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Abstract: Based on two fractional-order chaotic complex drive systems and one

fractional-order chaotic complex response system with different dimensions, we propose

generalized combination complex synchronization. In this new synchronization scheme,

there are two complex scaling matrices that are non-square matrices. On the basis of the

stability theory of fractional-order linear systems, we design a general controller via active

control. Additionally, by virtue of two complex scaling matrices, generalized combination

complex synchronization between fractional-order chaotic complex systems and real systems

is investigated. Finally, three typical examples are given to demonstrate the effectiveness and

feasibility of the schemes.
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generalized combination complex synchronization

1. Introduction

Fractional-order systems have attracted noticeable interest and have been well studied for

their potential applications in assorted fields, like engineering, physics, finance, chemistry and

bioengineering [1–5]. Recently, the research on fractional-order chaotic systems has become a hot

issue. The efforts have been devoted to chaotic behavior, chaos control and chaos synchronization.

Some fractional-order systems behave chaotically or hyperchaotically, such as the fractional-order

Chua system [6], the fractional-order hyperchaotic Chen system [7], the fractional-order hyperchaotic
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Rössler system [8], and so on. Most recently, many authors have found some fractional-order chaotic

systems, including the fractional-order reverse butterfly-shaped chaotic system [9], the fractional-order

stretch-twist-fold (STF) flow chaotic system [10], a four-dimensional fractional-order chaotic system

without an equilibrium point [11], etc. Synchronization of fractional-order chaotic systems has been

widely investigated due to its potential applications in secure communication, encryption, signal and

control processing [9,10,12–14]. Therefore, a variety of effective methods have been proposed to

synchronize various fractional-order chaotic systems. For instance, Agrawal et al. [15] realized

synchronization of fractional-order chaotic systems via active control. A linear control method was

proposed to synchronize the fractional-order chaotic systems in [16]. By employing the active control

method, the phase and anti-phase synchronization of two fractional-order chaotic systems were studied

in [17]. Si et al. [18] achieved the projective synchronization between two fractional-order chaotic

systems with non-identical orders. Some more attempts to realize the synchronization of fractional-order

chaotic systems can be found in [19,20].

Recently, with the development of fractional-order real systems and integer-order complex systems,

fractional-order chaotic complex systems have attracted a great deal of attention, and many interesting

and important results have been researched. For example, the fractional-order complex Lorenz system

and its complete synchronization were discussed in [21]. Luo and Wang presented the fractional-order

complex Chen system and applied its hybrid synchronization to digital secure communication [22].

The fractional-order complex T system was presented, and its function projective synchronization was

realized in [23]. Jiang et al. [24] introduced the fractional-order complex Lü system and achieved its

anti-synchronization. Complex modified hybrid projective synchronization was investigated between the

fractional-order complex chaos and real hyper-chaos in [25].

However, in the aforementioned literature on the synchronization of the fractional-order chaotic

systems, many authors are concerned with the usual drive-response synchronization within one drive

system and one response system, and three or more chaotic systems are rarely involved. As a matter

of fact, synchronization of multi-chaotic systems can enhance the security in communication, because

the transmitted signals can be split into several parts loaded in the different drive systems or the same

drive system with different initial conditions. Therefore, many researchers have made an endeavor

to analyze the synchronization of multi-chaotic systems and present some new types of synchro-

nization, including combination synchronization [26–28], combination complex synchronization [29],

combination-combination synchronization [30,31], compound synchronization [32], and so forth.

Amongst the above-mentioned synchronization, combination complex synchronization, characterized

by two scaling matrices that three chaotic systems synchronize proportionally, was proposed and studied

on the basis of three integer-order chaotic complex systems with the same dimensions.

To the best of our knowledge, there are few results on combination complex synchronization of the

fractional-order chaotic complex systems with different dimensions. Motivated by this, we proposed

generalized combination complex synchronization among three different dimensional fractional-order

chaotic complex systems. By virtue of the stability of the fractional-order linear systems, some

sufficient conditions for generalized combination complex synchronization are obtained. Besides, we

investigate generalized combination complex synchronization between the fractional-order real chaos

and complex chaos. There are some kinds of synchronization that are special cases from our definition,
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which are complex projective synchronization, combination synchronization and combination complex

synchronization. Consequently, our work will extend previous results.

