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Abstract: Ground state properties and level statistics of the Dicke model for a finite number
of atoms are investigated based on a progressive diagonalization scheme (PDS). Particle
number statistics, the entanglement measure and the Shannon information entropy at the
resonance point in cases with a finite number of atoms as functions of the coupling parameter
are calculated. It is shown that the entanglement measure defined in terms of the normalized
von Neumann entropy of the reduced density matrix of the atoms reaches its maximum
value at the critical point of the quantum phase transition where the system is most chaotic.
Noticeable change in the Shannon information entropy near or at the critical point of the
quantum phase transition is also observed. In addition, the quantum phase transition may
be observed not only in the ground state mean photon number and the ground state atomic
inversion as shown previously, but also in fluctuations of these two quantities in the ground
state, especially in the atomic inversion fluctuation.
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1. Introduction

It is well known that the Dicke model [1] exhibits a “superradiant” quantum phase transition (QPT) in
the thermodynamic limit as shown by Hepp and Lieb [2]. To date, many aspects of the model have been
studied, such as the dynamical properties of quantum entanglement and decoherence [3–8], quantum
phase transitions (QPT) [2,9–11] and chaotic properties [3,5,9,10,12–15]. Furuya et al. [3] did the
initial work on the entanglement process in a varied version of the model and concluded that for short
times, there is a faster increase in decoherence for chaotic initial conditions as compared to regular ones,
which have an oscillatory increase. Hou and Hu studied this problem further in [5], concluding that the
entanglement makes a distinct change at the QPT and that for regular initial conditions, the entanglement
is smaller than for chaotic ones in the case of weak coupling and fluctuates with a small amplitude
for strong coupling and chaotic initial conditions. They paid special attention to the relation between
chaos and the QPT, e.g., in [10], they show that the system undergoes a transition from quasi-integrable
to quantum chaotic and that the transition is linked to precursors of the QPT. The relation between
entanglement and the QPT has also been investigated by others. For example, the entanglement and the
QPT in the rotating-wave approximation (RWA) is reported in [6], which suggests that the entanglement
only occurs in the strong coupling limit. The model has also been extensively studied without the RWA,
with its quantum-chaotic properties discussed by several other authors [12–15], without reference to
the QPT.

In the thermodynamic limit, the ground state in the model is exactly solvable in the whole coupling
range, as shown in [9,10] based on the Holstein–Primakoff realization of the su(2) Lie algebra , which
only provides a method to get exact results for the ground state, but not for the whole spectrum. However,
the level statistics only becomes meaningful when a sufficient number of excited states in the model is
known. On the other hand, for finite N cases, the system is non-integrable in general [16], with the
finite-size effect shown to be crucial in understanding the properties of entanglement [5,7,8,17–19]. As
has been shown in [20] recently, the only exception is the model with the j = 1/2 case, which is
not only exactly solvable, but also integrable. Moreover, since the photon number is not conserved,
a procedure that considers only a truncated number of Dicke states is used together with standard
diagonalization methods [7,8]. Such straightforward diagonalization yields useless results, especially
when the atom-field coupling becomes strong, unless a huge subspace spanned by the Dicke states is
considered in the diagonalization. Usually, convergence is assumed to be achieved if the ground-state
energy is determined within small relative errors. Within this approximation, one must typically
diagonalize a relatively large sparse energy matrix in the strong coupling regime, which becomes
prohibitive for large finite system sizes, which carries the further complication that the convergence
of the ground-state energy is very slow. As a remedy, instead of the Dicke basis, the Dicke Hamiltonian
can be diagonalized in a shifted boson basis where convergence is reached with a smaller number of
shifted boson states across the whole coupling regime [21]. This approach was also used to study the
quantum criticality, the finite size effects, fidelity and the order parameter in the Dicke model [22].

Alternatively, a progressive diagonalization scheme (PDS) for the Dicke model was offered [23]
based on a similar proposed methodology for solving the nuclear pairing problem [24] and the Rabi
Hamiltonian [25], where the latter is just a special case of the Dicke model with N = 1. This approach
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shows that the lower part of eigenstates and the corresponding eigenvalues can be obtained progressively
within a finite number of steps. In each step, only a single variable finite-order polynomial equation
needs to be solved due to the fact that only a finite number of the shifted boson states correlates among
each other, which is mainly due to the fact that the overlaps |αknµ| of the shifted boson states |nµ) with the
Dicke states |k; jµ〉 diminish rapidly with the increasing |n − k|. An analysis of outcomes suggests the
effectiveness of this diagonalization method for the model proposed in [21], in which the shifted boson
basis was also adopted in the diagonalization. The convergence is tied to the number of steps that are
needed, which, in turn, depends on the coupling parameter λ/ω and the number of the atoms N = 2j.
Very recently, a detailed numerical analysis of the solutions of the Dicke model obtained by using the
approach shown in [21] has been made [26–28], and a comparative quantum and semi-classical analysis
of the model has also been shown [29,30], which all justify the effectiveness of the approach proposed
in [21].

An application of the PDS to the Dicke model can be used for a determination of ground state
properties, such as photon number, the atomic inversion, fluctuations of the latter two quantities, an
entanglement measure, the Shannon information entropy, etc., and, in addition, for the study of level
statistics with a larger, but finite number of atoms. The purpose of this paper is to show that, for a finite
number of atoms, the entanglement measure defined in terms of the normalized von Neumann entropy
of the reduced density matrix of the atoms reaches its maximum value at the critical point of the QPT,
at which the system is most chaotic. Noticeable change in the Shannon information entropy near or at
the critical point of the QPT is also observed. In addition, the QPT may be observed not only in the
ground state mean photon number and the ground state atomic inversion, as shown in [10], but also in
fluctuations of these two quantities in the ground state, especially in the atomic inversion fluctuation.

