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Abstract:

 We consider the problem of learning a Bayesian network structure given n examples and the prior probability based on maximizing the posterior probability. We propose an algorithm that runs in [image: there is no content] time and that addresses continuous variables and discrete variables without assuming any class of distribution. We prove that the decision is strongly consistent, i.e., correct with probability one as [image: there is no content]. To date, consistency has only been obtained for discrete variables for this class of problem, and many authors have attempted to prove consistency when continuous variables are present. Furthermore, we prove that the “[image: there is no content]” term that appears in the penalty term of the description length can be replaced by [image: there is no content] to obtain strong consistency, where [image: there is no content] is arbitrary, which implies that the Hannan–Quinn proposition holds.




Keywords:


posterior probability; consistency; minimum description length; universality; discrete and continuous variables; Bayesian network








1. Introduction

In this paper, we address the problem of learning a Bayesian network structure from examples.

For sets [image: there is no content] of random variables, we say that A and B are conditionally independent given C if the conditional probability of A and B given C is the product of the conditional probabilities of A given C and B given C. A Bayesian network (BN) is a graphical model that expresses conditional independence (CI) relations among the prepared variables using a directed acyclic graph (DAG). We define a BN by the DAG with vertexes [image: there is no content] and directed edges [image: there is no content], where edge [image: there is no content] directs from j to k, via minimal parent sets [image: there is no content], [image: there is no content], such that the distribution is factorized by:



P(X(1),⋯,X(N))=∏i=1NP(X(i)|{X(j)}j∈π(i)).








First, suppose that we wish to know whether two random binary variables X and Y are independent (hereafter, we write X⊥⊥Y). If we have n pairs of actually emitted examples [image: there is no content] and know the prior probability p of X⊥⊥Y, then it would be reasonable to maximize the posterior probability of X⊥⊥Y given [image: there is no content] and [image: there is no content]. If we assume that the probabilities [image: there is no content] and [image: there is no content] are parameterized by [image: there is no content], and [image: there is no content] and that the prior probabilities [image: there is no content] and [image: there is no content] over the probabilities [image: there is no content] and [image: there is no content] of [image: there is no content], [image: there is no content] and [image: there is no content] are available, respectively, then we can construct the quantities:



[image: there is no content]:=∫∏i=1np([image: there is no content]|θX)WX(dθX),QYn([image: there is no content]):=∫∏i=1np(yi|θY)WY(dθY),QXYn([image: there is no content],[image: there is no content]):=∫∏i=1np([image: there is no content],yi|[image: there is no content])[image: there is no content](d[image: there is no content]).








In this setting, maximizing the posterior probability of X⊥⊥Y given examples [image: there is no content] w.r.t. the prior probability p is equivalent to deciding X⊥⊥Y if and only if:



p[image: there is no content]([image: there is no content])QYn([image: there is no content])≥(1-p)QXYn([image: there is no content],[image: there is no content]).



(1)




The decision based on (1) is strongly consistent, i.e., it is correct with probability one as [image: there is no content] [1] (see Section 3.1 for the proof). We say that a model selection procedure satisfies weak consistency if the probability of choosing the correct model goes to unity as n grows (probability convergence) and that it satisfies strong consistency if the probability one is assigned to the set of infinite example sequences that choose the correct model, except for at most finite times (almost sure convergence). In general, strong consistency implies weak consistency, but the converse is not true [2]. In any model selection, in particular for large n, the correct answer is required. If continuous variables are present, the BN structure learning is not easy, and strong consistency is hard to obtain.

The same scenario is applied to the case in which X and Y take values from finite sets A and B rather than [image: there is no content].

Next, suppose that we wish to know the factorization of three random binary variables [image: there is no content]: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. If we have n triples of actually emitted examples [image: there is no content] and know the prior probabilities [image: there is no content] over the eleven factorizations, then it would be reasonable to choose the one that maximizes:



p1[image: there is no content]([image: there is no content])QYn([image: there is no content])QZ([image: there is no content]),p2[image: there is no content]([image: there is no content])QYZn([image: there is no content],[image: there is no content]),p3QYn([image: there is no content])QXZn([image: there is no content],[image: there is no content]),p4QZn([image: there is no content])QXYn([image: there is no content],[image: there is no content]),p5QXYn([image: there is no content],[image: there is no content])QXZn([image: there is no content],[image: there is no content])[image: there is no content],p6QXYn([image: there is no content],[image: there is no content])QYZn([image: there is no content],[image: there is no content])QYn([image: there is no content]),p7QXZn([image: there is no content],[image: there is no content])QYZn([image: there is no content],[image: there is no content])QZn([image: there is no content]),p8QYn([image: there is no content])QZn([image: there is no content])QXYZn([image: there is no content],[image: there is no content],[image: there is no content])QYZn([image: there is no content],[image: there is no content]),p9QZn([image: there is no content])[image: there is no content]([image: there is no content])QXYZn([image: there is no content],[image: there is no content],[image: there is no content])QXZn([image: there is no content],[image: there is no content]),p10[image: there is no content]([image: there is no content])QYn([image: there is no content])QXYZn([image: there is no content],[image: there is no content],[image: there is no content])QXYn([image: there is no content],[image: there is no content]),p11QXYZn([image: there is no content],[image: there is no content],[image: there is no content]),








to maximize the posterior probability of the factorization given [image: there is no content], [image: there is no content] and [image: there is no content]. For example, between the last two distributions, we choose the last if and only if:


p10[image: there is no content]([image: there is no content])QYn([image: there is no content])≤p11QXYn([image: there is no content],[image: there is no content]).