The remainder of this paper is organized as follows. Section 2 recalls the relevant definitions and

stability results of the fractional-order systems. In Section 3, we present generalized combination

complex synchronization and design a scheme to realize the new form of chaos synchronization. By

means of two scaling matrices, we establish a link between fractional-order chaotic real systems and

chaotic complex systems with different dimensions. Section 4 provides three examples to exhibit the

feasibility and effectiveness of the proposed control technique. Finally, some conclusions are drawn

in Section 5.

2. Preliminaries

In this section, we introduce mathematical definitions of the fractional derivative and the stability

results of the fractional-order systems. The fractional-order integro-differential operator is the

generalized concept of the integer-order integro-differential operator, which can be denoted by a general

fundamental operator as follows:

aD
α
t =











dα

dtα
, R(α) > 0,

1, R(α) = 0,
∫ t

a
(dτ)−α, R(α) < 0,

where α is the fractional-order, which can be a complex number, R(α) is the real part of α and a and t are

the limits of the operation. As we know, there are several definitions of fractional derivatives, including

the Grunwald–Letnikov definition, the Riemann–Liouville definition and the Caputo definition.

The Grunwald–Letnikov (GL) derivative with fractional order α is given by:

G
a D

α
t f(t) = lim

h→0
f
(α)
h (t) = lim

h→0
h−α

t−α

h
∑

i=0

(−1)i

(

α

i

)

f(t− ih),

where [·] means the integer part.

The Riemann–Liouville (RL) fractional derivative is defined by:

R
aD

α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, n− 1 < α < n,

where Γ(·) is the Gamma function Γ(τ) =
∫

∞

0
tτ−1e−tdt.

The Caputo (C) fractional derivative [33] is defined as:

C
a D

α
t f(t) =

1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α−n+1
dτ, n− 1 < α < n.

In the rest of this paper, the notation Dα
∗

is chosen as the Riemann–Liouville derivative operator R
aD

α
t ,

and we mainly consider the order 0 < α < 1.

Consider a fractional-order autonomous system:

Dα
∗
x(t) = Ax(t), x(0) = x0, (1)

where 0 < α < 1, x ∈ Rn and A ∈ Rn×n.

The stability results for the fractional-order linear system [34] are given as follows:
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Lemma 1. System (1) is:

(I) Asymptotically stable if and only if:

| arg(λi(A))| > απ/2, (i = 1, 2, . . . , n),

where arg(λi(A)) denotes the argument of the eigenvalue λi of A. In this case, the component of

the state decay towards to zero like t−α.

(II) Stable if and only if:

| arg(λi(A))| ≥ απ/2, (i = 1, 2, . . . , n),

and those critical eigenvalues λi that satisfy | arg(λi(A))| = απ/2 have geometric multiplicity

one.

3. The Scheme of Generalized Combination Complex Synchronization

In this section, we propose generalized combination complex synchronization and design a

general controller.

3.1. The Definition of Generalized Combination Complex Synchronization

The first drive system is an n1-dimensional fractional-order chaotic complex system, which is

described as:

Dα
∗
x(t) = Dα

∗
xr + jDα

∗
xi = Ax+ f(x), (2)

and the second drive system is an n2-dimensional chaotic complex system, which is given as:

Dα
∗
y(t) = Dα

∗
yr + jDα

∗
yi = By + g(y), (3)

while the response system is an n-dimensional complex system, which is assumed as:

Dα
∗
z(t) = Dα

∗
zr + jDα

∗
zi = Cz + h(z) + U(x, y, z), (4)

where x = xr + jxi ∈ Cn1×1, y = yr + jyi ∈ Cn2×1 and z = zr + jzi ∈ Cn×1 are the state complex

vectors, A ∈ Rn1×n1 , B ∈ Rn2×n2 and C ∈ Rn×n are parameter matrices, while f , g and h are nonlinear

complex functions and U is a designed controller in the following.

Remark 1. Many fractional-order chaotic complex systems can be depicted by (2), such as the

fractional-order complex Lorenz system, the fractional-order complex Chen system, the fractional-order

complex T system, the fractional-order complex Lü system, and so forth.