2. The PDS for the Dicke Model

In this section, we briefly review the PDS for the model that we will use to calculate level statistics
and other quantities of the ground state. The single-mode Dicke Hamiltonian without the RWA, which
describes N two-level atoms interacting with a quasi-monochromatic field, may be written as:

ĤD = ωa†a+ ω0Jz +
λ√
2j

(a† + a)(J+ + J−), (1)

where Jz, J± = Jx ± iJy are the usual angular momentum operators for a pseudo-spin of j = N/2,
and a, a† are the bosonic operators of the field. The atomic level-splitting is given by ω0; ω is the
field frequency; and λ is the atom-field coupling. The parity with the operator P̂ = eiπ(a†a+N/2+Jz) is
conserved, since it commutes with the Hamiltonian ĤD.

In order to diagonalize Hamiltonian (1), we make a π/2 rotation around the y-axis to obtain
pseudo-spin operators:

J ′z = RJzR
−1 = Jx, J

′
x = RJxR

−1 = −Jz (2)

with R = e−i
π
2
Jy , which was also done in [21]. After the rotation, Hamiltonian (1) becomes:

Ĥ = RĤDR
−1 = ωa†a+

ω0

2
(J+ + J−)−

√
2

j
λ(a† + a)Jz. (3)
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Let |Ψ〉D be an eigenstate of (1) satisfying:

ĤD|Ψ〉D = EΨ|Ψ〉D. (4)

After the rotation (2), we have:
ĤR|Ψ〉D = EΨR|Ψ〉D. (5)

Therefore, once the eigenvalue Problem (3) with Ĥ|Ψ〉 = EΨ|Ψ〉 is solved, all eigenvalues of (1)
are thus obtained with the corresponding eigenstate |Ψ〉D = R−1|Ψ〉. Hence, we only focus on the
diagonalization procedure for Hamiltonian (3).

Hamiltonian (3) can also be written as:

Ĥ = ω(a† −
√

2λ√
jω
Jz)(a−

√
2λ√
jω
Jz)−

2λ2

jω
J2
z +

ω0

2
(J+ + J−), (6)

which can easily be diagonalized when ω0 = 0 with eigen-energies:

Enµ = ωn− 2λ2

jω
µ2, (7)

where n = 0, 1, 2, · · · and µ = −j, − j+ 1, · · · , j−1, j. The corresponding eigenstates in the shifted
boson basis can be expressed as:

|nµ) =

√
1

n!
e
−λ

2µ2

jω2 (a† −
√

2

j

λ

ω
µ)ne

√
2
j
λ
ω
µa†|0; jµ〉, (8)

where |0; jµ〉 for µ = −j, − j + 1, · · · , j− 1, j are the boson vacuum state satisfying a|0; jµ〉 = 0 and
the eigenstates of the pseudo-spin operators J2 and Jz, simultaneously. Like the Dicke states |n; jµ〉 ≡
|n〉|jµ〉, where |n〉 is the eigenstate of the boson number operator satisfying a†a|n〉 = n|n〉, the basis
vectors {|nµ)} also form a complete set of orthonormal basis vectors for the Hamiltonian (6). Thus, (6)
can be written as:

Ĥ =
∑
nµ

Enµ|nµ)(nµ|+ ω0

∑
kµµ′

(Jx)µµ′ |k; jµ〉〈k; jµ′|. (9)

According to the analytical step-by-step diagonalization procedure proposed in [25], the procedure
starts with the first term and the k = 0 sector in the last term of (9) with:

Ĥ(0) =
∑
nµ

Enµ|nµ)(nµ|+ ω0

∑
µµ′

(Jx)µµ′|0; jµ〉〈0; jµ′|. (10)

For given j, the matrix elements (Jx)µµ′ can be expressed as:

(Jx)µµ′ =
1

2

√
(j − µ′)(j + µ′ + 1)δµµ′+1 +

1

2

√
(j + µ′)(j − µ′ + 1)δµµ′−1. (11)

Let:
|Ψ(0)

ξ 〉 = Nξ
∑
nµ

cξnµ|nµ) (12)

be the eigenstate of Ĥ(0), where ξ is used to label the ξ-th eigenvalue of Ĥ(0), and:

Nξ = 1/

√∑
nµ

(
cξnµ
)2

(13)
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is the normalization constant. The eigenequation Ĥ(0)|Ψ(0)
ξ 〉 = E

(0)
ξ |Ψ

(0)
ξ 〉 results in the following

relation for the expansion coefficients cξnµ:

(E
(0)
ξ − Enµ)cξnµ = ω0α

0
nµ

∑
µ′

(Jx)µµ′
∑
n′

cξn′µ′α
0
n′µ′ , (14)

where the overlap αknµ is given by:

αknµ = 〈k; jµ|nµ) =

√
k!n!e

− 2λ2µ2

jω2 (−)n−k(

√
2

j

λ

ω
µ)n−k

∑
q

(−)q(
√

2
j
λ
ω
µ)2q

(n− k + q)!(k − q)!q!
. (15)

It should be noted that there are some special eigenstates of (10) with nonzero expansion coefficient
cξnµ for some fixed n, either when α0

nµ = 0 or when the overlap:∑
µ′

(Jx)µµ′〈k = 0; jµ′|Ψ(0
ξ 〉 = 0 (16)

for some µ values according to (10). These eigenstates are not correlated among the shifted boson states
with different n and only linear combinations of |nµ) for fixed n, so that they can be easily determined:

(a) When j is an integer, since α0
nµ=0 = 0 for n ≥ 1 according to (15), Eigenequation (14) provides

the special solutions for this case with:

|Ψ(0)
ξ′=n〉 = |n, 0) (17)

for n = 1, 2, · · · , of which the corresponding eigen-energies are given by:

E
(0)
ξ′=n = ωn (18)

with the parity P = (−1)n.

