPEN Sectors.

3.3. Peaks Detection

The image I is a set of points (i, j), whose intensity is a value xij ∈ [0, Xmax]. Tumours have
neither a predefined shape nor an absolute intensity level in I. Main evidence of tumour existence is
the peak of intensity at its location due to the specific uptake at the tumour’s tissue. Thus, points (i, j)
belonging to the tumour are bound to have a value xij close to the maximum intensity Xmax in I and
greater than some unknown thresholds of abnormal intensity XThres.

XThres is a different value for each specific body sector k, as each of them presents different uptake
behaviour. So, points belonging to a tumour located at sector k are bound to have a value xij greater
than its local sector threshold of abnormal intensity XTk .

Hence, at each sector, k, we should consider the following as abnormal suspicious ROIs:

ROIXTk
=
{
(i, j) ∈ IK : xij ∈

[
XTk , Xmax

]}
(1)
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In order to define the values of the unknown local thresholds XTk , we denote by I, Ik and σI , σIk

the average and standard deviation of I and of each Ik, with k ∈ {1, 2, . . . , 12, T}, respectively.
XTk should be greater than Ik. How much greater than Ik depends on the specific sector k and

thus a coefficient Ck will be properly introduced later to weigh it.
In order to take objective and comparable uptake measurements between scans [32] we transform

the image I into QI ,

QI (i, j) = max{
xij − I
σI

, 0} (2)

As it is based on the whole-body average, we use it to estimate a generic approximation XTGlobal to
be used as XTk in each sector k. If the pixel (i, j) has a normalized value higher than CG times QI , then
it has an abnormal peak of intensity. Where QI is the average of QI .

We take the generic CG ≥ 1 and then:

QI (i, j) > CGQI

xij − I
σI

> CGQI

Xij > I + σICGQI (3)

Thus it is natural to fix
XTGlobal = I + σICGQI (4)

At every sector, peaks which are higher than XTGlobal are very likely to be pathological because
they have very high intensity. In previous studies [4,5], all the informed tumours analyzed had an
intensity value greater than QI .

But, especially in limb sectors, only light physiological uptake should be observed and abnormal
peaks, due to metastases, could not be so high and, thus, they will not be detected with XTGlobal .
For a better local approximation at each sector k, we transform again xij but now into its local
normalized value:

QIk (i, j) = max{
xij − Ik

σIk

, 0} (5)

Now we calculate at each sector k, average QIk and standard deviation σIk and we will take the
sector threshold STk as in Equation (4) but now with a sector coefficient Ck ≥ 1 as

STk = Ik + σIk CkQIk (6)

Points belonging to a tumour located at sector k are bound to have a value xij greater than its
sector threshold STk . It is a good candidate to identify abnormal uptake when it is present. However,
when there is no pathological uptake, image features are very different and STk is not applicable.
Especially at limb sectors, when only physiological uptake is present, the counts of photons detected
are very low. Images of sectors could even be empty, or contain noise only, due to the lack of samples,
as shown in Figure 1b, where only light physiological uptake is visible at the limbs. The image changes
when pathological uptake appears as shown in Figure 1c. The counts of photons detected increase
and produce a more detailed sector image. Our information extraction method needs to differentiate
between both situations.

If we analyze images at the whole-body level, this effect is less perceptible since there is always
high physiological uptake as some regions such as at the liver, the bladder and the head. This fact
makes whole-body image I a perfect reference to detect pathological pattern at limbs when it is present.
We can achieve that by comparing the average of normalized uptake at the whole-body QI with the
average at each limb sector QIk . We define the ratio Rk between the average of uptake levels as
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Rk =
QI

QIk

(7)

We will analyze the use of this ratio in a test subset in order to discriminate the value of Rk
when only light physiological uptake is present. In such cases, there are no peaks and that means
that I or Ik are low. STk is much smaller than XTGlobal and any xij greater than STk is very unlikely to
be pathological.