Based on two complex drive systems and one complex response system with different dimensions,

we introduce the definition of generalized combination complex synchronization.
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Definition 1. For two drive systems, (2) and (3), and one response system, (4), it is said to be generalized

combination complex synchronization if there exist two complex matrices D1 = Dr
1 + jDi

1 ∈ C
n×n1 and

D2 = Dr
2 + jDi

2 ∈ Cn×n2 , such that:

lim
t→∞

||e(t)|| = lim
t→∞

||z(t)−D1x(t)−D2y(t)|| = 0,

where ||.|| is the matrix norm, e(t) = er(t) + jei(t) is called the error vector and er = zr − Dr
1x

r +

Di
1x

i − Dr
2y

r + Di
2y

i, ei = zi − Dr
1x

i − Di
1x

r − Dr
2y

i − Di
2y

r, the complex matrices D1 and D2 are

called the scaling matrices.

Remark 2. If the dimensions of two drive systems, (2) and (3), are equal to that of the response system,

(4), i.e., n = n1 = n2, then combination complex synchronization will appear.

Remark 3. If the scaling matrix D1 = On×n1
or D2 = On×n2

, then we can achieve complex projective

synchronization. If Di
1 = On×n1

or Di
2 = On×n2

, then combination synchronization can be carried

out. If D1 = On×n1
and D2 = On×n2

, then the synchronization problem will be changed into the chaos

control problem.

The purpose of this paper is to design suitable controllers, such that the fractional-order chaotic

nonlinear systems can achieve generalized combination complex synchronization.

3.2. A General Method for Generalized Combination Complex Synchronization

Theorem 1. Assume that the control law is chosen as follows:



















U r = −C(Dr
1x

r −Di
1x

i +Dr
2y

r −Di
2y

i)− hr(z) +Dr
1(Ax

r + f r(x))−Di
1(Ax

i + f i(x))

+Dr
2(Byr + gr(y))−Di

2(Byi + gi(y))−Ker,

U i = −C(Dr
1x

i +Di
1x

r +Dr
2y

i +Di
2y

r)− hi(z) +Dr
1(Ax

i + f i(x)) +Di
1(Ax

r + f r(x))

+Dr
2(Byi + gi(y)) +Di

2(Byr + gr(y))−Kei.

(5)

where K ∈ Rn×n is a control gain matrix. Then, we achieve generalized combination complex

synchronization between two drive systems, (2) and (3), and one response system, (4), if and only if

all eigenvalues λi of C −K lie in the region | arg(λi(C −K))| > απ/2 (i = 1, 2, . . . , n).

Proof. From Definition 1, we obtain the error vector between Systems (2)–(4) as follows:

e(t) = er(t) + jei(t)

= zr −Dr
1x

r +Di
1x

i −Dr
2y

r +Di
2y

i + j[zi −Dr
1x

i −Di
1x

r −Dr
2y

i −Di
2y

r]. (6)

The fractional derivative of the error system (6) can be expressed as:

Dα
∗
e(t) = Dα

∗
er(t) + jDα

∗
ei(t)

= Dα
∗
zr −Dr

1D
α
∗
xr +Di

1D
α
∗
xi −Dr

2D
α
∗
yr +Di

2D
α
∗
yi

+j[Dα
∗
zi −Dr

1D
α
∗
xi −Di

1D
α
∗
xr −Dr

2D
α
∗
yi −Di

2D
α
∗
yr].
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Combining Systems (2)–(4), we obtain:



















Dα
∗
er(t) = Czr + hr(z) + U r −Dr

1(Ax
r + f r(x)) +Di

1(Ax
i + f i(x))−Dr

2(Byr + gr(y))

+Di
2(Byi + gi(y)),

Dα
∗
ei(t) = Czi + hi(z) + U i −Dr

1(Ax
i + f i(x))−Di

1(Ax
r + f r(x))−Dr

2(Byi + gi(y))

−Di
2(Byr + gr(y)).

(7)

Substituting (5) into (7), the error complex dynamical system is written as:
{

Dα
∗
er(t) = (C −K)er,

Dα
∗
ei(t) = (C −K)ei.

Since | arg(λi(C − K))| > απ/2, according to Lemma 1, the error vector e(t) asymptotically

converges to zero as t → ∞. Therefore, generalized combination complex synchronization between

Systems (2)–(4) is achieved. The proof is complete.

In what follows, we discuss generalized combination complex synchronization between three

different dimensional fractional-order real chaos and complex chaos. Now, we consider the following

three cases.

Corollary 1. Suppose that two drive systems, (2) and (3), are chaotic real systems, i.e., x ∈ Rn1×1,

y ∈ R
n2×1, and one response system is a chaotic complex system, (4), i.e., z ∈ C

n×1. For two given

scaling matrices D1 ∈ Cn×n1 and D2 ∈ Cn×n2 , the errors are defined as:
{

er(t) = zr −Dr
1x−Dr

2y,

ei(t) = zi −Di
1x−Di

2y.