(b) Besides the case studied in (a), for given n, one can construct the states:

|Ψ(0)
ξ′′=n〉 =

∑
µ

cnµ|nµ) (19)

satisfying (16). One can verify that there are only possible solutions (19) satisfying (16) when
j = 1. In this case, since α0

nµ=−1 = (−1)nα0
nµ=1 and α0

nµ=0 = α0
0µ=0δn0, (14) results in the

solutions with:

|Ψ(0)
ξ′′=n〉 =

1√
2
|n, 1)− (−1)n√

2
|n,−1). (20)

For given n, the eigen-energies of (20) are independent of ω0 with:

E
(0)
ξ′′=n = ωn− 2λ2/ω (21)

with parity P = −1. It should be emphasized that there are special solutions shown in (a) only
when j is an integer and those shown in (b) only when j = 1.
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In the following, we only focus on solutions other than those shown in Cases (a) and (b). Generally,
these solutions are linear combinations of the shifted boson states |nµ) with different n, which are more
complicated than those special cases shown in (a) and (b). When α0

nµ 6= 0, let:

cξnµ =
α0
nµ

E
(0)
ξ − Enµ

γµ(E
(0)
ξ ). (22)

By substituting (22) into (14), Equation (14) results in the linear relations among {γµ(E
(0)
ξ )} with:

γµ(E
(0)
ξ ) =

∑
µ′

(Jx)µµ′I(µ′, E
(0)
ξ )γµ′(E

(0)
ξ ) (23)

for µ = −j,−j + 1, · · · , j − 1, j, where:

I(µ,E
(0)
ξ ) = ω0

∑
n

(
α0
nµ

)2

E
(0)
ξ − Enµ

. (24)

The linear relations (23) can be used to get expressions of γµ(E
(0)
ξ ) in terms of I(µ′, E

(0)
ξ ) (µ′ = −j,

−j+ 1, · · · , j− 1, j) and the equation for determining the eigenvalue E(0)
ξ with one of {γµ(E

(0)
ξ )} being

arbitrary as long as j is finite, in which we set γj(E
(0)
ξ ) = 1. Finally, once (23) is solved, Hamiltonian (9)

may be expressed as:

Ĥ =
∑
ξ

E
(0)
ξ |Ψ

(0)
ξ 〉〈Ψ

(0)
ξ |+ ω0

∞∑
k=1

∑
µµ′

(Jx)µµ′|k; jµ〉〈k; jµ′|,

where the sum in the first term should run over those provided by (18), (21) and (22) with (23),
respectively.

Then, we do the next diagonalization with:

Ĥ = Ĥ(1) + ω0

∞∑
k=2

∑
µµ′

(Jx)µµ′ |k; jµ〉〈k; jµ′| (25)

with:

Ĥ(1) =
∑
ξ1

E
(1)
ξ1
|Ψ(1)

ξ1
〉〈Ψ(1)

ξ1
|

=
∑
ξ

E
(0)
ξ |Ψ

(0)
ξ 〉〈Ψ

(0)
ξ |+ ω0

∑
µµ′

(Jx)µµ′ |1; jµ〉〈1; jµ′|, (26)

where:
|Ψ(1)

ξ1
〉 = N (1)

ξ1

∑
ξ

c
(0)ξ1
ξ |Ψ(0)

ξ 〉 (27)

with:

N (1)
ξ1

= 1/

√∑
ξ

(
c

(0)ξ1
ξ

)2

. (28)

In this step, the special solutions in (b) will not be possible when j = 1. However, there are still solutions
in (a) that exist when j is an integer with:

|Ψ(1)

ξ′1=n〉 = |n, 0) (29)
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for n = 2, 3, · · · , of which the corresponding eigen-energies are still given by:

E
(0)

ξ′1=n = ωn. (30)

Besides these special solutions, similar to the initial step, other solutions can be obtained by setting:

c
(0)ξ1
ξ =

1

E
(1)
ξ1
− E(0)

ξ

∑
µ

β1µ
ξ γ

(0)
µ (E

(1)
ξ1

), (31)

in which:

β1µ
ξ = 〈Ψ(0)

ξ |1; jµ〉 = Nξ
∑
n

α0
nµα

1
nµ

E
(0)
ξ − Enµ

γµ(E
(0)
ξ ). (32)

The parameters γ(0)
µ (E

(1)
ξ1

) in (31) should satisfy:

γ(0)
µ (E

(1)
ξ1

) = ω0

∑
µ′

(Jx)µµ′
∑
ξ′

β1µ′

ξ′
1

E
(1)
ξ1
− E(0)

ξ′

∑
µ′′

β1µ′′

ξ′ γ
(0)
µ′′ (E

(1)
ξ1

). (33)

Similar to the initial step, (33) provides solutions to the expansion coefficients {γ(0)
µ (E

(1)
ξ1

)} up to an
overall factor and the corresponding eigenvalue E(1)

ξ1
simultaneously.