In fact, for example, we can check that the factorizations:



P(Y)P(X|Y)P(Z|X),P(X)P(Y|X)P(Z|X),P(Z)P(X|Z)P(Y|Z)








in Figure 1a–c share the same form [image: there is no content], and we say that they share the same Markov-equivalent class. On the other hand, the factorization


[image: there is no content]








in Figure 1d has nothing to share with the same Markov equivalent class, except itself. In the case of three variables, there are 25 DAGs, but they reduce to the eleven Markov equivalent classes.


The method that maximizes the posterior probability is strongly consistent [1] (see Section 3.1 for the proof), and a scenario with two and three variables as above can be extended to cases with N variables in a straightforward manner, if the variables are discrete.

In this paper, we consider the case when continuous variables are present. The idea is to construct measures [image: there is no content], [image: there is no content] and [image: there is no content] over [image: there is no content], [image: there is no content] and [image: there is no content]×[image: there is no content] for continuous ranges X and Y to make the decision whether X⊥⊥Y based on:



pgXn([image: there is no content])gYn([image: there is no content])≥(1-p)gXYn([image: there is no content],[image: there is no content]).



(2)




The main problem is whether the decision is strongly consistent. Many authors have attempted to address continuous variables. For example, Nir Friedman [3] experimentally demonstrated the construction of a genetic network based on expression data using the E-Malgorithm. However, the variables were assumed to be linearly related and included Gaussian noise, and the dataset was not sufficiently fit to the model. Imoto et al. [4] improved the model such that the relation is expressed by B-spline curves rather than lines. However, all of the authors, including Friedman and Imoto, failed to maximize the posterior probability, and thus, the decision is not consistent. This paper proves that the decision based on (2) and its extension for general [image: there is no content] is strongly consistent.

In any Bayesian approach of BN structure learning, whether continuous variables are present or not, the procedure consists of two stages:


	(1)

	Compute the local scores for the nonempty subsets of [image: there is no content]; for example, if [image: there is no content], the seven quantities [image: there is no content] are obtained; and



	(2)

	Find a BN structure that maximizes the global scores among the [image: there is no content] candidate BN structures; there are at most [image: there is no content] DAGs in the case of N variables; for example, if [image: there is no content], the eleven quantities are computed and a structure with the largest is chosen.





Note that the second stage does not care about whether each variable is continuous or not. In this paper, we mainly discuss about the performance of the first stage. The number of local scores to be computed can be saved, although it is generally exponential with N. We consider the problem inSection 3.3.

On the other hand, Zhang, Peters, Janzing and Scholkopf [5] proposed a BN structure learning method using conditional independence (CI) tests based on kernel statistics. However, for the CI test that is close to the Hilbert–Schmidt information criterion (HSIC), it is very hard to simulate the null distribution. They only proposed to approximate it by a Gamma distribution, but no consistency, is obtained because the threshold of the statistical test is not correct in practice. Furthermore, for the independence test approach, it often results in conflicting assertions of independence for finite samples. In particular, for small samples, the obtained DAG sometimes contain a directed loop. The Bayesian approach we consider in this paper does not suffer from the inconvenience, because we seek a structure that maximizes the global score [6].

Another contribution of this paper is identifying the border between consistency and non-consistency in learning Bayesian networks. For discrete X, maximizing [image: there is no content] is equivalent to minimizing the description length [1]:



-log[image: there is no content]([image: there is no content])≈Hn([image: there is no content])+α-12logn,



(3)




where [image: there is no content] is the empirical entropy of [image: there is no content]∈[image: there is no content] (we write [image: there is no content] when [image: there is no content] is bounded by a constant) and α is the cardinality of set X. The problem at hand is whether the [image: there is no content] term is the minimum function of n for ensuring strong consistency. If [image: there is no content] is replaced by two (AIC), we cannot obtain consistency. We prove that [image: there is no content] with [image: there is no content] is the minimum for strong consistency based on the law of iterated logarithms. The same property is known as the Hannan–Quinn principle [7], and similar results have been obtained for autoregression, linear regression [8] and classification [9], among others. The derivation in this paper does not depend on these previous results. The Hannan–Quinn principle will also be applied to continuous variables.
This paper is organized as follows. Section 2.1 introduces the general concept of learning Bayesian network structures based on maximizing the posterior probability, and Section 2.2 discusses the concept of density functions developed by Boris Ryabko [10] and extended by Suzuki [11]. Section 3 presents our contributions: Section 3.1 proves the Hannan–Quinn property in the current problem, andSection 3.2 proves consistency when continuous variables are present. Section 4 concludes the paper by summarizing the results and states the paper's significance in the field of model selection.



Figure 1. Markov-equivalent classes (a–d).