Then, generalized combination complex synchronization between two drive real systems, (2) and (3),

and one response complex system, (4), will occur with the designed controller:
{

U r = −C(Dr
1x+Dr

2y)− hr(z) +Dr
1(Ax+ f(x)) +Dr

2(By + g(y))−Ker,

U i = −C(Di
1x+Di

2y)− hi(z) +Di
1(Ax+ f(x)) +Di

2(By + g(y))−Kei,

where K ∈ Rn×n and all eigenvalues λi of C −K satisfy | arg(λi(C −K))| > απ/2 (i = 1, 2, . . . , n).

Corollary 2. Assume that System (2) is a chaotic real system and System (3) is a chaotic complex

system, i.e., x ∈ Rn1×1, y ∈ Cn2×1, while the response system is a chaotic complex system, (4), i.e.,

z ∈ Cn×1. The synchronization errors with the given scaling matrices D1 ∈ Cn×n1 and D2 ∈ Cn×n2 are

depicted as:
{

er(t) = zr −Dr
1x−Dr

2y
r +Di

2y
i,

ei(t) = zi −Di
1x−Dr

2y
i −Di

2y
r.

Then, two drive systems, (2) and (3), and one response system, (4), can realize generalized combination

complex synchronization with the following control law:



















U r = −C(Dr
1x+Dr

2y
r −Di

2y
i)− hr(z) +Dr

1(Ax+ f(x)) +Dr
2(Byr + gr(y))

−Di
2(Byi + gi(y))−Ker,

U i = −C(Dr
1x+Dr

2y
i +Di

2y
r)− hi(z) +Dr

1(Ax+ f(x)) +Dr
2(Byi + gi(y))

+Di
2(Byr + gr(y))−Kei,
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where K ∈ Rn×n and all eigenvalues λi of C − K lie in the region | arg(λi(C − K))| > απ/2

(i = 1, 2, . . . , n).

Corollary 3. Suppose that two drive systems, (2) and (3), are chaotic complex systems, i.e., x ∈ Cn1×1,

y ∈ Cn2×1, and the response system, (4), is a chaotic real system, where z ∈ Rn×1. Since z(t) is real,

we select a real controller U to ensure synchronization of real parts and avoid increasing the imaginary

parts of the response system. Therefore, the error vector is introduced as:

e(t) = z −Dr
1x

r +Di
1x

i −Dr
2y

r +Di
2y

i.

If a real controller is designed as:

U = −h(z) − C(Dr
1x

r −Di
1x

i +Dr
2y

r −Di
2y

i) +Dr
1(Ax

r + f r(x))−Di
1(Ax

i + f i(x))

+Dr
2(Byr + gr(y))−Di

2(Byi + gi(y))−Ke,

where K ∈ R
n×n and all eigenvalues λi of C −K satisfy | arg(λi(C −K))| > απ/2 (i = 1, 2, . . . , n),

then two drive complex systems, (2) and (3), and one response real system, (4), are the generalized

combination complex synchronization of real parts.

Additionally, from Theorem 1, we obtain control laws to achieve complex projective synchronization

and chaos control.

Corollary 4. (I) Assume D1 = On×n1
. If the controller is designed as follows:

{

U r = −C(Dr
2y

r −Di
2y

i)− hr(z) +Dr
2(Byr + gr(y))−Di

2(Byi + gi(y))−Ker,

U i = −C(Dr
2y

i +Di
2y

r)− hi(z) +Dr
2(Byi + gi(y)) +Di

2(Byr + gr(y))−Kei,

then we achieve complex projective synchronization between two different dimensional systems, (3) and

(4), if and only if all eigenvalues λi of C − K satisfy | arg(λi(C − K))| > απ/2, K ∈ Rn×n, (i =

1, 2, . . . , n).

(II) Assume D2 = On×n2
. If the controller is designed as follows:

{

U r = −C(Dr
1x

r −Di
1x

i)− hr(z) +Dr
1(Ax

r + f r(x))−Di
1(Ax

i + f i(x))−Ker,

U i = −C(Dr
1x

i +Di
1x

r)− hi(z) +Dr
1(Ax

i + f i(x)) +Di
1(Ax

r + f r(x))−Kei,

then we carry out complex projective synchronization between two different dimensional systems, (2)

and (4), if and only if all eigenvalues λi of C − K satisfy | arg(λi(C − K))| > απ/2, K ∈ R
n×n,

(i = 1, 2, . . . , n).