Similarly, in the k-th step, we take a diagonalized part of the Hamiltonian H(k−1) and the k-th
projection in the second term of (9) with:

Ĥ(k) = Ĥ(k−1) + ω0

∑
µµ′

(Jx)µµ′|k; jµ〉〈k; jµ′|

=
∑
ξk−1

E
(k−1)
ξk−1
|Ψ(k−1)

ξk−1
〉〈Ψ(k−1)

ξk−1
|+ ω0

∑
µµ′

(Jx)µµ′|k; jµ〉〈k; jµ′|

=
∑
ξk

E
(k)
ξk
|Ψ(k)

ξk
〉〈Ψ(k)

ξk
| (34)

to do the next diagonalization for k = 1, 2 · · · , where:

|Ψ(k)
ξk
〉 = N (k)

ξk

∑
ξk−1

c
(k−1)ξk
ξk−1

|Ψ(k−1)
ξk−1
〉 (35)

with ξ0 ≡ ξ,

N (k)
ξk

= 1/

√∑
ξk−1

(
c

(k−1)ξk
ξ

)2

. (36)

The special solutions in (a) still exist when j is an integer with:

|Ψ(k)

ξ′k=n〉 = |n, 0) (37)

for n = k + 1, k + 2, · · · , of which the corresponding eigen-energies are still given by:

E
(k)

ξ′k=n = ωn. (38)

Besides these special solutions, other solutions can be obtained by setting:

c
(k−1)ξk
ξk−1

=
1

E
(k)
ξk
− E(k−1)

ξk−1

∑
µ

βkµξk−1
γ(k−1)
µ (E

(k)
ξk

), (39)



Entropy 2015, 17 5029

in which
βkµξk−1

= 〈Ψ(k−1)
ξk−1
|k; jµ〉 (40)

and the parameters γ(k−1)
µ (E

(k)
ξk

) should satisfy:

γ(k−1)
µ (E

(k)
ξk

) = ω0

∑
µ′ξ′µ′′

(Jx)µµ′

E
(k)
ξk
− E(k−1)

ξ′

βkµ
′

ξ′ β
kµ′′

ξ′ γ
(k−1)
µ′′ (E

(k)
ξk

). (41)

Then, after the k-th step of the diagonalization, Hamiltonian (9) can be written as:

Ĥ = Ĥ(k) + ω0

∞∑
k′=k+1

∑
µµ′

(Jx)µµ′ |k′; jµ〉〈k′; jµ′|. (42)

In the k-th step, one can verify that the eigenstates (35) for any j case are mutually orthogonal. Moreover,
the eigenstates of the special solutions (37) are also orthogonal with (35), which is obvious, because (35)
only involves |n, 0) for n = 0, 1, · · · , k, while these states are excluded in the special solutions (37).

As shown in [23,25], the advantage of the PDS is that only a few steps are needed for lower excited
states, especially when λ/ω ≤ 1, which is mainly due to the fact that the overlap |αknµ| diminishes rapidly
with the increasing of |n − k|. As a result, not only do the lower excited energies remain unchanged
after a number of steps, with which the overlaps of the Dicke states in the second term of (42) with the
lower excited states determined in that step are almost negligible, but also, only a finite number of states
{|Ψ(k−1)

ξk−1
〉} correlate among each other in the k-th step, which, in turn, effectively truncates the infinite

sum in (35) and (41) into a finite sum. Thus, other uncorrelated states and the corresponding eigenvalues
in the k-th step diagonalization keep unchanged as those in the (k − 1)-th step, which has already been
demonstrated in [25] for j = 1/2 case. Actually, the above feature in the PDS applies to other j cases,
as well. For fixed j or λ/ω, |n − k|, with which the overlap |αknµ=±j| is non-negligible, increases with
the increasing of λ/ω or j. Namely, the more the atoms involved with the larger the coupling parameter,
the more the shifted boson states |n, µ) will be correlated, which also answers why the number of steps
required in order to get an accurate solution increases with the increasing of λ/ω and j.

In the following, the first two steps of the diagonalization for the j = 1/2 case will be given to show
how the PDS works. For j = 1/2, Equation (23) gives the following expression:

γ1/2(E(0)) =
1

2
I(−1/2, E(0))γ−1/2(E(0)),

γ−1/2(E(0)) =
1

2
I(1/2, E(0))γ1/2(E(0)), (43)

which, for nonzero γ1/2(E(0)) and γ−1/2(E(0)), result in:

I(−1/2, E(0))I(1/2, E(0)) = 4, (44)

where:

I(−1/2, E(0)) = I(1/2, E(0)) = ω0

∞∑
n=0

e−(λ/ω)2(λ/ω)2n

n!(E(0) − nω + λ2/ω)
. (45)

Hence, Equation (44) can be simplified as:

± 2

(ω0/ω)
=
∞∑
n=0

e−(λ/ω)2(λ/ω)2n

n!(E(0)/ω − n+ (λ/ω)2)
, (46)
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where both the + and − sign cases provide possible solutions in the initial step. For any eigenvalue E(0)

determined by (46), there are two possible solutions for {γ1/2(E(0)), γ−1/2(E(0))}, since I(1/2, E(0)) =

I(−1/2, E(0)) = ±2, according to the sign shown in (46). If we set γ1/2(E(0)) = 1,

γ−1/2(E(0)) = 1 (47)

corresponding to a solution of (46) with the + sign, while:

γ−1/2(E(0)) = −1 (48)

corresponding to a solution of (46) with the − sign. Hence, we have:

|Ψ(0)
ξ,+〉 = Nξ,+

∑
n

(
α0
n,1/2

E
(0)
ξ,+ − ωn+ λ2/ω

|n, 1/2) +
α0
n,−1/2

E
(0)
ξ,+ − ωn+ λ2/ω

|n,−1/2)

)
with P = −1,

|Ψ(0)
ξ,−〉 = Nξ,−

∑
n

(
α0
n,1/2

E
(0)
ξ,− − ωn+ λ2/ω

|n, 1/2)−
α0
n,−1/2

E
(0)
ξ,− − ωn+ λ2/ω

|n,−1/2)

)
with P = +1, (49)

where:

(Nξ,ν)−2 =
∑
nµ

(α0
n,µ)2

(E
(0)
ξ,ν − ωn+ λ2/ω)2

(50)

for either ν = + or −.
Once all solutions in the (k − 1)-th step are known, they can be used to construct the next k-th step

solutions. For example, using the results shown in (49), (50) and (46) of the initial step for j = 1/2 case,
we can use (27)–(33) to do the k = 1 step diagonalization. In this case, according to (35), we have:

γ
(0)
1/2(E

(1)
ξ1

) =
ω0

2

∑
ξ′ν

β
1,−1/2
ξ′ν

E
(1)
ξ1
− E(0)

ξ′ν

(
β

1,1/2
ξ′ν γ

(0)
1/2(E

(1)
ξ1

) + β
1,−1/2
ξ′ν γ

(0)
1/2(E

(1)
ξ1

)
)
,

γ
(0)
−1/2(E

(1)
ξ1

) =
ω0

2

∑
ξ′ν

β
1,1/2
ξ′ν

E
(1)
ξ1
− E(0)

ξ′ν

(
β

1,1/2
ξ′ν γ

(0)
1/2(E

(1)
ξ1

) + β
1,−1/2
ξ′ν γ

(0)
1/2(E

(1)
ξ1

)
)
, (51)

where:

β1µ
ξ′ν = Nξ′ν

∑
n

α0
nµα

1
nµ

E
(0)
ξ′ν − Enµ

γµ(E
(0)
ξ′ν), (52)

with which (51) can be expressed as:(
1− I1(1/2,−1/2, E

(1)
ξ1

)
)
γ

(0)
1/2(E

(1)
ξ1

) = I1(−1/2,−1/2, E
(1)
ξ1

)γ
(0)
−1/2(E

(1)
ξ1

)(
1− I1(1/2,−1/2, E

(1)
ξ1

)
)
γ

(0)
−1/2(E

(1)
ξ1

) = I1(1/2, 1/2, E
(1)
ξ1

)γ
(0)
1/2(E

(1)
ξ1

), (53)

where:

I1(µ, µ′, E
(1)
ξ1

) =
ω0

2

∑
ξ′ν

β1,µ
ξ′νβ

1,µ′

ξ′ν

E
(1)
ξ1
− E(0)

ξ′ν

. (54)

Since I1(−1/2,−1/2, E
(1)
ξ1

) = I1(1/2, 1/2, E
(1)
ξ1

), Equation (53) results in the following equation for
determining the eigenvalues E(1)

ξ1
:

1− I1(1/2,−1/2, E
(1)
ξ1

) = ν1I1(1/2, 1/2, E
(1)
ξ1

), (55)
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where ν1 = 1 or −1, from which we get:

γ
(0)
1/2(E

(1)
ξ1

) = 1, γ
(0)
−1/2(E

(1)
ξ1

) = 1 for ν1 = +1,

γ
(0)
1/2(E

(1)
ξ1

) = 1, γ
(0)
−1/2(E

(1)
ξ1

) = −1 for ν1 = −1. (56)

Similar linear relations of {γ(k−1)
µ (E

(k)
ξk

)} can easily be obtained according to (41) for other j cases in
the k-th step. The expressions of {γ(k−1)

µ (E
(k)
ξk

)} become cumbersome only when j is really large.
In order to demonstrate the convergence of the PDS, Figure 1a shows the first 20 eigenenergies of the

model with j = 1/2 for ω = ω0 and λ/ω0 = 0.5 starting from k = 0 in the first step, which is only
efficient for the ground state. In particular, the ground state energy remains unchanged up to the fourth
decimal place after k = 3 steps of the diagonalization. More steps are needed for higher excited states.
For example, the 10th excited energy remains unchanged up to the fourth decimal place after k = 10

steps. Similarly, the 20th excited energy remains unchanged up to the fourth decimal place after k = 15

steps. With the same precision, the number of steps needed increases slightly with increasing strength
of the coupling parameter λ/ω0. For example, in the model with j = 1/2 for ω = ω0 and λ/ω0 = 1.0,
of which the first 20 eigenenergies are shown in Figure 1b, k = 7 steps are needed for the ground state
energy, while k = 20 steps are needed for the 20th excited energy. Moreover, with the same precision,
the number of steps needed also slightly increases with the increasing of j. As shown in Figure 1c for
the model with j = 20 for ω = ω0 and λ/ω0 = 0.5, k = 10 steps are needed for the ground state energy,
while k = 20 steps are needed for the 20th excited energy. Therefore, the PDS starting by including
the k = 0 sector in the last term of (9) and then by adding other terms successively with the increasing
order of k arranged is only efficient for lower part of the spectrum with finite j, especially when j and
λ/ω0 are small. The fact that the number of steps needed is always finite is just the consequence that the
overlap |αknµ| diminishes rapidly with the increasing of |n − k|. Actually, instead of k = 0, we can use
the k = t sector in the second term of (9) as an initial value for an excited state. Then, by including a
few terms in the second part of (9) with k = t, t ± 1, · · · , t ± q with a finite desired q, the number of
steps, Q ∼ 2q, needed for the excited state is similar to that for the ground state.
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Figure 1. The number of steps, k, needed in the progressive diagonalization scheme (PDS)
for the lowest 20 level energiesE/ω0 at the resonance point with ω = ω0, where (a) j = 1/2,
λ/ω0 = 0.5, (b) j = 1/2, λ/ω0 = 1.0 and (c) j = 20, λ/ω0 = 0.5.