Let us consider the coefficient ρk > 1, so that XTk is a valid threshold for sector k only if it is high
enough, that is, if XTGlobal ≤ ρkSTk . Otherwise, we use XTGlobal as the threshold for the sector k. So we
consider the local threshold XTk given by

XTk =

{
XTGlobal , XTGlobal > ρkSTk

STk , XTGlobal ≤ ρkSTk

(8)

The process of detecting the abnormal uptake regions consists of calculating the set ROIXTk
for

each SIOPEN sector by using Equations (1) and (8).
We must take into account the following issues related to the kind of image in order to improve

the information extraction process.
Firstly, owing to the high noise level in an image, even after filtering, a single pixel may still have

a high scintigraphic value. For this reason it is sensible to evaluate the image by exploring windows of
size J × J pixels, never by single pixels. In this manner, at Equation (1) we replace the use of the raw
counts at every pixel by a smoothing average count calculated over the 3× 3 neighbouring pixels in
the sub-window.

Later on, when disease is present at limbs, pathological uptake could be located only at the
bones [7]. Those bone parts with metastases become visible and, at worst, only the skeleton is visible
while soft tissue presents low uptake or it is not visible at all due to neuroblastoma tissue consuming
all the 123I-mIBG (Figure 1c) [7].

Thus, in general, the pixels at areas where the bones are to be located are relevant for our detection
process. For every SIOPEN sector Ik we define a new image Ikmask where irrelevant areas are discarded.
For instance, at lower limbs, pixels outside bone regions are irrelevant, as shown in masked areas in
Figure 1d. Pixels close to the knees and ankles are relevant together with those close to the femur
and tibia position. At the upper limbs, relevant areas are those near to the shoulders and at central
positions. At the head, salivary glands’ position could be discarded because uptake is always present
in them.

At trunk sectors, the existence of primary tumours in soft tissue is possible, so bone search patterns
are less useful and we search in the whole IT .

In summary, for every SIOPEN sector, we process its masked sector Ikmask with an exploring
window WJ of 3× 3 pixels and XTk defined in Equation (8). We get the sub-image ROIXTk

redefining
Equation (1) as

ROIXTk
=
{

WJ ∈ Ikmask : WJ ∈
[
XTk , Xmax

]}
(9)

where WJ is the average of xij ∈ WJ . ROIXTk
contains all the abnormal shining region ROI# present in

Ik, that is, each tumour, metastasis, the liver, bladder, etc.

3.4. Region Growth and Classification

This step consists of individually identifying every abnormal uptake ROI#. So for every Ik we
create a binary map Ikmask, of same size as Ik, of selected pixels in sub-image ROI# where

xij =

{
1, (i, j) ∈ ROIXTk

0, otherwise
(10)
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Recalling that a given pixel is a 4-neighbour of some other Ikmask pixel if they share an edge,
whereas a 4-connected component in a binary map is a region formed by pixels of the same value
where each pixel is a 4-neighbour of another pixel in that region, we now identify inside each of them
all 4-connected components ROIk

1 , . . . , ROIk
m formed by pixels set to 1.

Each isolated high intensity peak on a uniform light intensity area matches directly with a
4-connected component with all of its pixels with a very similar high grey level. Other abnormal
uptake regions could match with 4-connected components formed by a group of pixels whose levels
of intensity may spread between XTk and Xmax. An example of the results of the detection process is
shown in Figure 2.
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Figure 2. An example of an analysis of two 123I-mIBG scans of a patient PA2. On (a), original scan
with no disease and the automatically selected regions are due to physiological uptake. Detected
regions match with two big 4-connected regions: the liver and the bladder. On (b), original scan with
metastases. The automatically selected regions are several small 4-connected regions at the head and
limbs. The trunk, the spine, the liver and the tailbone are grouped together in a big 4-connected region.

Once all the abnormal regions ROIk
1 , . . . , ROIk

m are identified we proceed to calculate their
respective entropy as the average uptake measurement QI (ROI#).