Corollary 5. Suppose two scaling matrices D1 = On×n1
and D2 = On×n2

. If the control law is

given as:

{

U r = −hr(z)−Ker,

U i = −hi(z)−Kei,

where K ∈ R
n×n and all eigenvalues λi of C − K lie in the region | arg(λi(C − K))| > απ/2

(i = 1, 2, . . . , n), then the equilibrium point of the response system, (4), is asymptotically stable.
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4. Numerical Simulations

In this section, three examples are performed to illustrate the validity and feasibility of the

proposed schemes. Firstly, we work out generalized combination complex synchronization between the

fractional-order complex Lorenz system, the fractional-order complex Lü system and the fractional-order

complex Chen system.

4.1. Synchronization among Three Fractional-Order Chaotic Complex Systems

Now, let us consider the fractional-order complex Lorenz system as the first drive system:











Dα
∗
x1(t) = a1(x2 − x1),

Dα
∗
x2(t) = a2x1 − x2 − x1x3,

Dα
∗
x3(t) =

1
2
(x̄1x2 + x1x̄2)− a3x3,

(8)

and the fractional-order complex Lü system as the second drive system:











Dα
∗
y1(t) = b1(y2 − y1),

Dα
∗
y2(t) = −y1y3 + b2y2,

Dα
∗
y3(t) =

1
2
(ȳ1y2 + y1ȳ2)− b3y3,

(9)

while the response system is the fractional-order complex Chen system:











Dα
∗
z1(t) = c1(z2 − z1) + U1,

Dα
∗
z2(t) = (c2 − c1)z1 − z1z3 + c2z2 + U2,

Dα
∗
z3(t) =

1
2
(z̄1z2 + z1z̄2)− c3z3 + U3,

(10)

where A =







−a1 a1 0

a2 −1 0

0 0 −a3






, B =







−b1 b1 0

0 b2 0

0 0 −b3






, C =







−c1 c1 0

c2 − c1 c2 0

0 0 −c3






,

f(x) =







0

−x1x3

1
2
(x̄1x2 + x1x̄2)






, g(y) =







0

−y1y3
1
2
(ȳ1y2 + y1ȳ2)






, h(z) =







0

−z1z3
1
2
(z̄1z2 + z1z̄2)






;

x1 = xr
1+jxi

1, x2 = xr
2+jxi

2, y1 = yr1+jyi1, y2 = yr2+jyi2, z1 = zr1+jzi1 and z2 = zr2+jzi2 are complex

variables, x3, y3 and z3 are real variables and U1 = u1 + ju2, U2 = u3 + ju4 and U3 = u5 are complex

and real control functions, respectively. Systems (8)–(10) behave chaotically with the given parameters

α = 0.95, (a1, a2, a3) = (10, 180, 1), (b1, b2, b3) = (42, 22, 5) and (c1, c2, c3) = (35, 28, 3), respectively;

see Figures 1–3. In what follows, we will select the above system parameters and fractional orders in

our synchronization analysis.
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Figure 1. Chaotic attractor of the fractional-order complex Lorenz system.
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Figure 2. Chaotic attractor of the fractional-order complex Lü system.
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Figure 3. Chaotic attractor of the fractional-order complex Chen system.
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Assume that D1 =







j 0 0

0 −j 0

0 0 1






, D2 =







j 0 0

0 j 0

0 0 −1






. Then, we obtain the synchronization

error functions as follows:










e1(t) = er1 + jei1 = zr1 + xi
1 + yi1 + j(zi1 − xr

1 − yr1),

e2(t) = er2 + jei2 = zr2 − xi
2 + yi2 + j(zi2 + xr

2 − yr2),

e3(t) = z3 − x3 + y3.

A control matrix is chosen as K =







−29 31 −1

−5 30 0

0 0 7






; then, we have C −K =







−6 4 1

−2 −2 0

0 0 −10







for the choice of (c1, c2, c3) = (35, 28, 3). It is not difficult to see that all eigenvalues of C − K are

λ1,2 = −4± 2j and λ3 = −10, which satisfy | arg(λi(C −K))| > απ/2, (i = 1, 2, 3).