In each step, only a single variable finite-order polynomial equation needs to be solved, because only
a finite number of the shifted boson states correlate among each other, which is mainly due to the fact
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that the overlaps |αknµ| of the shifted boson states |nµ) with the Dicke states |k; jµ〉 diminish rapidly
with the increasing of |n− k|. Hence, the infinite sum involved, for example that on the right-hand side
of (46) or those involved in (55), becomes a finite sum. The CPU time needed for solving the equation
depends on the order of the polynomial and the solver used. In the j = 20 case, as an example, the CPU
time needed in each step is always about v seconds with v ∼ 2.3–15.0 when λ/ω0 ≤ 2 by using Wolfram
Mathematica, which is typical not only for ground state starting from the first step with k = 0, but also
for an excited state starting from the first step with k = t, where t is chosen close to the quantum number
of the excited state determined by the first term of (9). Thus, besides the time needed for reorganizing
the coefficients of the next step polynomial, the total CPU time needed for getting the desired result for
each excited state is about vQ seconds. As can be observed from Figure 1c, one needs 10 steps in order
to get the ground state energy converged, which is also typical for other excited energies as described
above; the CPU time needed for each excited energy is about 10v seconds. Therefore, the PDS is quite
efficient if only a few excited states are concerned, especially for the ground state. However, the PDS is
still time consuming if more excited states are needed.

3. The QPT and Entanglement

It is well known that the Dicke model undergoes the QPT at zero temperature [2,9–11], for which
many ground state quantities, such as the ground state mean photon number, the atomic inversion and
their fluctuations can be taken as order parameters to signify the QPT. Specifically, there is a noticeable
change in these quantities at the critical point of the QPT, which is specified by the coupling parameter
λ/ω. Therefore, the coupling parameter λ/ω serves as the control parameter of the QPT in the model.

By using the PDS, these order parameters at the resonance point with ω = ω0 for some finite j cases
were calculated. In Figure 2, we plot the ground state mean photon number n = 〈Ψg|a†a|Ψg〉 and the
ground state atomic inversion Jz = 〈Ψg|Jz|Ψg〉 as functions of λ/ω0 for the j = 10, 15 and 20 cases,
respectively, which clearly illustrates the nature of the QPT. When λ/ω0 < (λ/ω0)c, the system is only
microscopically excited, whereas both the field and the atomic ensemble acquire macroscopic excitations
when λ/ω0 ≥ (λ/ω0)c. These results are all consistent with those shown in [10]. In addition, the QPT
may also be observed in fluctuations of the photon number and atomic inversion in the ground state
defined by:

∆n =
√
〈Ψg|(a†a− n)2|Ψg〉 (57)

and:
∆Jz =

√
〈Ψg|(Jz − Jz)2|Ψg〉. (58)

These two quantities as functions of λ/ω0 for j = 10, 15 and 20, respectively, are shown in Figure 3. In
Figures 2 and 3, the vertical dashed line indicates the critical point value, (λ/ω0)c = 0.5, determined in
the large-N limit of the model shown in [9,10]. Abrupt change in these fluctuations at or near the critical
point is noticeable, especially in ∆Jz. Though noticeable change in the atomic inversion fluctuation was
also observed in the large-N limit of the Dicke model calculated from the exact steady-state solution
through the equivalent Fokker–Planck equation of the system [31,32], there is no sharp peak emerging in
the atomic inversion fluctuation at the critical point from the calculation, while, as clearly shown in the
right panel of Figure 3, a sharp peak develops in the atomic inversion fluctuation near the critical point
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in the finite-N cases studied in this paper. Moreover, the rescaled concurrence, which can be used as an
entanglement measure and also related to the atomic inversion fluctuation, in the dispersive limit of the
model with ω � {ω0, λ} was also studied [33]. It should be noted that the Dicke Hamiltonian (1) in the
dispersive limit is reduced to the Lipkin–Meshkov–Glick (LMG) model. As noticed in [34], though the
Dicke model shares many features with the LMG model, the presence of a bosonic mode coupled to a
set of two-level systems in the Dicke model may give rise to interesting challenges. Actually, the QPT
in the Dicke model is mainly driven by the coupling between the bosonic field and the atoms, while the
QPT in the LMG model is driven by interactions among atoms. In this sense, the QPT in the two models
is different.

Figure 2. The ground state mean photon number n (left panel) and the atomic inversion Jz
(right panel) as functions of λ/ω0 at the resonance point with ω = ω0 for 10 (red solid dots),
15 (open circles) and 20 (solid line), where the vertical dashed line indicates the critical point
position determined in the thermodynamic limit [10].

Figure 3. The same as Figure 2, but for the ground state photon number fluctuation ∆n

(left panel) and the atomic inversion fluctuation ∆Jz (right panel) as functions of λ/ω0 at the
resonance point with ω = ω0 for 10 (red solid dots), 15 (open circles) and 20 (solid line).

The connection between entanglement and particle number statistics in the ground state of quantum
many-body systems has been noticed. For instance, the variance of the particle number in a subgroup is
an entanglement measure of the corresponding mode-bipartition for any pure state [35]. Moreover,
coherence between subspaces of fixed particle number in a subgroup immediately implies mode
entanglement [36,37]. It is clearly shown in this paper that, besides the ground state mean photon number
and the ground state atomic inversion, as shown previously [10], the QPT in the Dicke model can also
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be observed in fluctuations of these two quantities in the ground state, especially in the atomic inversion
fluctuation. In a recent paper [38], Brandes has found that there is an abrupt change in observables, such
as the mean atomic inversion and the boson (photon) number and its fluctuations at arbitrary energies,
which demonstrate that the QPT occurs not only at the ground state, but also in excited states. However,
it should be noted that the QPT occurring in excited states is not the same as that in the ground state. The
former results in a singularity in the spectrum, while the latter results in a singularity in the properties of
the ground state.