Values of QI (ROI#) higher than QI are very likely to correspond to pathological uptake regions,
while ROI# with QI (ROI#) lower than QI . are marked as uncertain uptake, so we sort them in
descending order.

Also, the value QI (ROI#) allows comparison with the evolution in time of that given ROI which
enables the verification of the effectiveness of the treatment.

4. Results

The experimental set contains 48 whole-body 123I-mIBG scintigraphies, taken with different
gamma-cameras, belonging to 22 children under 14 labeled patients PA1 to PA22, suffering from
neuroblastoma. We have at least one scan of each patient and for twelve of them, we have a series of
two or more scintigraphies in times T1, T2, etc.

We split the test set into two subsets. The first subset is formed by the first scintigraphy of each
patient’s series. We used this subset of 22 scintigraphies in order to estimate the parameters of the
algorithm. The second subset is formed by the rest of the scans of every patient. We used it to test an
algorithm with fixed parameters.

The ROIs to be automatically identified at scan correspond to the specific uptake at tumours
and metastatic sites when the pathological pattern is present. There is always a visible physiological
uptake in some trunk sites such as the bladder and the liver, and they are also considered ROI. In the
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first subset, we tested different approximations to XThres. First we took measurements of QI and QIk

separating sectors with the physiological pattern from those with the pathological other. Values of QIk

greater than QI . were observed when the pathological pattern is not visible in the image of a given
limb sector k. In such cases, the image of sectors had a very low definition because of the low number
of samples. We estimate then that a given limb sector k with possible abnormal uptake should have a
value of Rk < 1 in Equation (7).

We considered XTGlobal defined in Equation (4) as the threshold for every SIOPEN sector. We started
by taking CG = 1 and an exploring sub-window W3 of size 3× 3 pixels. Results are shown in Table 1.

Table 1. Percentage of detections by this quantitative method. True results are confirmed by physicians
using qualitative methods. False positive occurs when a region is wrongly detected according to the
physician’s reports. A false negative occurs when a ROI is not detected.

%False Positive %False Negative

I1 0.0% 25.0%
IT 4.2% 0.0%
I3 0.0% 50.0%
I4 0.0% 36.4%
I5 0.0% 100.0%
I6 0.0% 75.0%
I9 0.0% 54.6%
I10 0.0% 58.3%
I11 0.0% 83.3%
I12 0.0% 83.3%

Totals: 2.8% 29.6%
Results with global threshold XTGlobal

XTGlobal as a single grey threshold of abnormal uptake detected 70.4% of ROIs. It showed an
extremely low false positive rate of only 2.8% in total. Nevertheless, it had a high false negative rate in
the rest of areas, especially at sectors I5, I6, I10 and I12.

Then we made tests with a different XTk for each SIOPEN sector as defined in Equation (10).
We started by taking a value of ρk = 3 and Ck = 1 at each sector. With these settings we obtained a
high false positive rate on legs and arms because of the low photon counts at those sectors making
Ik low while the peaks of lesions were much higher than QIk . In order to reduce false positives, we
increased Ck for limb sectors up to Ck = 3.

Finally, we processed the second test subset by using an exploring sub-window W3 and taking
CG = 1. At limb sectors we set ρk = 3 and Ck = 3 and we did not search inside if Rk < 1 in Equation (7).
Results are shown in Table 2, and a summary of the procedure in Table 3.

Table 2. Regions of interest (ROI) detected by changing the threshold value used in Table 1.

%False Positive %False Negative

I1 11.1% 0.0%
IT 4.2% 0.0%
I3 10.0% 0.0%
I4 21.4% 0.0%
I5 62.5% 0.0%
I6 63.6% 0.0%
I9 0.0% 18.2%
I10 9.1% 16.7%
I11 14.3% 0.0%
I12 0.0% 14.3%

Totals: 16.0% 3.3%
Results with local threshold XTk
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Table 3. Procedure of detection of ROI at each sector.