[image: Entropy 17 05752 g001 1024]





2. Preliminaries


2.1. Learning the Bayesian Structure for Discrete Variables and Its Consistency

We choose [image: there is no content], such that ∫[image: there is no content](θ)dθ=1 and [image: there is no content] by [image: there is no content](θ)∝∏[image: there is no content]θ(x)-1/2, where X is the set from which X takes its values. Let [image: there is no content], and let [image: there is no content] be the frequency of [image: there is no content] in [image: there is no content], [image: there is no content]. It is known that the following quantities satisfies (3) [12]:



[image: there is no content]([image: there is no content]):=∏i=1nci-1([image: there is no content])+1/2i-1+|X|/2=Γ(α/2)∏[image: there is no content]Γ(cn(x)+1/2)Γ(1/2)αΓ(n+α/2),








where Γ is the Gamma function, and Stirling's formula [image: there is no content] has been applied. Thus, for [image: there is no content], from the law of large numbers, [image: there is no content] converges to [image: there is no content] with probability one as [image: there is no content], such that:


-1nlogQn([image: there is no content])→H(X):=∑[image: there is no content]-P(X=x)logP(X=x)








with probability one as [image: there is no content].
Moreover, from the law of large numbers, with probability one as [image: there is no content],



[image: there is no content]








(Shannon–McMillan–Breiman [13]). This proves that there exists a [image: there is no content] (universal measure), such that for any probability P over the finite set X,


[image: there is no content]



(4)




with probability one as [image: there is no content], where we write [image: there is no content]. The same property holds for:


-logQYn([image: there is no content])≈Hn([image: there is no content])+β-12logn,



(5)




and:


-logQXYn([image: there is no content],[image: there is no content])≈Hn([image: there is no content],[image: there is no content])+αβ-12logn,



(6)




where [image: there is no content], [image: there is no content] and Hn([image: there is no content],[image: there is no content])=∑[image: there is no content]∑[image: there is no content]-cn(x,y)log[image: there is no content]n are the empirical entropies of [image: there is no content]∈[image: there is no content] and ([image: there is no content],[image: there is no content])∈[image: there is no content]×[image: there is no content], and [image: there is no content] and [image: there is no content] are the numbers of occurrences of [image: there is no content] and [image: there is no content] in [image: there is no content]=(y1,⋯,yn)∈[image: there is no content] and ([image: there is no content],[image: there is no content])∈[image: there is no content]×[image: there is no content], respectively.
Thus, we have:



Jn([image: there is no content],[image: there is no content]):=1nlogQXY([image: there is no content],yx)QX([image: there is no content])QY([image: there is no content])→I(X,Y):=E{P(X,Y)P(X)P(Y)}.








with probability one as [image: there is no content]. However, X⊥⊥Y if and only if [image: there is no content]. Hence, if X¬⊥⊥Y, the value of [image: there is no content] is positive with probability one as [image: there is no content]. However, how can we detect X⊥⊥Y when X⊥⊥Y? [image: there is no content] cannot be exactly zero with probability one as [image: there is no content].
However, when X and Y are discrete, the estimation based on [image: there is no content] is consistent: if X⊥⊥Y, the value of [image: there is no content] is not greater than zero with probability one as [image: there is no content]. For example, the decision based on (1) is strongly consistent because the values of [image: there is no content] and [image: there is no content] are negligible for large n, and asymptotically, (1) is equivalent to [image: there is no content].

In Section 3.1, we provide a stronger result of consistency and a more intuitive and elegant proof.

In general, if N variables exist ([image: there is no content]), we must consider two cases: [image: there is no content] and[image: there is no content], where [image: there is no content] and P are the probabilities based on the correct and estimated factorizations and D([image: there is no content]||P) denotes the Kullback–Leibler divergence between [image: there is no content] and P. If [image: there is no content], then:



D([image: there is no content]||P):=∑x∑y[image: there is no content](x,y)log[image: there is no content](x,y)P(x,y)>0








if and only if X¬⊥⊥Y in [image: there is no content] and X⊥⊥Y in P.
The same property holds for three variables [image: there is no content] ([image: there is no content]):



[image: there is no content]








with probability one as [image: there is no content], and X⊥⊥Y|Z if and only if [image: there is no content]. Then, we can show [image: there is no content] if and only if [image: there is no content], with probability one as [image: there is no content] (see Section 3.1). For example, between the seventh and eleventh factorizations, if [image: there is no content] and [image: there is no content], then we choose the seventh and eleventh, respectively. In fact,


[image: there is no content]








for large n, because [image: there is no content] diminishes.
Then, the decision is correct with probability one as [image: there is no content]. Similarly, we calculate:



-logQZ([image: there is no content])≈Hn([image: there is no content])+γ-12logn,










-logQYZ([image: there is no content],[image: there is no content])≈Hn([image: there is no content],[image: there is no content])+βγ-12logn,










-logQZX([image: there is no content],[image: there is no content])≈Hn([image: there is no content],[image: there is no content])+γα-12logn,








and:


-logQXYZ([image: there is no content],[image: there is no content],[image: there is no content])≈Hn([image: there is no content],[image: there is no content],[image: there is no content])+αβγ-12logn,








where [image: there is no content]. In general, for N variables, given P and [image: there is no content], we have all of the CI statements for each of them, and [image: there is no content] if and only if the CI statements in P imply those in [image: there is no content]; in other words, P induces an I-map, which is not necessarily minimal.
Note that for any subsets [image: there is no content] of [image: there is no content], we can construct the estimation [image: there is no content], with [image: there is no content], and obtain consistency, i.e., we will have the correct CI statements, where c may be empty.

Table 1 depicts whether [image: there is no content] or [image: there is no content] for each [image: there is no content] and P. For example, if the factorizations of [image: there is no content] and P are the fourth and sixth, then [image: there is no content] from the table. In general, [image: there is no content] if and only if [image: there is no content] is realized using the factorization and an appropriate parameterset for P.


Table 1. Three-variable case: [image: there is no content] or [image: there is no content]: “+” and “0” denote [image: there is no content] and [image: there is no content], respectively.