To show the ground state entanglement quantitatively, we adopt the simple entanglement measure
defined by:

Sg = −Tr(ρalogN+1ρa), (59)

where ρa is the reduced density matrix obtained by taking a partial trace over the field. We use the
logarithm to the base N + 1 instead of base two to ensure that the maximal measure is normalized to
one [39,40]. In addition, Koashi entangled webs [41] were used to measure entanglement in the atomic
part of the ground state of finite-size models related to the extended Dicke models [42,43], which provide
another good measure of average qubit-qubit entanglement to show the highest entanglement occurring at
the critical point. Moreover, the Shannon information entropy of the ground state of quantum many-body
systems is also a good measure of correlations among local states [44], which, in the Dicke model, is
defined by:

IH = −
∑
nµ

|wnµ|2 ln(|wnµ|2), (60)

where {wnµ} is the expansion coefficients of the ground state |Ψg〉 in terms of the Dicke states |n; jµ〉.
Obviously, IH = 0 when λ = 0. In this case, all Dicke states are uncorrelated, and the ground state
of the system is in the normal phase. When λ > 0, the system moves from the uncorrelated normal
phase toward the correlated “superradiant” phase with IH > 0. In [34], the mutual information entropy,
which is related to the reduced von Neumann entropy (59), but different from the Shannon information
entropy (60), was calculated for the LMG model. Since the LMG model is equivalent to the Dicke
model in the dispersive limit, the analysis provided in [34] also applies to the Dicke model in the
ω � {ω0, λ} limit.

The ground state entanglement and the Shannon information entropy of the model at the resonance
point with ω = ω0 for j = 10, 15 and 20 as functions of λ/ω0 are shown in Figure 4. Since the system
studied is finite, rigorously speaking, only a cross-over occurs at or near the critical point. Nevertheless,
as shown in Figure 4, with the increasing of the number of the atoms, a peak emerges in the entanglement
measure near λ/ω0 ∼ 0.5, near which noticeable changes in the photon number, the atomic inversion and
their fluctuations are observed. This is consistent with what is called critical point entanglement [45].
Moreover, a noticeable change in the ground state Shannon information entropy near or at the critical
point can also be observed when j is large. Anyway, the above analysis justifies the connection of particle
number statistics with entanglement observed in [35–37].
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Figure 4. The same as Figure 2, but for the ground state entanglement (left panel) and the
Shannon information entropy (right panel) as functions of λ/ω0 at the resonance point with
ω = ω0 for 10 (red solid dots), 15 (open circles) and 20 (solid line).

4. Level Statistical Properties

We use two typical statistical measures to analyze the level fluctuation properties (that is, departures
from uniformity in the spectrum). One is the nearest-neighbor level spacing distribution P (S) [46],
which was also calculated in [10] for several finite j cases, and the other is the spectral rigidity
∆3(L) [47], which was not discussed in [10]. These measures are determined through the unfolded
levels {Ẽξ} that are obtained from the mapping N(Eξ) 7→ Ẽξ, where {Eξ} are obtained from the PDS
after a number of steps until its value is unchanged in the next step, where ξ labels the ξ-th excited level,
and the mapping is determined by fitting a smooth polynomial function to the number staircase function,
N(Eξ), that counts the number of levels below Eξ. In our analysis, we use a six-degree polynomial
in Eξ that has been shown to be sufficient [46,48]. By construction, the unfolded spectrum, {Ẽξ}, is
dimensionless with an average level spacing of unity.

The distribution of the nearest-neighbor level spacing P (S) is defined as the probability of two
nearest-neighbor energy levels to have a spacing S, which is calculated from the unfolded spectrum as:

Sξ = Ẽξ+1 − Ẽξ. (61)

The distribution P (S) is shown by normalized histograms in our analysis.
As is commonly accepted, Poisson statistics with:

P (S) = e−S, (62)

characterizes a regular system (uncorrelated level spacings), while the Wigner distribution, which is
almost identical to the GOE prediction [46,47],

P (S) = (π/2)Se−πS
2/4, (63)

characterizes a chaotic system (nearby levels are likely to repel each other).
The spectral rigidity, that is the departure from uniformity (even spacings of a rigid spectrum) over a

given span of levels, is measured by ∆3(α,L) as defined by Dyson and Metha [47],

∆3(α,L) =
1

L
min
A,B

∫ α+L

α

[N(Ẽ)− (AẼ +B)]2dẼ, (64)



Entropy 2015, 17 5036

which is the average of the least-squares deviations between the number staircase function N(Ẽ) for the
unfolded spectrum and its best linear fit (AẼ + B) over the energy interval [α, α + L]. For a given L,
smaller values of ∆3 imply stronger long-term correlations between the levels.

The average of ∆3(α,L) over nα intervals (α, α + L), which overlap by L/2 successively, yields a
smoother ∆3(L) measure,

∆3(L) =
1

nα

∑
α

∆3(α,L). (65)

It is shown that:
∆3(L) = L/15, (66)

for a regular spectrum, while, in the large-L limit,

∆3(L) ≈ 1

π2
(lnL− 0.0687), (67)

for a chaotic system with GOE statistics.
In our calculations, 8000 excited levels with positive parity were considered, which are obtained from

the PDS according to Section 2. Typically, the highest level energy is 390 ω0 for λ/ω0 = 0, 402.302 ω0

for λ/ω0 = 0.5, 862.495 ω0 for λ/ω0 = 5.0, 11,940.60 ω0 for λ/ω0 = 100 and 58,789.7 ω0 for
λ/ω0 = 500, respectively. We have checked that there are no obvious changes in P (S) and ∆3(L) when
more excited levels are taken in the calculations. For small j values, a non-generic distribution consisting
of several isolated peaks in P (S) emerges, which is similar to the Rabi model case with j = 1/2. These
cases are unusual, because the number of the atoms is too small to form a universal ensemble. Therefore,
we only study the level statistics of the model with j = 20 as an example. Since the parity is conserved,
only energy levels with positive parity are included in the statistics. Using the PDS, we calculate the
positive parity level energies, which are then used to obtain both the nearest-neighbor level spacing
distribution P (S) and the spectral rigidity ∆3(L), of which the results are shown in Figures 5 and 6,
respectively. Instead of the positive parity level energies, one can also use all negative parity level
energies to calculate these two quantities, with results being quite similar to those obtained from the
positive parity level energies.