According to Theorem 1, the controller is designed as:






























u1 = (a1 − c1)x
i
1 + (b1 − c1)(y

i
1 − yi2)− (a1 + c1)x

i
2 + 29er1 − 31er2 + e3,

u2 = (c1 − a1)x
r
1 + (c1 − b1)(y

r
1 − yr2) + (a1 + c1)x

r
2 + 29ei1 − 31ei2,

u3 = (c2 − c1 + a2)x
i
1 + (c2 − c1)y

i
1 + (c2 − b2)y

i
2 − (1 + c2)x

i
2 − xi

1x3 + yi1y3 + zr1z3 + 5er1 − 30er2,

u4 = (c1 − c2 − a2)x
r
1 + (c1 − c2)y

r
1 + (b2 − c2)y

r
2 + (1 + c2)x

r
2 + xr

1x3 − yr1y3 + zi1z3 + 5ei1 − 30ei2,

u5 = (c3 − a3 + 7)x3 + (b3 − c3 − 7)y3 − 7z3 − zr1z
r
2 − zi1z

i
2 + xr

1x
r
2 + xi

1x
i
2 − yr1y

r
2 − yi1y

i
2.

In the numerical simulations, the initial values of Systems (8)–(10) are taken as x(0) = (2 + 3j, 5 +

6j, 9)T , y(0) = (1+ 2j, 3+ 4j, 5)T and z(0) = (6+ 9j, 5+ 7j, 12)T . Thus, we obtain simulation results

by means of the Adams–Bashforth–Moulton predictor-correctors [35]. The synchronization process of

Systems (8)–(10) is displayed in Figure 4, where the red line presents the states of two drive systems

and the blue line shows the states of one response system. From Figure 5, it is clear that all error states

converge asymptotically to zero, i.e., the fractional-order complex Lorenz system, the fractional-order

complex Lü system and the fractional-order complex Chen system achieve synchronization with the

designed controller.
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Figure 4. State variables of the fractional-order complex Systems (8)–(10).
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Figure 5. Synchronization errors of the fractional-order complex Systems (8)–(10).

4.2. Synchronization between Two Fractional-Order Hyperchaotic Real Drive Systems and a

Fractional-Order Chaotic Complex Response System

In order to observe generalized combination complex synchronization between two fractional-order

hyperchaotic real drive systems and a fractional-order chaotic complex response system, we assume

that the fractional-order hyperchaotic real Chen system and the fractional-order hyperchaotic real

Rössler system drive the fractional-order chaotic complex Lorenz system. Two drive systems are

introduced below:



















Dα
∗
x1(t) = a1(x2 − x1) + x4,

Dα
∗
x2(t) = a4x1 − x1x3 + a3x2,

Dα
∗
x3(t) = x1x2 − a2x3,

Dα
∗
x4(t) = x2x3 + a5x4,

(11)

and:



















Dα
∗
y1(t) = −y2 − y3,

Dα
∗
y2(t) = y1 + b1y2 + y4,

Dα
∗
y3(t) = b2 + y1y3,

Dα
∗
y4(t) = −b3y3 + b4y4,

(12)

while the response system with the controller is depicted as follows:











Dα
∗
z1(t) = c1(z2 − z1) + U1,

Dα
∗
z2(t) = c2z1 − z1z3 − z2 + U2,

Dα
∗
z3(t) =

1
2
(z̄1z2 + z1z̄2)− c3z3 + U3,

(13)
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where A =











−a1 a1 0 1

a4 a3 0 0

0 0 −a2 0

0 0 0 a5











, B =











0 −1 −1 0

1 b1 0 1

0 0 0 0

0 0 −b3 b4











, C =







−c1 c1 0

c2 −1 0

0 0 −c3






,

f(x) =











0

−x1x3

x1x2

x2x3











, g(y) =











0

0

b2 + y1y3

0











, h(z) =







0

−z1z3
1
2
(z̄1z2 + z1z̄2)






; z1 = zr1 + jzi1 and

z2 = zr2 + jzi2 are complex variables, xi, yi and z3 are real variables (i = 1, 2, 3, 4) and U1 = u1 + ju2,

U2 = u3 + ju4 and U3 = u5 are complex and real control functions, respectively.

For two given scaling matrices D1 = D2 =







1 + j 0 0 0

0 1 + j 0 0

0 0 0 −1






, the synchronization error is

described as follows:











e1(t) = er1 + jei1 = zr1 − x1 − y1 + j(zi1 − x1 − y1),

e2(t) = er2 + jei2 = zr2 − x2 − y2 + j(zi2 − x2 − y2),

e3(t) = z3 + x4 + y4.