	

	
Estimated P






	

	

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11




	
True [image: there is no content]

	
1

	
*

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
2

	
+

	
*

	
+

	
+

	
+

	
0

	
0

	
+

	
+

	
+

	
0




	
3

	
+

	
+

	
*

	
+

	
0

	
+

	
0

	
+

	
+

	
+

	
0




	
4

	
+

	
+

	
+

	
*

	
0

	
0

	
+

	
+

	
+

	
+

	
0




	
5

	
+

	
+

	
+

	
+

	
*

	
+

	
+

	
+

	
+

	
+

	
0




	
6

	
+

	
+

	
+

	
+

	
+

	
*

	
+

	
+

	
+

	
+

	
0




	
7

	
+

	
+

	
+

	
+

	
+

	
+

	
*

	
+

	
+

	
+

	
0




	
8

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
*

	
+

	
+

	
0




	
9

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
*

	
+

	
0




	
10

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
*

	
0




	
11

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
+

	
*













2.2. Universal Measures for Continuous Variables

In this section, we primarily address continuous variables.

Let [image: there is no content] be such that [image: there is no content], and let [image: there is no content] be a refinement of [image: there is no content]. For example, suppose that the random variable X takes values in [image: there is no content], and we generate a sequence as follows:



A1={[0,12),[12,1)}A2={[0,14),[14,12),[12,34,[34,1)}⋮[image: there is no content]={[0,2−(j−1)),[2−(j−1),2·2−(j−1)),⋯,2j−1−1)2−(j−1),1)}⋮








For each j, we quantize each [image: there is no content] into the a∈[image: there is no content], such that [image: there is no content]. For example, for [image: there is no content], [image: there is no content] is quantized into [image: there is no content]. Let λ be the Lebesgue measure (width of the interval). For example, [image: there is no content] and [image: there is no content].

Note that each [image: there is no content] is a finite set. Therefore, we can construct a universal measure [image: there is no content] w.r.t. a finite set [image: there is no content] for each j. Given [image: there is no content], we obtain a quantized sequence [image: there is no content] for each j and use it to compute the quantity:



gjn([image: there is no content]):=[image: there is no content][image: there is no content]λ(a1(j))⋯λ(an(j))








for each j. If we prepare a sequence of positive reals [image: there is no content], such that [image: there is no content] and [image: there is no content], we can compute the quantity:


gXn([image: there is no content]):=∑j=1∞wjgjn([image: there is no content]).








Moreover, let [image: there is no content] be the true density function and [image: there is no content] for a∈[image: there is no content] and [image: there is no content] if [image: there is no content]. We may consider [image: there is no content] to be an approximated density function assuming the quantization sequence [image: there is no content] (Figure 2). For the given [image: there is no content], we define fXn([image: there is no content])=[image: there is no content](x1)⋯[image: there is no content](xn) and fjn([image: there is no content]):=[image: there is no content](x1)⋯[image: there is no content](xn).

Figure 2. Quantization at level k: [image: there is no content]=(x1,⋯,xn)↦[image: there is no content]



[image: Entropy 17 05752 g002 1024]







Thus, we have the following proposition, which is a continuous version of the universality (4) that was proven in Section 2.1.

Proposition 1 ([10]). For any density function f, such that D([image: there is no content]||[image: there is no content])→0as [image: there is no content],



1nlogfXn([image: there is no content])[image: there is no content]→0








as [image: there is no content]with probability one, where D([image: there is no content]||[image: there is no content])is the Kullback–Leibler divergence between [image: there is no content]and [image: there is no content].
The same concept is applied to the case where no density function exists [11] in the usual sense (w.r.t. the Lebesgue measure λ). For example, suppose that we wish to estimate a distribution over the positive integers N. Apparently, N is not a finite set and has no density function. We consider the quantization sequence [image: there is no content]: [image: there is no content], [image: there is no content], [image: there is no content], ..., [image: there is no content], ....

For each k, we quantize each [image: there is no content] into a [image: there is no content], such that [image: there is no content]. For example, for [image: there is no content], [image: there is no content] is quantized into [image: there is no content]. Let η be a measure, such that:



η({k})=1k-1k+1,k∈N.








The measure [image: there is no content] for closed interval a gives:



[image: there is no content]








if [image: there is no content] and [image: there is no content] are the minimum and maximum integers in a, and evaluates each bin width in a nonstandard way. For example, [image: there is no content] and [image: there is no content]. For multiple variables, we compute the measure by:


η({j},{k})=(1j-1j+1)(1k-1k+1).








Note that each [image: there is no content] is a finite set, and we construct a universal measure [image: there is no content] w.r.t. a finite set [image: there is no content] for each k. Given [image: there is no content], we obtain a quantized sequence [image: there is no content] for each k, such that we can compute the quantity:



gkn([image: there is no content]):=[image: there is no content][image: there is no content]η(b1(k))⋯η(bn(k))








for each k. If we prepare a sequence of positive reals [image: there is no content], such that [image: there is no content] and [image: there is no content], we can compute the quantity [image: there is no content]. In this case, [image: there is no content] for [image: there is no content] ([image: there is no content] with [image: there is no content] may take any arbitrary value) is considered to be a generalized density function (w.r.t. the measure η).
In general, if [image: there is no content] implies [image: there is no content] for the Borel sets (the Borel sets w.r.t. R being the set consisting of the sets generated via a countable number of union, intersection and set difference from the closed intervals of R [2]), we state that P is absolutely continuous w.r.t. η and that there exists a density function w.r.t. η (Radon–Nikodym [2]).

The following proposition addresses generalized densities and eliminates the conditionD([image: there is no content]||[image: there is no content])→0 as [image: there is no content] in Proposition 1.