XTGlobal = I + σI QI
∀Ik ∈ {I1, . . . I12} do

STk = Ik + σIk 3QIk

Rk = QI
QIk

if (Rk ≥ 1) then XTk = XTGlobal

else if (XTGlobal > 3 STk ) then XTk = XTGlobal

else XTk = STk

end if
end if
ROIXTk

=
{
(i, j) ∈ Ik : xij ∈

[
XTk , Xmax

]}
Done

The parameter CG = 1 is used in order to calculate the XTGlobal , and ρk = 3 and Ck = 3 for STk .

A total of 96.7% of ROIs were detected. It showed a lower overall false negative rate of 3.3%.
On the other hand, it had a global false positive rate of 16.0%.

The chart in Figure 3 allows establishing a probability model based on experience by using the
success rate obtained in the classification of ROIs detected. In the vertical axis, relative frequency of
being abnormal is displayed according to the intensity of a given detected ROI#. Relative frequency of
being abnormal is greater than 50% when intensity is higher than 95% of XTGlobal .
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The probability of being abnormal increases with intensity. If we connect the obtained intensity
value in a given ROI with the value in the sector in which it is found XTk , it has a chance of about 50%
of being abnormal when intensity of a detected ROI is greater than 1.1 times XTk and it is close to 100%
when it is greater than 1.2 times XTk , as we can see in Figure 4.
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5. Discussion

XTGlobal was a good threshold, especially in trunk sector IT , with a false negative rate of 0%.
As expected, any region selected at any SIOPEN sector with XTGlobal with CG = 1 had a high confidence
level of being a pathological uptake region. Increasing CG would not improve results, since false
negative happened because of peaks in limbs with low intensity.

When identifying sectors in images such as the trunk or the head, the frame boundaries were
much more precise. However, when selecting others, such as arms or legs, it was very complicated to
differentiate between outside and inside the body. It was because degradation of the image is usually
higher on these image parts because of the motion of children. Although the patient body is usually
placed in the supine position with the arms down alongside the body, in some scans they appeared
bent or with the hands up. Another factor was the usual low number of counts in limbs, especially in
distal parts. The lack of enough counts blurs the body limits.

That is why these false positives happen mainly at sectors I5 and I6. In the other sectors, false
positive findings with XTk are those which have low QI (ROI#). As QI (ROI#) increases, ROI# is more
probably a pathological uptake region. When it is higher than QI it is very likely to be so.

In general, false positives did not pose a problem to radiologists as it is worth paying attention to
any region with an increased intensity higher than the local average.

As likelihood values of being abnormal based on intensity are calculated from samples, a
probability model could be enhanced as long as more scans are analyzed and the results incorporated.

Finally, as appointed in Section 2, there is not any other work using this type of scintigraphies
where the bones are not always visible, hence why it is not possible to establish a comparison of the
results obtained with any other image processing method.

6. Conclusions

A process to automatically identify and delineate abnormal high uptake regions in the whole-body
123I-mIBG scintigraphies, studying neuroblastoma in children, is proposed for assisting physicians in
staging a response to therapy assessment by pointing out the areas with the evidence of an uptake
higher than an objective threshold of abnormal uptake.

This information extraction from scintigraphies facilitates the following of the evolution of the
illness over time in an objective way, by assigning a measurement for every uptake that could be
considered as its entropy.

Peaks of higher intensity than expected are the main variable analyzed by clinicians in order to
identify tumours and metastatic sites and it is also the main variable used in our method.

We tested, with success, its use with the SIOPEN sectors as the fixed reference for where to
calculate the abnormal thresholds XTGlobal and XTk , thus it could assist in the application of this
validated scoring method. By using the local estimation XTk , 96.7% of ROIs were detected and it
showed a low overall false negative rate of 3.3%.

Likelihood values of being abnormal, based on intensity, could be calculated from samples.
Relative frequency of being abnormal is higher than 50% when intensity of the ROI is greater than
1.1 times XTk and about 100% when it is greater than 1.2 times XTk . With the aim of improving the
results reducing false positives, the body division into SIOPEN sectors should be done very accurately
and the likelihood model enhanced as more scans are analyzed.
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