Taking a control matrix as K =







2− c1 c1 + 1 0

c2 − 2 3 1

0 0 −c3 + 5






, we get C −K =







−2 −1 0

2 −4 −1

0 0 −5







with (c1, c2, c3) = (10, 180, 1). Thus, when α = 0.98, all eigenvalues of C −K are λ1,2 = −4± 2j and

λ3 = −10, which lie in the region | arg(λi(C −K))| > απ/2 (i = 1, 2, 3).

From Corollary 1, the control law is obtained as follows:







































u1 = (c1 − a1)x1 + c1y1 + (a1 − c1)x2 − (c1 + 1)y2 + x4 − y3 − (2− c1)e
r
1 − (c1 + 1)er2,

u2 = (c1 − a1)x1 + c1y1 + (a1 − c1)x2 − (c1 + 1)y2 + x4 − y3 − (2− c1)e
i
1 − (c1 + 1)ei2,

u3 = (a4 − c2)x1 + (1− c2)y1 + (a3 + 1)x2 + (b1 + 1)y2 + y4 − x1x3 + zr1z3 − (c2 − 2)er1
−3er2 − e3,

u4 = (a4 − c2)x1 + (1− c2)y1 + (a3 + 1)x2 + (b1 + 1)y2 + y4 − x1x3 + zi1z3 − (c2 − 2)ei1 − 3ei2,

u5 = −(c3 + a5)x4 − (b4 + c3)y4 − zr1z
r
2 − zi1z

i
2 − x2x3 + b3y3 − (5− c3)e3.

In the following, α = 0.98, the initial values of Systems (11)–(13) are taken as

x(0) = (3,−4, 2, 2)T , y(0) = (−15, 9,−4, 18)T , z(0) = (2 + 3j, 5 + 6j, 9)T , and the parameters

are chosen as (a1, a2, a3, a4, a5) = (35, 3, 12, 7, 0.5), (b1, b2, b3, b4) = (0.25, 3, 0.5, 0.05), (c1, c2, c3) =

(10, 180, 1). Then, Systems (11) and (12) exhibit chaotic attractors, as shown in Figures 6 and 7. Figure 8

demonstrates the synchronization process and error states of Systems (11)–(13). According to Figure 9,

it is obvious that all error states tend asymptotically to zero. Hence, the four-dimensional fractional-order

real Chen system, the four-dimensional fractional-order real Rössler system and the three-dimensional

fractional-order complex Lorenz system realize generalized combination complex synchronization.
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Figure 7. Chaotic attractor of the fractional-order hyperchaotic real Rössler system.
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Figure 9. Synchronization errors of the fractional-order Systems (11)–(13).

4.3. Synchronization between Two Fractional-Order Chaotic Complex Drive Systems and a

Fractional-Order Hyperchaotic Real Response System

In this subsection, we design the control law to achieve generalized combination complex

synchronization between the fractional-order complex Lü system, the fractional-order complex Chen

system and the fractional-order hyperchaotic real Rössler system. The first drive system is defined as:











Dα
∗
x1(t) = a1(x2 − x1),

Dα
∗
x2(t) = a2x2 − x1x3,

Dα
∗
x3(t) =

1
2
(x̄1x2 + x1x̄2)− a3x3,

(14)

and the second drive system is given as:











Dα
∗
y1(t) = b1(y2 − y1),

Dα
∗
y2(t) = (b2 − b1)y1 + b2y2 − y1y3,

Dα
∗
y3(t) =

1
2
(ȳ1y2 + y1ȳ2)− b3y3,

(15)

while the response system with the controller is described as follows:



















Dα
∗
z1(t) = −z2 − z3 + U1,

Dα
∗
z2(t) = z1 + c1z2 + z4 + U2,

Dα
∗
z3(t) = c2 + z1z3 + U3,

Dα
∗
z4(t) = −c3z3 + c4z4 + U4,

(16)
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where A =







−a1 a1 0

0 a2 0

0 0 −a3






, B =







−b1 b1 0

b2 − b1 b2 0

0 0 −b3






, C =











0 −1 −1 0

1 c1 0 1

0 0 0 0

0 0 −c3 c4











,

f(x) =







0

−x1x3

1
2
(x̄1x2 + x1x̄2)






, g(y) =







0

−y1y3
1
2
(ȳ1y2 + y1ȳ2)






, h(z) =











0

0

c2 + z1z3

0











; x1 = xr
1 + jxi

1,

x2 = xr
2 + jxi

2, y1 = yr1 + jyi1 and y2 = yr2 + jyi2 are complex variables, x3, y3 and zi are real variables

and Ui are real control functions (i = 1, 2, 3, 4).