Proposition 2 ([11]). For any generalized density function [image: there is no content],



1nlogfYn([image: there is no content])[image: there is no content]→0








as [image: there is no content]with probability one.
Proposition 1 assumes a specific quantization sequence, such as [image: there is no content]. The universality holds for the densities that satisfy D([image: there is no content]||fk)→∞ as [image: there is no content] [10]. However, in the proof of Proposition 2, a universal quantization, such that D([image: there is no content]||fk)→0 as [image: there is no content] for any density [image: there is no content], was constructed [11].




3. Contributions


3.1. The Hannan and Quinn Principle

We know that Hn([image: there is no content])+Hn([image: there is no content])-Hn([image: there is no content],[image: there is no content]) is at most [image: there is no content] with probability one as [image: there is no content] when X⊥⊥Y because the decision based on (1) is strongly consistent.

In this section, we prove a stronger result: let:



In([image: there is no content],[image: there is no content],[image: there is no content]):=Hn([image: there is no content],[image: there is no content])+Hn([image: there is no content],[image: there is no content])-Hn([image: there is no content],[image: there is no content],[image: there is no content])-Hn([image: there is no content]).








We show that the quantity In([image: there is no content],[image: there is no content],[image: there is no content]) is at most [image: there is no content] rather than[image: there is no content], when X⊥⊥Y|Z:

Theorem 1. If X⊥⊥Y|Z:



In([image: there is no content],[image: there is no content],[image: there is no content])≤(1+ϵ)(α-1)(β-1)γloglogn



(7)




with probability one as [image: there is no content]for any [image: there is no content].
In order to show the claim, we approximate In([image: there is no content],[image: there is no content],[image: there is no content]) by [image: there is no content] with [image: there is no content], where [image: there is no content], [image: there is no content], are mutually independent random variables with mean zero and variance [image: there is no content], such that:



∑i=1α-1∑j=1β-1[image: there is no content]=(α-1)(β-1).








Then, from the law of iterated logarithms below (Lemma 1) [2], it will be proven that [image: there is no content] is almost surely upper-bounded by 2(1+ϵ)[image: there is no content]loglogn for any [image: there is no content] and each [image: there is no content], which implies Theorem 1 because:



In([image: there is no content],[image: there is no content],[image: there is no content])≈∑zI(z)=γ·12∑i∑j[image: there is no content]≤γ·12∑i∑j2(1+ϵ)[image: there is no content]loglogn=(1+ϵ)(α-1)(β-1)γloglogn








(see the Appendix for the details of the derivation).
Lemma 1 ([2]). Let [image: there is no content]be random variables that obey an identical distribution with zero mean and unit variance, and [image: there is no content]. Then, with probability one,



lim sup[image: there is no content]Sn2nlognlogn=1.








Theorem 1 implies the strong consistency of the decision based on (1). However, a stronger statement can be obtained:

Theorem 2. We define [image: there is no content], RXZn([image: there is no content],[image: there is no content]), [image: there is no content]and RXYZn([image: there is no content],[image: there is no content],[image: there is no content])by:



-logRZn([image: there is no content])=Hn([image: there is no content])+(1+ϵ)(γ-1)loglogn,










-logRXZn([image: there is no content],[image: there is no content])=Hn([image: there is no content],[image: there is no content])+(1+ϵ)(βγ-1)loglogn,










-logRYZn([image: there is no content],[image: there is no content])=Hn([image: there is no content],[image: there is no content])+(1+ϵ)(βγ-1)loglogn,








and:


-logRXYZn([image: there is no content],[image: there is no content],[image: there is no content])=Hn([image: there is no content],[image: there is no content],[image: there is no content])+(1+ϵ)(αβγ-1)loglogn.








Then, the decision based on:



RXZn([image: there is no content],[image: there is no content])RYZn([image: there is no content],[image: there is no content])≥RXYZn([image: there is no content],[image: there is no content],[image: there is no content])RZn([image: there is no content])⟺X⊥⊥Y|Z








is strongly consistent.
Proof. We note two properties:


	RXZn([image: there is no content],[image: there is no content])RYZn([image: there is no content],[image: there is no content])≥RXYZn([image: there is no content],[image: there is no content],[image: there is no content])RZn([image: there is no content]) is equivalent to (7); and


	lim[image: there is no content]1nlogRXYZn([image: there is no content],[image: there is no content],[image: there is no content])RZn([image: there is no content])RXZn([image: there is no content],[image: there is no content])RYZn([image: there is no content],[image: there is no content])=lim[image: there is no content]1nlogQXYZn([image: there is no content],[image: there is no content],[image: there is no content])QZn([image: there is no content])QXZn([image: there is no content],[image: there is no content])QYZn([image: there is no content],[image: there is no content])→I(X,Y,Z)




If X⊥⊥Y|Z, then from Theorem 1 and the first property, we have RXZn([image: there is no content],[image: there is no content])RYZn([image: there is no content],[image: there is no content])≥RXYZn([image: there is no content],[image: there is no content],[image: there is no content])RZn([image: there is no content]) almost surely. If RXZn([image: there is no content],[image: there is no content])RYZn([image: there is no content],[image: there is no content])≥RXYZn([image: there is no content],[image: there is no content],[image: there is no content])RZn([image: there is no content]) almost surely holds, then the value in the second property should be no greater than zero, which means that X⊥⊥Y|Z. This completes the proof. ☐

Theorem 2 is related to the Hannan and Quinn theorem [7] for model selection. To obtain strong consistency, they proved that [image: there is no content] rather than [image: there is no content] is sufficient for the penalty terms of autoregressive model selection. Recently, several authors have proven this in other settings, such as classification [9] and linear regression [8].