Figure 5. Level spacing distribution P (S) of the model with j = 20 at the resonance point
with ω = ω0 for various coupling strengths λ/ω0. In all panels, the (blue) dashed line
describes the Poisson statistics, while the (red) dash-dotted line describes the GOEstatistics.
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Figure 6. The spectral rigidity ∆3(L) of the model with j = 20 at the resonance point with
ω = ω0 for various coupling strengths λ/ω0. In all of panels, the (blue) dashed line describes
the Poisson statistics, while the (red) dash-dotted line describes the GOE statistics.

As shown in the upper left two panels in Figures 5 and 6, when λ/ω0 is at or near zero, the model
is obviously integrable or quasi-integrable, especially when λ/ω0 = 0, for which the spectrum is quite
similar to that of a harmonic oscillator. The P (S) reaches the unique maximal value at S = 0 when
λ/ω0 = 0, while ∆3(L) in this case is far beyond the Poisson type, indicating much weaker correlation
among the levels. As pointed out in [49], harmonic oscillator systems with equidistant excitation energies
are unusual and non-generic, though they are integrable, which explains why the P (S) and ∆3(L) for the
case with λ/ω0 ∼ 0 behave unusually, as shown in the upper left two panels in Figure 5. With increasing
λ/ω0, both the nearest-neighbor level spacing distribution P (S) and the spectral rigidity ∆3(L) gradually
develop towards GOE-type statistics, which coincide with the corresponding GOE values at the critical
point with λ/ω0 = 0.5, as shown in the first lower left panel in Figures 5 and 6. By further increasing
λ/ω0, the P (S) and ∆3(L) tend to the Poisson type, which almost coincide with the corresponding
Poisson values when λ/ω0 is large enough. In fact, the Dicke model with j ≥ 1 for nonzero energy
splitting between the two levels of the single atom is formally not integrable when λ/ω0 → ∞, though
the model is exactly solvable and integrable when j = 1/2, as recently pointed out by Braak [16,20].
Braak’s exact solution to the Dicke model with j = 1/2 was also recovered [50,51] by using the
Bogoliubov operators and the method proposed in [22], respectively, while the finite size Dicke model
was also studied within the shifted boson basis in [52], which confirms Braak’s observations on the exact
solvability of the Dicke model, though the model is not integrable in general. However, the Poissonian
limit is reached as λ/ω0 → ∞ at the resonance point, which is also demonstrated in [10]. Generally,
the GOE statistics is mainly due to the fact that no level crossing occurs among excited levels of the
model, which is suggestive of a departure from regularity and emergence of quantum chaos [53,54].
Actually, obvious level repulsion among excited levels at or near λ/ω0 = 0.5, e.g., when j = 20, can
be observed, though the spectrum is not shown here. In [38], Brandes observed the singular behavior
of the derivative of the density of states at the critical point. Furthermore, it is shown in [29,30] that
the density of states could be approximated semiclassically, and this approximation could be used as an
exact unfolding to avoid fitting a polynomial function by hand in this model. Since the model can be
studied semiclassically [30], a connection between the QPT in excited states of the model [29,38] and
the onset of chaos was identified. It is also found in [30] that the onset of chaos is related to the breaking
of the quadratic approximation of the Hamiltonian that is obtained by considering small oscillations



Entropy 2015, 17 5038

around the global energy minimum. It was confirmed in the quantum and classical versions that chaos is
present, both in the normal and superradiant phase. Anyway, our results clearly show that the system at
the resonance point is most chaotic at the critical point with λ/ω0 = 0.5.

5. Conclusions

In summary, ground state properties and the level statistics of the Dicke model for a finite number
of atoms are investigated based on the progressive PDS. Particle number statistics, the entanglement
measure, the Shannon information entropy and the level statistics at the resonance point for cases with
a finite number of atoms as functions of the coupling parameter are calculated. The ground state mean
photon number, the ground state atomic inversion and the distribution of the nearest-neighbor level
spacing P (S) obtained from the results of the PDS agree with those shown in previous studies, e.g.,
those shown in [10]. In addition, the QPT may also be observed in fluctuations of these two quantities
in the ground state, especially in the atomic inversion fluctuation. A noticeable change in the Shannon
information entropy near or at the critical point of the QPT is also observed. It is clearly shown that the
entanglement measure defined in terms of the normalized von Neumann entropy of the reduced density
matrix of the atoms reaches its maximum value at the critical point of the QPT, when the system is most
chaotic. When a quantum many-body system undergoes a QPT, there is always a noticeable change in
many ground state quantities, such as particle number statistics and the entanglement measure at the
critical point [35–37]. However, it is not necessarily true that the system is most entangled at the critical
point. For example, the entanglement measure increases with increasing value of the control parameter
in the Jaynes–Cummings model [6], which is also the Dicke model with the RWA, the spin chain
models [55], the Bose–Hubbard model with on-site repulsion [56], etc., though saturation in the measure
will reach beyond the critical point in the strong coupling regime. On the other hand, in general, chaotic
systems tend to produce larger entanglement than for regular systems, but there are also exceptions for
classically regular systems, as shown in [57,58]. Therefore, the critical point entanglement with the
concurrent onset of chaos seems unique in the Dicke model without the RWA.
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