Suppose two scaling matrices D1 = D2 =











j 0 0

0 j 0

0 0 1

0 0 1











=











0 0 0

0 0 0

0 0 1

0 0 1











+ j











1 0 0

0 1 0

0 0 0

0 0 0











. The

real synchronization error is defined as follows:



















e1(t) = z1 + xi
1 + yi1,

e2(t) = z2 + xi
2 + yi2,

e3(t) = z3 − x3 − y3,

e4(t) = z4 − x3 − y3.

Select a control matrix as K =











−λ1 −1 −1 0

1 c1 − λ2 0 1

0 0 −λ3 0

0 0 −c3 c4 − λ4











, where λi are real and satisfy

| arg(λi(C −K))| > απ/2, (i = 1, 2, 3, 4).

The real controller is derived from Corollary 3 as follows:































U1 = a1x
i
1 + b1y

i
1 − (1 + a1)x

i
2 − (1 + b1)y

i
2 + x3 + y3 + λ1e1 + e2 + e3,

U2 = xi
1 + yi1 − (b2 − b1)y

i
1 + (c1 − a2)x

i
2 + (c1 − b2)y

i
2 − x3 − y3 + xi

1x3 + yi1y3

−e1 − (c1 − λ2)e2 − e4,

U3 = −c2 − z1z3 + xr
1x

r
2 + xi

1x
i
2 − a3x3 − b3y3 + yr1y

r
2 + yi1y

i
2 + λ3e3,

U4 = (c3 − c4 − a3)x3 + (c3 − c4 − b3)y3 + xr
1x

r
2 + xi

1x
i
2 + yr1y

r
2 + yi1y

i
2 + c3e3 − (c4 − λ4)e4.

In what follows, α = 0.98, the initial values are x(0) = (1+2j, 3+4j, 9)T , y(0) = (6+9j, 5+7j, 12)T ,

z(0) = (−15, 9,−4, 18)T , and the parameters are (a1, a2, a3) = (42, 22, 5), (b1, b2, b3) = (35, 28, 3),

(c1, c2, c3, c4) = (0.25, 3, 0.5, 0.05). we choose λ1 = −2, λ2 = −1, λ3 = −9 and λ4 = −5, such that

all eigenvalues of C − K lie in region | arg(λi(C − K))| > απ/2 (i = 1, 2, 3, 4). Figure 10 describes

the synchronization process of Systems (14)–(16). According to Figure 11, it can be seen that all error

states converge asymptotically to zero. Therefore, the fractional-order chaotic complex Lü system, the

fractional-order chaotic complex Chen system and the fractional-order hyperchaotic real Rössler achieve

generalized combination complex synchronization.
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Figure 10. State variables of the fractional-order nonlinear Systems (14)–(16).

0 1 2 3 4 5
−25

−20

−15

−10

−5

0

5

10

15

20

t/s

e1
,e

2,
e3

,e
4

 

 
e

1

e
2

e
3

e
4

Figure 11. Synchronization errors of the fractional-order Systems (14)–(16).

5. Conclusions

This paper presents generalized combination complex synchronization between two fractional-order

complex drive systems and one fractional-order complex response system with different dimensions.

In this proposed scheme, two drive systems and one response system can be synchronized to

two complex constant scaling matrices which are non-square matrices. The special cases, such
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as combination complex synchronization, combination synchronization and complex projective

synchronization, are discussed, as well. Based on the stability of fractional-order linear systems,

a general controller is obtained to achieve generalized combination complex synchronization among

three different dimensional fractional-order chaotic complex systems. Through this scheme, we study

generalized combination complex synchronization between fractional-order real chaos and complex

chaos. Furthermore, this scheme is successfully applied to three examples. Corresponding simulations

verify the feasibility of the proposed scheme. Moreover, the proposed synchronization has advantages

over the usual drive-response synchronization, such as being able to provide greater security in secure

communication. Therefore, it is believed that the proposed scheme will play an important role in secure

communication.
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