3.2. Consistency for Continuous Variables

Suppose that we wish to estimate the distribution over [image: there is no content] in Section 2.2. The set [image: there is no content] is not a finite set and has no density function.

Because [image: there is no content]×[image: there is no content] is a finite set, we can construct a universal measure [image: there is no content] for [image: there is no content]×[image: there is no content]:



gjkn([image: there is no content],[image: there is no content]):=[image: there is no content](a1(j),⋯,an(j),b1(k),⋯,bn(k))λ(a1(j))⋯λ(an(j))η(b1(k))⋯η(bn(k)).








If we prepare the sequence such that [image: there is no content], [image: there is no content], we obtain the quantity:



gXYn([image: there is no content],[image: there is no content]):=∑j=1∞∑k=1∞w[image: there is no content]gjkn([image: there is no content],[image: there is no content]).








In this case, the (generalized) density function is obtained via:



[image: there is no content]








where [image: there is no content] ([image: there is no content] takes arbitrary values for [image: there is no content] and [image: there is no content]), where [image: there is no content] is the conditional distribution function of X given [image: there is no content].
In general, we have the following result:

Proposition 3 For any generalized density function f:



1nlogfXYn([image: there is no content],[image: there is no content])[image: there is no content]→0








as [image: there is no content]with probability one.
The measures [image: there is no content] and [image: there is no content] are computed using (A) and (B) of Algorithm 1, where the value of K is the number of quantizations, and g^Xn([image: there is no content]) and g^XYn([image: there is no content],[image: there is no content]) denote the approximated scores using finite quantization of level K.




	
Algorithm 1 Calculating gn.




	
(A) Input xn ∈ An, Output g^Xn([image: there is no content])




	
1.

	
For each [image: there is no content], gkn([image: there is no content]):=0




	
2.

	
For each [image: there is no content] and each [image: there is no content], [image: there is no content]




	
3.

	
For each [image: there is no content],




	

	
 (a) [image: there is no content], [image: there is no content]




	

	
 (b) for each [image: there is no content]




	

	
   i. Find [image: there is no content] from [image: there is no content]




	

	
   ii. loggkn([image: there is no content]):=loggkn([image: there is no content])+logci,k([image: there is no content])+1/2i-1+|Ak|/2-log(ηX([image: there is no content]))




	

	
   iii. [image: there is no content]




	
4.

	
g^Xn([image: there is no content]):=∑k=1K1Kgkn([image: there is no content])




	
(B) Input [image: there is no content]∈An and [image: there is no content], Output g^XYn([image: there is no content],[image: there is no content])




	
1.

	
For each [image: there is no content], g[image: there is no content]n([image: there is no content],[image: there is no content]):=0




	
2.

	
For each [image: there is no content] and each a∈[image: there is no content] and [image: there is no content], [image: there is no content]




	
3.

	
For each [image: there is no content]




	

	
 (a) [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]




	

	
 (b) for each [image: there is no content]




	

	
   i. Find ai(j)∈[image: there is no content] and bi(k)∈[image: there is no content] from [image: there is no content] and [image: there is no content]




	

	
   ii. logg[image: there is no content]n([image: there is no content],[image: there is no content]):=logg[image: there is no content]n([image: there is no content],[image: there is no content])+logci,j,k(ai(j),bi(k))+1/2i-1+|[image: there is no content]||[image: there is no content]|/2-log(ηX(ai(j))ηY(bi(k)))




	

	
   iii. [image: there is no content]




	
4.

	
g^XYn([image: there is no content],[image: there is no content]):=∑j=1K∑k=1K1K2g[image: there is no content]n([image: there is no content],[image: there is no content])






Propositions 1–3 are obtained for large K. However, we can prepare only a finite number of quantizations. Furthermore, if n is small, then the number of examples that each bin contains is small, and we cannot estimate the histogram well. Therefore, given n, K must be moderately sized, and we recommend to set [image: there is no content] because the number of examples contained in a bin decreases exponentially with increasing depth, where m is the number of variables in the local score. For example, [image: there is no content] and [image: there is no content] for (A) and (B), respectively. Algorithm 1 (A)(B) of do not guarantee anything for the theoretical property assured in Proposition 3 and Theorems 3–5 for finite K, however, as K grows, consistency holds.

In Step 3(a) of Algorithm 1(A)(B), we calculate [image: there is no content] from [image: there is no content] and not from [image: there is no content], which means that the computational time required to obtain [image: there is no content] from [image: there is no content] is [image: there is no content]. Thus, the total computation times of Algorithm 1 (A)(B) are at most [image: there is no content].

In Step 3(b) of Algorithm 1(A), we compute for [image: there is no content] and [image: there is no content]:



loggki(xi)gki-1(xi-1)=logQki(a1(k),⋯,ai(k))Qki-1(a1(k),⋯,ai-1(k))-logηX([image: there is no content])








if [image: there is no content] is quantized into [image: there is no content], [image: there is no content].
For the memory requirements, we require exponential orders of K. However, because we set [image: there is no content], the computational time and memory requirements are at most [image: there is no content] and [image: there is no content] for Algorithm 1(A)(B).

Based on the same notion, we can construct [image: there is no content], gXZn([image: there is no content],[image: there is no content]), [image: there is no content], gXYZn([image: there is no content],[image: there is no content],[image: there is no content]) from examples [image: there is no content]∈[image: there is no content], [image: there is no content]∈[image: there is no content] and [image: there is no content], and Propositions 2 and 3 hold for three variables.

Theorem 3. With probability one as [image: there is no content]:



1nloggXYZn([image: there is no content],[image: there is no content],[image: there is no content])gZ([image: there is no content])gXYn([image: there is no content],[image: there is no content])gYZn([image: there is no content],[image: there is no content])→I(X,Y,Z)



(8)




Proof. From Propositions 2 and 3 for two and three variables and the law of large numbers, we have:



lim[image: there is no content]1nloggXYZn([image: there is no content],[image: there is no content],[image: there is no content])gZn([image: there is no content])gXZn([image: there is no content],[image: there is no content])gYZn([image: there is no content],[image: there is no content])=lim[image: there is no content]1nlogfXYZn([image: there is no content],[image: there is no content],[image: there is no content])fZn([image: there is no content])fXZn([image: there is no content],[image: there is no content])fYZn([image: there is no content],[image: there is no content])=lim[image: there is no content]1n∑i=1n{logfXYZ([image: there is no content],yi,zi)fZ(zi)fXZ([image: there is no content],zi)fYZ(yi,zi)}=ElogfXYZ(X,Y,Z)fXZ(X,Z)fYZ(Y,Z)=I(X,Y,Z)








with probability one, which completes the proof. ☐
From the discussion in Section 2.1, even when more than two variables are present, if [image: there is no content], we can choose [image: there is no content] rather than P with probability one as [image: there is no content].

Now, we prove that the continuous counterpart of the decision based on (1) is strongly consistent:

Theorem 4. With probability one as [image: there is no content]:



X⊥⊥Y|Z⟺pgXZn([image: there is no content],[image: there is no content])gYZn([image: there is no content],[image: there is no content])≥(1-p)gXYZn([image: there is no content],[image: there is no content],[image: there is no content])gZn([image: there is no content]),



(9)




where p is the prior probability of X⊥⊥Y|Z.

Proof: Suppose that X¬⊥⊥Y|Z. Then, the conditional mutual information between X and Y given Z is positive, and from Theorem 3, the estimator converges to a positive value with probability one as [image: there is no content]; thus, pgXZn([image: there is no content],[image: there is no content])gYZn([image: there is no content],[image: there is no content])≥(1-p)gXYZn([image: there is no content],[image: there is no content],[image: there is no content])gZn([image: there is no content]) holds almost surely. Suppose that X⊥⊥Y|Z. The discrete variables X and Y are conditionally independent given Z if and only if:



cQXZn([image: there is no content],[image: there is no content])QYZn([image: there is no content],[image: there is no content])≥(1-c)QXYZn([image: there is no content],[image: there is no content],[image: there is no content])QZn([image: there is no content])








with probability one as [image: there is no content] for any constant [image: there is no content], even if c does not coincide with the prior probability p. If [image: there is no content] and Z are continuous, we quantize [image: there is no content], [image: there is no content] and [image: there is no content] into [image: there is no content], [image: there is no content] and [image: there is no content]. Thus, for each [image: there is no content] and l, we have:


pwjlwklQjln(a1(j),⋯,an(j),c1(l),⋯,cn(l))Qkln(b1(k),⋯,bn(k),c1(l),⋯,cn(l))≥(1-p)wjklwlQjkln(a1(j),⋯,an(j),b1(k),⋯,bn(k),c1(l),⋯,cn(l))Qn(l)[image: there is no content]








with probability one as [image: there is no content]. Thus, if we divide both sides by:


[image: there is no content]








and take summations of both sides over [image: there is no content], we have:


pgXZn([image: there is no content],[image: there is no content])gYZn([image: there is no content],[image: there is no content])≥(1-p)gXYZn([image: there is no content],[image: there is no content],[image: there is no content])gZn([image: there is no content])








with probability one, where we have assumed [image: there is no content] because of [image: there is no content], which completes the proof.
Note that even if either X or Y is discrete, the same conclusion will be obtained. The generalized density functions cover the discrete distributions as a special case.

From the discussion in Section 2.1, even when more than two variables are present, if [image: there is no content], we can choose [image: there is no content] rather than P with probability one as [image: there is no content].

Let hZn([image: there is no content]),hXZn([image: there is no content],[image: there is no content]), hYZn([image: there is no content],[image: there is no content]) and hXYZn([image: there is no content],[image: there is no content],[image: there is no content]) take the same values of [image: there is no content], gXZn([image: there is no content],[image: there is no content]), gYZn([image: there is no content],[image: there is no content]) and gXYZn([image: there is no content],[image: there is no content],[image: there is no content]), except that the [image: there is no content] terms in -logQZn([image: there is no content]), -logQXZn([image: there is no content],[image: there is no content]),-logQYZn([image: there is no content],[image: there is no content]) and -logQXYZn([image: there is no content],[image: there is no content],[image: there is no content]) are replaced by [image: there is no content], respectively, where [image: there is no content] is arbitrary. Then, we obtain the final result:

Theorem 5. With probability one as [image: there is no content]:



phXZn([image: there is no content],[image: there is no content])hYZn([image: there is no content],[image: there is no content])≥(1-p)hXYZn([image: there is no content],[image: there is no content],[image: there is no content])hZn([image: there is no content])⟺X⊥⊥Y|Z.



(10)




This paper focuses on the theoretical aspects of the BN structure learning, in particular for consistency when continuous variables are present. For the details of the practical matters we deal with in this section, see the conference paper [14].



3.3. The Number of Local Scores to be Computed

We refer the conditional independence (CF) score w.r.t. X and Y given Z to the left of (8). Suppose we follow the fastest Bayesian network structure learning due to [6]: let [image: there is no content] be the optimal parent set of [image: there is no content] contained in [image: there is no content] for [image: there is no content] and [image: there is no content] its local score. Then, we can obtain:



[image: there is no content]








For each [image: there is no content], the sinks:



XN=argmaxX∈UT(U),XN-1=argmaxX∈U-{XN}T(U-{XN}),⋯,








and the parent sets:


Pa(XN,U),P(XN-1,U-{XN}),⋯,{}.








For each fixed pair ([image: there is no content], maximizing the local score [image: there is no content] and maximizing the CF score 1nlogg[image: there is no content]g[image: there is no content]gVgW w.r.t. [image: there is no content] and [image: there is no content], given W are equivalent. In other words,



1nlogg[image: there is no content]gW≤1nloggW'+{X}gW'⟺1nlogg[image: there is no content]gW'+{X}gVgW≤1nlogg[image: there is no content]gW'+{X}gVgW'








for [image: there is no content].
On the other hand, from [15,16], we know that the relationship between the complexity term and the likelihood term gives tight bounds on the maximum number of parents in the optimal BN for any given dataset. In particular, the number of elements in each parent set [image: there is no content] is at most [image: there is no content] for [image: there is no content] and [image: there is no content]. Hence, the number for computing the CF scores is much less than exponentialwith N.




4. Concluding Remarks

In this paper, we considered the problem of learning a Bayesian network structure from examples and provided two contributions.

First, we found that the [image: there is no content] terms in the penalty terms of the description length can be replaced by [image: there is no content] to obtain strong consistency, where the derivation is based on the law of iterated logarithms. We claim that the Hannan and Quinn principle [7] is applicable to this problem.

Second, we constructed an extended version of the score function for finding a Bayesian network structure with the maximum posterior probability and proved that the decision is strongly consistent even when continuous variables are present. Thus far, consistency has been obtained only for discrete variables, and many authors have been seeking consistency when continuous variables are present.

Consistency has been proven in many model selection methods that maximize the posterior probability or, equivalently, minimize the description length [1]. However, almost all such methods assume that the variables are either discrete or that the variables obey Gaussian distributions. This paper proposed an extended version of the MDL/Bayesian principle without assuming such constraints and proved its strong consistency in a precise manner, which we believe provides a substantial contribution to the statistics and machine learning communities.







Appendix: Proof of Theorem 1

Hereafter, we write P(X = x|Z = z) and P(Y = y|Z = z) simply as P(x|z) and P(y|z) respectively, for x ∈ X, y ∈ Y and z ∈ Z. We find that the empirical mutual information:



 [image: Entropy 17 05752 i001]



(11)






 [image: Entropy 17 05752 i002]



(12)






 [image: Entropy 17 05752 i003]



(13)




is approximated by  [image: Entropy 17 05752 i004] with:


 [image: Entropy 17 05752 i005]








where the difference between them is zero with probability one as n → ∞, and (1 + t)log(1 + t) = t + t2/2 − t3/{6[1 + δ(t)t]2} with 0 < δ(t) < 1 and:


 [image: Entropy 17 05752 i006]








has been applied for (11), (12) and (13), respectively. Furthermore, we derive:


 [image: Entropy 17 05752 i007]



(14)




where V = (Vxy)x ∈ X, and y ∈ Y with  [image: Entropy 17 05752 i022] and u and v are the column vectors  [image: Entropy 17 05752 i008] and  [image: Entropy 17 05752 i009], respectively. Hereafter, we arbitrarily fix z ∈ Z. Let U = (u[0], u[1], …, u[α − 1]), with u[0] = u and W = (w[0], w[1], …, w[β − 1], with w[0] = w being eigenvectors of  [image: Entropy 17 05752 i010] and  [image: Entropy 17 05752 i011], where Em is the identity matrix of dimension m.
Then, tuVw = 0, and for [image: there is no content] = (u[1], …, u[α − 1] and [image: there is no content] = (w[1], …, w[β − 1], we have:



 [image: Entropy 17 05752 i012]








and:


 [image: Entropy 17 05752 i013]








If we note that UtU = tUU = Eα and WtW = tWW = Eβ, we obtain:


 [image: Entropy 17 05752 i014]








and find that (14) becomes:


 [image: Entropy 17 05752 i015]








with rij := tu[i]Vw[j]. Then, we can see:


 [image: Entropy 17 05752 i016]



(15)




and that the (α − 1) × (β − 1) matrix [image: there is no content] consists of mutually independent elements rij with i = 1, …, α − 1 and j = 1, …, β − 1: E[rij] = 0, and:


 [image: Entropy 17 05752 i017]








where [image: there is no content] is the variance of rij and the expectation of [image: there is no content], so that (15) implies:


 [image: Entropy 17 05752 i018]



(16)




If we define for each x ∈ X and y ∈ Y and for i = 1, …, n:



 [image: Entropy 17 05752 i019]








where u[i] = (u[i,x])x ∈ X and w[j] = (w[y,j])y ∈ Y, then we can check E[Zi,j,k] = 0 and V[Zi,j,k] = 1, where expectation E and variance V are with respect to the examples Xn = xn and Yn = yn, and I(A) takes one if the event A is true and zero otherwise. We can easily check:


 [image: Entropy 17 05752 i020]



(17)




We consider applying the obtained derivation to Lemma 1. From (17), we obtain:



 [image: Entropy 17 05752 i021]








which means that (14) is upper bounded by(1 + ϵ)(α − 1)(β − 1)log log n with probability one as n → ∞ for any ϵ > 0, from (16). This completes the proof of Theorem 1.
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